
Solution of exercises of Chapter 1

Advanced Control Systems

Problem 1.1: Consider the following transfer function:

G(s) =
α

τs+ 1
, α > 0 , τ > 0

1. Compute two- and ∞-norm of G(s).

2. Compute one-, two- and ∞-norm of g(t), the unit impulse response of G(s).

Solution: For computing the two-norm of G(s) the residue theorem is used:

∥G∥22 = lim
s→−1/τ

(s+ 1/τ)
α

τs+ 1

α

−τs+ 1
=

α2

2τ
⇒ ∥G∥2 =

α√
2τ

Since |Gjω| is a decreasing function with ω, its maximum happens at ω = 0, Thus, ∥G∥∞ = α.
The impulse response of G is g(t) = α

τ e
−t/τ for t ≥ 0 therefore:

∥g∥1 =

∫ ∞

0

α

τ
e−t/τdt = −αe−t/τ

∣∣∣∞
0

= α

∥g∥22 =

∫ ∞

0

α2

τ2
e−2t/τdt =

−α2τ

2τ2
e−t/τ

∣∣∣∣∞
0

=
α2

2τ

∥g∥∞ = sup
t

|g(t)| = α

τ

Problem 1.2: For G(s) stable and strictly proper, show that ∥g∥1 < ∞ and find an inequality relating
∥G∥∞ and ∥g∥1.

Solution: Let’s represent the stable strictly proper transfer function G(s) by its partial-fraction expan-
sion (with no repeated poles) and compute its impulse response:

G(s) =

n∑
i=1

ci
s− pi

⇒ g(t) =

n∑
i=1

cie
pit t > 0

Let’s define σi := Repi.Then, since σi < 0, we obtain:

∥g∥1 ≤
n∑

i=1

∫ ∞

0

|ciepit|dt =
n∑

i=1

∫ ∞

0

|ci|eσitdt =

n∑
i=1

|ci|
σi

eσit

∣∣∣∣∞
0

=

n∑
i=1

−|ci|
σi

< ∞

If the system has repeated poles with multiplicity of ℓi, we will obtain the terms like tℓi−1epit in g(t)
which have bounded integral as well:∫ ∞

0

|tℓi−1epit|dt =
∫ ∞

0

tℓi−1eσitdt =
1

σi
tℓi−1eσit

∣∣∣∣∞
0

− ℓi − 1

σi

∫ ∞

0

tℓi−2eσitdt = −ℓi − 1

σi

∫ ∞

0

tℓi−2eσitdt

1



Continuing the integration we find that:∫ ∞

0

|tℓi−1epit|dt = constant× 1

σi

Finally, the relationship between the norms is ∥G∥∞ ≤ ∥g∥1, which can be shown based on the
definition of G(jω):

G(jω) =

∫ ∞

0

g(t)e−jωtdt

Then

|G(jω)| ≤
∫ ∞

0

∣∣g(t)e−jωt
∣∣ dt = ∫ ∞

0

|g(t)|
∣∣e−jωt

∣∣ dt = ∥g∥1 ⇒ ∥G∥∞ ≤ ∥g∥1

Problem 1.3: Show that the 2-norm for systems is not submultiplicative.

Solution: It is sufficient to provide a counterexample. Take G(s) and H(s) as follows:

G(s) =
1

τ1s+ 1
, H(s) =

1

τ2s+ 1

with τ1 = 2τ2. We have ∥G∥2 = 1/
√
2τ1 and ∥H∥2 = 1/

√
2τ2 = 1/

√
τ1. On the other hand it is easy to

compute ∥GH∥2 = 1/
√
3τ1. A counterexample is obtained for τ1 = 2. In this case ∥GH∥2 = 1/

√
6 =

0.4082, while ∥G∥2=0.7071 and ∥H∥2 = 0.5.

Problem 1.4: Consider the following feedback loop:

K G hh - - -

6

- ?r(t)

v(t)

u(t) y(t)e(t)

-

+

Which system norm should be minimized if the objective is minimizing the 2-norm of the control signal
u(t) when v(t) = 0 and

1. r(t) is a step signal filtered by a low-pass filter F (s).

2. r(t) is a bounded 2-norm signal whose energy is concentrated between ω1 and ω2.

Solution: The transfer function between the reference signal r(t) and the control signal u(t) is:

U(s) = K

1 +GK

1. According to Parseval’s relation, we should minimize the following system norm:

∥u∥2 =

∥∥∥∥1sF (s)U
∥∥∥∥
2

=

∥∥∥∥ FK

s(1 +GK)

∥∥∥∥
2

A necessary condition for the boundedness of the above norm is the existence of a pole at 0 (inte-
grator) in G.

2. Let’s define a bandpass filter W (s) such that |W (jω)| = 1 for ω1 < ω < ω2 and |W (jω)| = 0
elsewhere. Then according to Entry (1,1) of Table 1.2 of the course note, we should minimise
∥WU∥∞.
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Problem 1.5: For the unity feedback system with G̃(s) = α/s, where α ∈ [−1 , 3], does there exist a
proper controller K(s), such that the system is robustly stable?

Solution: Let’s compute a weighting filter that represents the multiplicative uncertainty for the system.
Take the nominal model G(s) = 1/s, then:∣∣∣∣α/jω1/jω

− 1

∣∣∣∣ ≤ |W2(jω)| ⇒ |α− 1| ≤ |W2(jω)| ∀α ∈ [−1 , 3] ⇒ W2(s) = 2

The robust stability condition is ∥W2T ∥∞ < 1, which leads to ∥T ∥∞ < 0.5. However, we have

T (s) =
GK

1 +GK
=

αK

s+ αK
⇒ T (0) = 1

Therefore, the robust stability condition cannot be achieved with any controller.

Problem 1.6: Consider the unity feedback system with

G̃(s) =
1

s− a
; K(s) = 10

where a is real.

1. Convert parametric uncertainty to frequency-domain uncertainty using a feedback uncertainty
model. Compute the range of a to have robust stability using the small gain theorem.

2. Compute the range of a for internal stability by analysing the closed-loop poles. Compare it with
the result in the previous item.

Solution:

1. Note that the nominal model (a = 0), G(s) = 1/s, and K(s) = 10 is internally stable. We can use
the feedback uncertainty model as:

G̃(s) =
1

s− a
=

1

s− a∆
=

1/s

1− a∆/s
=

G(s)

1 + ∆W2(s)G(s)

Suppose that a ≥ 0. Allow ∆ to be a variable real number in the interval [0 , 1]. Then

• G and G̃ have the same number of poles in Re s ≥ 0, i.e. G̃ has exactly one pole there.

• ∥∆∥∞ ≤ 1 and W2(s) = −a.

The stability condition is ∥W2GS∥∞ < 1, which gives:

∥W2GS∥∞ =

∥∥∥∥−a
1/s

1 + 10/s

∥∥∥∥
∞

=

∥∥∥∥ −a

s+ 10

∥∥∥∥
∞

Since | − a/(jω + 10)| is a decreasing function, its maximum happens at ω = 0, which leads to
0 ≤ a < 10.

2. The closed loop polynomial is 10 + s − a = 0 and the closed loop pole is a − 10. The system is
internally stable for a < 10. This range is bigger than those obtained by small gain theorem because
of conservatism originated from the choice of ∆. Note that small gain theorem has no conservatism
for all possible ∆ and has conservatism for any particular choice of ∆.
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Problem 1.7: Given a unity feedback control system with

G(s) =
s− 1

s2 − 4

and the following performance filter:

W1(s) =
β

s+ 1

find for which values of β > 0 the nominal performance ∥W1S∥∞ < 1 can be achieved.

Solution: The model has one pole and one zero in RHP: z = 1 and p = 2. We now that:

∥W1S∥∞ ≥
∣∣∣∣W1(z)

z + p

z − p

∣∣∣∣ = ∣∣∣∣β2 1 + 2

1− 2

∣∣∣∣ ⇒ 3β

2
< 1 ⇒ β < 0.6666

Problem 1.8: The following multiplicative uncertainty model is given:

G̃(s) = G(s)[1 + ∆W2(s)] ; G(s) =
s+ 0.5

s(s− 1)
; W2(s) =

s+ 1

0.1s+ 1

Is the unity feedback closed-loop system robustly stabilizable?

Solution: We have two poles with Res ≥ 0: p = 0, 1. Let’s compute W2(1) = 2/1.1 = 1.818. Since
∥W2T ∥∞ ≥ |W2(p)| = 1.818, the robust stability condition ∥W2T ∥∞ < 1 cannot be achieved.

Problem 1.9: Consider the following closed-loop system:

K G hh - - -

6

- ?r(t)

v(t)

u(t) y(t)e(t)

-

+

where

G(s) =
3

s− α
and K(s) = 4

(
1 +

1

s

)
• Assume α = 5 :

(a) Compute the two-norm of the tracking error e(t) for a unit step reference signal (assume v(t) =
0).

(b) Compute the infinity norm of the input sensitivity function (the transfer function between the
reference signal r and u).

(c) Assume v(t) = sin 2t. Compute the infinity norm of u(t) when r(t) = 0.

• Assume α ∈ [3 , 7] :

(d) Convert parametric uncertainty to frequency-domain uncertainty using a feedback uncertainty
model.

(e) Does the given controller robustly stabilise the closed-loop system?
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Solution:

(a) The two norm of e(t) is equal to the two norm of E(s):

∥e∥22 =

∥∥∥∥ 1

1 +GK

1

s

∥∥∥∥2
2

=

∥∥∥∥ s(s− 5)

s2 + 7s+ 12

1

s

∥∥∥∥2
2

=

∥∥∥∥ (s− 5)

(s+ 3)(s+ 4)

∥∥∥∥2
2

= R1 +R2

R1 = lim
s→−3

(s+ 3)
s− 5

(s+ 3)(s+ 4)

−s− 5

(−s+ 3)(−s+ 4)
=

8

21
= 0.381

R2 = lim
s→−4

(s+ 4)
s− 5

(s+ 3)(s+ 4)

−s− 5

(−s+ 3)(−s+ 4)
=

−9

56
= −0.1607

∥e∥22 = 0.22 ⇒ ∥e∥2 = 0.4693

(b) The infinity norm of the input sensitivity function is:

∥U(s)∥∞ =

∥∥∥∥ K

1 +GK

∥∥∥∥
∞

=

∥∥∥∥4(s+ 1)(s− 5)

(s+ 3)(s+ 4)

∥∥∥∥
∞

= |U(jω)|ω=∞ = 4

Note that by looking at the Bode magnitude diagram, it is clear that the maximum happens at
very high frequencies.

(c) u(t) will be a sinusoidal signal with the same frequency and its amplitude (its infinity norm) is:

∥u∥∞ = |U(j2)| =
∣∣∣∣4(j2 + 1)(j2− 5)

(j2 + 3)(j2 + 4)

∣∣∣∣ ≈ 3

(d) The uncertain model can be written as (with −1 ≤ ∆ ≤ 1):

G̃(s) =
3

s− (5− 2∆)
=

3
s−5

1 + ∆ 2
3

3
s−5

=
G(s)

1 + ∆W2(s)G(s)
∥∆∥∞ ≤ 1 ⇒ W2(s) = 2/3

(e) The robust stability condition is ∥W2GS∥∞ < 1:∥∥∥∥23 3

s− 5

s(s− 5)

(s2 + 7s+ 12)

∥∥∥∥
∞

≈
∣∣∣∣ 2j3

(j3 + 3)(j3 + 4)

∣∣∣∣ = √
2

5
< 1

The system has one zero and two poles, so the maximum of the magnitude happens before the
second pole (ω = 3). The closed-loop system is robustly stable.
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