

Solution of exercises of Chapter 1

Advanced Control Systems

Problem 1.1: Consider the following transfer function:

$$G(s) = \frac{\alpha}{\tau s + 1}, \quad \alpha > 0, \quad \tau > 0$$

1. Compute two- and ∞ -norm of $G(s)$.
2. Compute one-, two- and ∞ -norm of $g(t)$, the unit impulse response of $G(s)$.

Solution: For computing the two-norm of $G(s)$ the residue theorem is used:

$$\|G\|_2^2 = \lim_{s \rightarrow -1/\tau} (s + 1/\tau) \frac{\alpha}{\tau s + 1} \frac{\alpha}{-\tau s + 1} = \frac{\alpha^2}{2\tau} \Rightarrow \|G\|_2 = \frac{\alpha}{\sqrt{2\tau}}$$

Since $|Gj\omega|$ is a decreasing function with ω , its maximum happens at $\omega = 0$, Thus, $\|G\|_\infty = \alpha$. The impulse response of G is $g(t) = \frac{\alpha}{\tau} e^{-t/\tau}$ for $t \geq 0$ therefore:

$$\begin{aligned} \|g\|_1 &= \int_0^\infty \frac{\alpha}{\tau} e^{-t/\tau} dt = -\alpha e^{-t/\tau} \Big|_0^\infty = \alpha \\ \|g\|_2^2 &= \int_0^\infty \frac{\alpha^2}{\tau^2} e^{-2t/\tau} dt = \frac{-\alpha^2 \tau}{2\tau^2} e^{-t/\tau} \Big|_0^\infty = \frac{\alpha^2}{2\tau} \\ \|g\|_\infty &= \sup_t |g(t)| = \frac{\alpha}{\tau} \end{aligned}$$

Problem 1.2: For $G(s)$ stable and strictly proper, show that $\|g\|_1 < \infty$ and find an inequality relating $\|G\|_\infty$ and $\|g\|_1$.

Solution: Let's represent the stable strictly proper transfer function $G(s)$ by its partial-fraction expansion (with no repeated poles) and compute its impulse response:

$$G(s) = \sum_{i=1}^n \frac{c_i}{s - p_i} \Rightarrow g(t) = \sum_{i=1}^n c_i e^{p_i t} \quad t > 0$$

Let's define $\sigma_i := R_e p_i$. Then, since $\sigma_i < 0$, we obtain:

$$\|g\|_1 \leq \sum_{i=1}^n \int_0^\infty |c_i e^{p_i t}| dt = \sum_{i=1}^n \int_0^\infty |c_i| e^{\sigma_i t} dt = \sum_{i=1}^n \frac{|c_i|}{\sigma_i} e^{\sigma_i t} \Big|_0^\infty = \sum_{i=1}^n \frac{-|c_i|}{\sigma_i} < \infty$$

If the system has repeated poles with multiplicity of ℓ_i , we will obtain the terms like $t^{\ell_i-1} e^{p_i t}$ in $g(t)$ which have bounded integral as well:

$$\int_0^\infty |t^{\ell_i-1} e^{p_i t}| dt = \int_0^\infty t^{\ell_i-1} e^{\sigma_i t} dt = \frac{1}{\sigma_i} t^{\ell_i-1} e^{\sigma_i t} \Big|_0^\infty - \frac{\ell_i-1}{\sigma_i} \int_0^\infty t^{\ell_i-2} e^{\sigma_i t} dt = -\frac{\ell_i-1}{\sigma_i} \int_0^\infty t^{\ell_i-2} e^{\sigma_i t} dt$$

Continuing the integration we find that:

$$\int_0^\infty |t^{\ell_i-1} e^{p_i t}| dt = \text{constant} \times \frac{1}{\sigma_i}$$

Finally, the relationship between the norms is $\|G\|_\infty \leq \|g\|_1$, which can be shown based on the definition of $G(j\omega)$:

$$G(j\omega) = \int_0^\infty g(t) e^{-j\omega t} dt$$

Then

$$|G(j\omega)| \leq \int_0^\infty |g(t) e^{-j\omega t}| dt = \int_0^\infty |g(t)| |e^{-j\omega t}| dt = \|g\|_1 \Rightarrow \|G\|_\infty \leq \|g\|_1$$

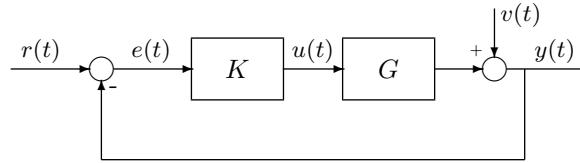
Problem 1.3: Show that the 2-norm for systems is not submultiplicative.

Solution: It is sufficient to provide a counterexample. Take $G(s)$ and $H(s)$ as follows:

$$G(s) = \frac{1}{\tau_1 s + 1}, \quad H(s) = \frac{1}{\tau_2 s + 1}$$

with $\tau_1 = 2\tau_2$. We have $\|G\|_2 = 1/\sqrt{2\tau_1}$ and $\|H\|_2 = 1/\sqrt{2\tau_2} = 1/\sqrt{\tau_1}$. On the other hand it is easy to compute $\|GH\|_2 = 1/\sqrt{3\tau_1}$. A counterexample is obtained for $\tau_1 = 2$. In this case $\|GH\|_2 = 1/\sqrt{6} = 0.4082$, while $\|G\|_2 = 0.7071$ and $\|H\|_2 = 0.5$.

Problem 1.4: Consider the following feedback loop:



Which system norm should be minimized if the objective is minimizing the 2-norm of the control signal $u(t)$ when $v(t) = 0$ and

1. $r(t)$ is a step signal filtered by a low-pass filter $F(s)$.
2. $r(t)$ is a bounded 2-norm signal whose energy is concentrated between ω_1 and ω_2 .

Solution: The transfer function between the reference signal $r(t)$ and the control signal $u(t)$ is:

$$\mathcal{U}(s) = \frac{K}{1 + GK}$$

1. According to Parseval's relation, we should minimize the following system norm:

$$\|u\|_2 = \left\| \frac{1}{s} F(s) \mathcal{U} \right\|_2 = \left\| \frac{FK}{s(1 + GK)} \right\|_2$$

A necessary condition for the boundedness of the above norm is the existence of a pole at 0 (integrator) in G .

2. Let's define a bandpass filter $W(s)$ such that $|W(j\omega)| = 1$ for $\omega_1 < \omega < \omega_2$ and $|W(j\omega)| = 0$ elsewhere. Then according to Entry (1,1) of Table 1.2 of the course note, we should minimise $\|W\mathcal{U}\|_\infty$.

Problem 1.5: For the unity feedback system with $\tilde{G}(s) = \alpha/s$, where $\alpha \in [-1, 3]$, does there exist a proper controller $K(s)$, such that the system is robustly stable?

Solution: Let's compute a weighting filter that represents the multiplicative uncertainty for the system. Take the nominal model $G(s) = 1/s$, then:

$$\left| \frac{\alpha/j\omega}{1/j\omega} - 1 \right| \leq |W_2(j\omega)| \Rightarrow |\alpha - 1| \leq |W_2(j\omega)| \quad \forall \alpha \in [-1, 3] \Rightarrow W_2(s) = 2$$

The robust stability condition is $\|W_2\mathcal{T}\|_\infty < 1$, which leads to $\|\mathcal{T}\|_\infty < 0.5$. However, we have

$$\mathcal{T}(s) = \frac{GK}{1+GK} = \frac{\alpha K}{s+\alpha K} \Rightarrow \mathcal{T}(0) = 1$$

Therefore, the robust stability condition cannot be achieved with any controller.

Problem 1.6: Consider the unity feedback system with

$$\tilde{G}(s) = \frac{1}{s-a} ; \quad K(s) = 10$$

where a is real.

1. Convert parametric uncertainty to frequency-domain uncertainty using a feedback uncertainty model. Compute the range of a to have robust stability using the small gain theorem.
2. Compute the range of a for internal stability by analysing the closed-loop poles. Compare it with the result in the previous item.

Solution:

1. Note that the nominal model ($a = 0$), $G(s) = 1/s$, and $K(s) = 10$ is internally stable. We can use the feedback uncertainty model as:

$$\tilde{G}(s) = \frac{1}{s-a} = \frac{1}{s-a\Delta} = \frac{1/s}{1-a\Delta/s} = \frac{G(s)}{1+\Delta W_2(s)G(s)}$$

Suppose that $a \geq 0$. Allow Δ to be a variable real number in the interval $[0, 1]$. Then

- G and \tilde{G} have the same number of poles in $\text{Re } s \geq 0$, i.e. \tilde{G} has exactly one pole there.
- $\|\Delta\|_\infty \leq 1$ and $W_2(s) = -a$.

The stability condition is $\|W_2G\mathcal{S}\|_\infty < 1$, which gives:

$$\|W_2G\mathcal{S}\|_\infty = \left\| -a \frac{1/s}{1+10/s} \right\|_\infty = \left\| \frac{-a}{s+10} \right\|_\infty$$

Since $|-a/(j\omega + 10)|$ is a decreasing function, its maximum happens at $\omega = 0$, which leads to $0 \leq a < 10$.

2. The closed loop polynomial is $10 + s - a = 0$ and the closed loop pole is $a - 10$. The system is internally stable for $a < 10$. This range is bigger than those obtained by small gain theorem because of conservatism originated from the choice of Δ . Note that small gain theorem has no conservatism for all possible Δ and has conservatism for any particular choice of Δ .

Problem 1.7: Given a unity feedback control system with

$$G(s) = \frac{s-1}{s^2-4}$$

and the following performance filter:

$$W_1(s) = \frac{\beta}{s+1}$$

find for which values of $\beta > 0$ the nominal performance $\|W_1\mathcal{S}\|_\infty < 1$ can be achieved.

Solution: The model has one pole and one zero in RHP: $z = 1$ and $p = 2$. We now that:

$$\|W_1\mathcal{S}\|_\infty \geq \left| W_1(z) \frac{z+p}{z-p} \right| = \left| \frac{\beta}{s+1} \frac{1+2}{1-2} \right| \Rightarrow \frac{3\beta}{2} < 1 \Rightarrow \beta < 0.6666$$

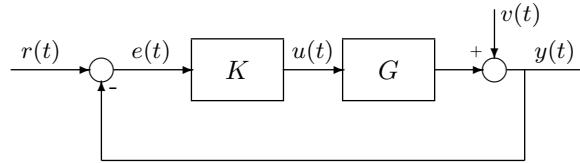
Problem 1.8: The following multiplicative uncertainty model is given:

$$\tilde{G}(s) = G(s)[1 + \Delta W_2(s)] \quad ; \quad G(s) = \frac{s+0.5}{s(s-1)} \quad ; \quad W_2(s) = \frac{s+1}{0.1s+1}$$

Is the unity feedback closed-loop system robustly stabilizable?

Solution: We have two poles with $Res \geq 0$: $p = 0, 1$. Let's compute $W_2(1) = 2/1.1 = 1.818$. Since $\|W_2\mathcal{T}\|_\infty \geq |W_2(p)| = 1.818$, the robust stability condition $\|W_2\mathcal{T}\|_\infty < 1$ cannot be achieved.

Problem 1.9: Consider the following closed-loop system:



where

$$G(s) = \frac{3}{s-\alpha} \quad \text{and} \quad K(s) = 4 \left(1 + \frac{1}{s} \right)$$

- Assume $\alpha = 5$:

- Compute the two-norm of the tracking error $e(t)$ for a unit step reference signal (assume $v(t) = 0$).
- Compute the infinity norm of the input sensitivity function (the transfer function between the reference signal r and u).
- Assume $v(t) = \sin 2t$. Compute the infinity norm of $u(t)$ when $r(t) = 0$.

- Assume $\alpha \in [3, 7]$:

- Convert parametric uncertainty to frequency-domain uncertainty using a feedback uncertainty model.
- Does the given controller robustly stabilise the closed-loop system?

Solution:

(a) The two norm of $e(t)$ is equal to the two norm of $E(s)$:

$$\begin{aligned}\|e\|_2^2 &= \left\| \frac{1}{1+GK} \frac{1}{s} \right\|_2^2 = \left\| \frac{s(s-5)}{s^2+7s+12} \frac{1}{s} \right\|_2^2 = \left\| \frac{(s-5)}{(s+3)(s+4)} \right\|_2^2 = R_1 + R_2 \\ R_1 &= \lim_{s \rightarrow -3} (s+3) \frac{s-5}{(s+3)(s+4)} \frac{-s-5}{(-s+3)(-s+4)} = \frac{8}{21} = 0.381 \\ R_2 &= \lim_{s \rightarrow -4} (s+4) \frac{s-5}{(s+3)(s+4)} \frac{-s-5}{(-s+3)(-s+4)} = \frac{-9}{56} = -0.1607 \\ \|e\|_2^2 &= 0.22 \Rightarrow \|e\|_2 = 0.4693\end{aligned}$$

(b) The infinity norm of the input sensitivity function is:

$$\|\mathcal{U}(s)\|_\infty = \left\| \frac{K}{1+GK} \right\|_\infty = \left\| \frac{4(s+1)(s-5)}{(s+3)(s+4)} \right\|_\infty = |\mathcal{U}(j\omega)|_{\omega=\infty} = 4$$

Note that by looking at the Bode magnitude diagram, it is clear that the maximum happens at very high frequencies.

(c) $u(t)$ will be a sinusoidal signal with the same frequency and its amplitude (its infinity norm) is:

$$\|u\|_\infty = |U(j2)| = \left| \frac{4(j2+1)(j2-5)}{(j2+3)(j2+4)} \right| \approx 3$$

(d) The uncertain model can be written as (with $-1 \leq \Delta \leq 1$):

$$\tilde{G}(s) = \frac{3}{s - (5 - 2\Delta)} = \frac{\frac{3}{s-5}}{1 + \Delta \frac{2}{3} \frac{3}{s-5}} = \frac{G(s)}{1 + \Delta W_2(s)G(s)} \quad \|\Delta\|_\infty \leq 1 \Rightarrow W_2(s) = 2/3$$

(e) The robust stability condition is $\|W_2G\mathcal{S}\|_\infty < 1$:

$$\left\| \frac{2}{3} \frac{3}{s-5} \frac{s(s-5)}{(s^2+7s+12)} \right\|_\infty \approx \left| \frac{2j3}{(j3+3)(j3+4)} \right| = \frac{\sqrt{2}}{5} < 1$$

The system has one zero and two poles, so the maximum of the magnitude happens before the second pole ($\omega = 3$). The closed-loop system is robustly stable.