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Discrete-Time Models

We consider SISO-LTI discrete-time models of the form :

y(k) = −
nA∑
i=1

aiy(k − i) +

nB∑
i=0

biu(k − i)

Define q−1 a backward shift operator such that q−1y(k) = y(k − 1), then

A(q−1)y(k) = B(q−1)u(k)

or y(k) = G (q−1)u(k) with G (q−1) =
B(q−1)

A(q−1)
where

A(q−1) = 1 + a1q
−1 + · · ·+ anAq

−nA

B(q−1) = b0 + b1q
−1 + b2q

−2 + · · ·+ bnBq
−nB

Definition (Delay d)

The number of first zero coefficients of B(q−1) is called delay d . For
sampled systems d ≥ 1 (b0 is always zero) and B(q−1) = q−dB⋆(q−1)
where B⋆(q−1) has no leading zero coefficients.
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RST Controller

A general form of a two-degree of freedom digital controller is given by :

R(q−1)y(k) + S(q−1)u(k) = T (q−1)y⋆(k + d)

where y⋆(k + d) is the desired tracking trajectory given with d steps in
advance and

R(q−1) = r0 + r1q
−1 + · · ·+ rnRq

−nR

S(q−1) = 1 + s1q
−1 + · · ·+ snSq

−nS

T (q−1) = t0 + t1q
−1 + · · ·+ tnT q

−nT
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RST Controller
Advantages of RST controller :

Can be easily implemented.

It has two degrees of freedom (tracking and regulation dynamics can be
designed independently).

The other controller structures can be converted to an RST controller.

u(k) = K1(q
−1)

[
K2(q

−1)r(k)− K3(q
−1)y(k)

]
with Ki (q

−1) =
Ni (q

−1)

Di (q−1)

is equivalent to
R(q−1) = N1(q

−1)N3(q
−1)D2(q

−1)
S(q−1) = D1(q

−1)D2(q
−1)D3(q

−1)
T (q−1) = N1(q

−1)N2(q
−1)D3(q

−1)
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Pole Placement Technique

Objective :

Place the closed-loop poles on the desired places.

Closed-loop poles :

The roots of the characteristic polynomial P(q−1) are the closed-loop poles.

P(q−1) = A(q−1)S(q−1) + B(q−1)R(q−1) = 1 + p1q
−1 + p2q

−2 + · · ·

Desired closed-loop poles :

They should be chosen according to the desired performance.

Example (First-order polynomial)

Let P(q−1) = 1 + p1q
−1. When r(k) ≡ 0, the free output response

is defined by y(k + 1) = −p1y(k). Then p1 = −0.5 leads to a
relative decrease of 50% for the output amplitude at each sampling
instant (choose p1 between −0.2 and −0.8).
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Pole Placement Technique

Example (Second-order polynomial)

Let P(q−1) = 1 + p1q
−1 + p2q

−2

1 Choose the time-domain performance (desired rise time, settling-time
and overshoot for a step response).

2 Choose ζ (damping factor) and ωn (natural frequency) of a
second-order continuous-time model

H(s) =
ω2
n

s2 + 2ζωns + ω2
n

that meets the time-domain performance.

3 Compute s1 and s2, the roots of s2 + 2ζωns + ω2
n = 0.

4 Compute p1 and p2 from :

P(z−1) = (z − es1h)(z − es2h) = z2 + p1z + p2

Digital Controller Design (Chapter 3) Advanced Control Systems Spring 2025 6 / 86



Time-domain Performance

Overshoot : The overshoot Mp is a function of the damping factor :

Mp = e−ζπ/
√

1−ζ2

Settling-time : The time Tset for which the response remains within 2% of
the final value :

e−ζωnTset < 0.02 or ζωnTset ≈ 4

Rise-time : The time it takes to rise from 10% to 90% of the final value.
The following approximation can be used :

Tr ≈
1.8

ωn

After computing ζ and ωn, the desired P(q−1) is computed by :

p1 = −2e−ζωnh cos
(
ωnh

√
1− ζ2

)
p2 = e−2ζωnh
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Time-domain Performance

Using zgrid of MATLAB :
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Time-domain Performance

Example

Compute the desired discrete-time closed-loop polynomial to have an
overshoot of 10% and a settling time of ts = 1.2 s. Suppose that the
sampling period h = 0.1s.

1 For 10% overshoot we have : e−ζπ/
√

1−ζ2 = 0.1 ⇒ ζ ≈ 0.6

2 The natural frequency is computed as ωn ≈ 4
ζTset

= 5.55.

3 The coefficients of the characteristic polynomial are :

p1 = −2e−ζωnh cos
(
ωnh

√
1− ζ2

)
= −1.294

p2 = e−2ζωnh = 0.513

that corresponds to the following desired poles :

z1,2 = 0.647± j0.308
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Dominant and Auxiliary Poles

The desired closed-loop polynomial can be divided into two polynomials
defining the dominant and auxiliary closed-loop poles :

P(q−1) = Pd(q
−1)Pf (q

−1)

Dominant closed-loop poles : Define the main dynamics of the closed-loop
system in regulation and are computed based on the desired
time-domain performance.

Auxiliary closed-loop poles : They introduce a filtering action in certain
frequency regions in order to

reduce the effect of the measurement noise ;
smooth the variations of the control signal ;
improve the robustness.

As a general rule, the“auxiliary poles”(called also the“observer poles”), are
faster than the“dominant poles”. It means that the roots of Pf (q

−1)
should have a real part smaller than those of Pd(q

−1).
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Regulation : Computation of R and S

Once P(q−1) is specified, in order to compute

R(q−1) = r0 + r1q
−1 + · · ·+ rnRq

−nR

S(q−1) = 1 + s1q
−1 + · · ·+ snSq

−nS

the following equation, known as“Bezout identity” (or Diophantine
equation), must be solved :

A(q−1)S(q−1) + B(q−1)R(q−1) = P(q−1)

Theorem

The Diophantine equation has a unique solution with minimal degree for

nR = deg R(q−1) = nA − 1

nS = deg S(q−1) = nB − 1

nP = deg P(q−1) ≤ nA + nB − 1

If and only if A(q−1) and B(q−1) are coprime.

Digital Controller Design (Chapter 3) Advanced Control Systems Spring 2025 11 / 86



Regulation : Computation of R and S

Question

Given G (q−1) =
0.2q−2

1− 0.8q−1

Compute minimum order of R(q−1) and S(q−1) :

(A) nR = 1, nS = 1 (B) nR = 0, nS = 0
(C) nR = 0, nS = 1 (D) nR = 0, nS = 2
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Regulation : Computation of R and S

Question

Given G (q−1) =
0.2q−2

1− 0.8q−1

Compute R(q−1) = r0 and S(q−1) = 1 + s1q
−1 to place the closed loop

poles at the roots of P(q−1) = 1− 1.3q−1 + 0.5q−2.

(A) r0 = 0.5, s1 = −0.5 (B) r0 = −0.5, s1 = −0.5
(C) r0 = −0.5, s1 = 0.5 (D) r0 = −5.9, s1 = −2.1
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Regulation : Computation of R and S

Example

Consider a discrete-time plant model given by :

G (q−1) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
nA = 2, nB = 2

Then nP ≤ nA + nB − 1 = 3, and nR = nA − 1 = 1, nS = nB − 1 = 1.
Let us take nP = 2. Therefore, we should solve :

(1+a1q
−1+a2q

−2)(1+s1q
−1)+(b1q

−1+b2q
−2)(r0+r1q

−1) = 1+p1q
−1+p2q

−2

Then we have :

a1 + s1 + b1r0 = p1
a2 + a1s1 + b2r0 + b1r1 = p2
a2s1 + b2r1 = 0

or


1 0 0 0
a1 1 b1 0
a2 a1 b2 b1
0 a2 0 b2




1
s1
r0
r1

 =


1
p1
p2
0


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Solving Diophantine Equation (Computing R and S)

A general solution to A(q−1)S(q−1) + B(q−1)R(q−1) = P(q−1) is given by :

x = M−1p

where xT =
[
1 s1 . . . snS r0 . . . rnR

]
and

M =



︷ ︸︸ ︷
1 0 · · · 0

a1 1
. . .

...
... a1

. . . 0

anA
...

. . . 1

0 anA
. . . a1

...
...

. . .
...

0 0 · · · anA

︷ ︸︸ ︷
b0 0 · · · 0

b1 b0
. . .

...
... b1

. . . 0

bnB
...

. . . b0

0 bnB
. . . b1

...
...

. . .
...

0 · · · 0 bnB



nB nA

M is called the Sylvester matrix and pT =
[
1 p1 . . . pnP 0 . . . 0

]
.

Note that the inverse of M exists if and only if A(q−1) and B(q−1) are coprime
polynomials (no simplifications between zeros and poles).
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Regulation : Computation of R and S

Fixed terms in the regulator : The performance and robustness of the
closed-loop system can be improved by introducing some fixed terms,
HR(q

−1) and HS(q
−1), in the polynomial R and S as :

R(q−1) = HR(q
−1)R ′(q−1)

S(q−1) = HS(q
−1)S ′(q−1)

Therefore, we need to solve the following equation :

A(q−1)HS(q
−1)S ′(q−1) + B(q−1)HR(q

−1)R ′(q−1) = P(q−1)

This can be done after replacing A(q−1)HS(q
−1) by A′(q−1) and

B(q−1)HR(q
−1) by B ′(q−1).

Then, for the minimal order solution we should have :

nR′ = deg R ′(q−1) = nA′ − 1 = nA + nHS
− 1

nS ′ = deg S ′(q−1) = nB′ − 1 = nB + nHR
− 1

nP = deg P(q−1) ≤ nA′ + nB′ − 1 = nA + nHS
+ nB + nHR

− 1
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Regulation : Choice of HR and HS

Choice of HS

Zero steady state error for a step disturbance :
Integrator in the controller : HS = 1− q−1

Asymptotic rejection of a harmonic disturbance v(k) :

v(k) =
1

1 + αq−1 + q−2
δ(k) α = −2 cos(ωh) = −2 cos(2πfh)

Internal model principle : HS(q
−1) = 1 + αq−1 + q−2

Choice of HR

opening the loop (u = 0) at a disturbance frequency f :

HR(q
−1) = (1 + αq−1 + q−2)

Opening the loop at Nyquist frequency (f = fs/2 = 1/(2h)) :

HR(q
−1) = 1 + q−1
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Computation of T

The tracking performance is usually given by a tracking reference model :

Hm(q
−1) =

Bm(q
−1)

Am(q−1)

The transfer function from the reference to the output is :

Hcl(q
−1) =

Bm(q
−1)T (q−1)B(q−1)

P(q−1)Am(q−1)

Different dynamic for regulation and tracking :

In this case, T (q−1) = P(q−1)/B(1) cancels the regulation dynamic and make
the steady-state gain of Hcl(q

−1) equal to 1. The tracking dynamic is imposed by
the denominator of the reference model.

Same dynamic for regulation and tracking :

The reference model is chosen as Hm(q
−1) = 1 and T (q−1), is chosen to have a

steady-state gain of 1 for Hcl(q
−1). So we take : T (q−1) = P(1)/B(1). If the

controller or the plant model has an integrator, i.e. A(1)S(1) = 0 : Then
P(1) = A(1)S(1) + B(1)R(1) = B(1)R(1) and T (q−1) = R(1).
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RST controller design : An Example

Example

Consider the following discrete-time second-order plant model :

G (q−1) =
0.1q−1 + 0.2q−2

1− 1.3q−1 + 0.42q−2

The sampling period is h = 1s.

Design an RST controller such that :

The tracking dynamics are close to the dynamics of a second-order
continuous-time model with ωn = 0.5 rad/s and ζ = 0.9.

The regulation dynamics are close to that of a second-order
continuous-time model with ωn = 0.4 rad/s and ζ = 0.9.

The steady state error for an output step disturbance is zero.
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RST controller design : An Example

1 : With ωn = 0.4 rad/s and ζ = 0.9, we obtain :

P(q−1) = 1− 1.3741q−1 + 0.4867q−2

2 : Zero steady state error is obtained by HS(q
−1) = 1− q−1.

3 : The following Bezout equation should be solved :

A(q−1)HS(q
−1)S ′(q−1) + B(q−1)R(q−1) = P(q−1)

We have nS ′ = nB − 1 = 1 and nR = nA + nHS
− 1 = 2 and

A′(q−1) = A(q−1)(1− q−1) = 1− 2.3q−1 + 1.72q−2 − 0.42q−3

Therefore the Bezout equation in the matrix form becomes :
1 0 0 0 0

−2.3 1 0.1 0 0
1.72 −2.3 0.2 0.1 0
−0.42 1.72 0 0.2 0.1

0 −0.42 0 0 0.2




1
s ′0
r0
r1
r2

 =


1

−1.3741
0.4867

0
0


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RST controller design : An Example

Solving the Bezout equation leads to

R(q−1) = 3− 3.94q−1 + 1.3141q−2

S(q−1) = (1 + s ′1q
−1)(1− q−1) = 1− 0.3742q−1 − 0.6258q−2

4 : The reference model Hm(q
−1) is computed by discretization of a

second-order model with ωn = 0.5 rad/s and ζ = 0.9 :

Hm(q
−1) =

0.0927q−1 + 0.0687q−2

1− 1.2451q−1 + 0.4066q−2

Finally, the polynomial T (q−1) is computed as :

T (q−1) =
P(q−1)

B(1)
= 3.333− 4.5806q−1 + 1.6225q−2

If we wish to have the same dynamics for tracking and regulation,
then Hm(q

−1) = 1 and T (q−1) = R(1) = 0.3741.
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Model Reference Control (MRC)

In this approach the zeros of the plant model in

Hcl(q
−1) =

Bm(q
−1)

Am(q−1)

q−dB⋆(q−1)T (q−1)

A(q−1)S(q−1) + q−dB⋆(q−1)R(q−1)

are cancelled by the closed-loop poles :

A(q−1)S(q−1) + q−dB⋆(q−1)R(q−1) = B⋆(q−1)P(q−1)

This can be done if

the zeros of B⋆(q−1) are stable,

complex zeros have a sufficiently high damping factor (ζ > 0.2).

Remark

In discrete-time systems, unstable zeros can be the consequence of too
fast sampling or a large fractional delay. This can be avoided by
re-identification of a model with augmented delay or resampling.
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Model Reference Control (MRC)

In order to have a solution to Diophantine Equation we should have
S(q−1) = B⋆(q−1)S ′(q−1) and solve

A(q−1)S ′(q−1) + q−dR(q−1) = P(q−1)

with nP ≤ nA + d − 1 , nS ′ = d − 1 , nR = nA − 1 and

M =



︷ ︸︸ ︷
1 0 · · · 0

a1 1
. . .

...

a2 a1
. . . 0

... a2
. . . 1

anA
...

. . . a1

0 anA
. . . a2

...
...

. . .
...

0 0 · · · anA

︷ ︸︸ ︷
0 0 · · · 0

0 0
. . .

...
... 0

. . . 0

0
...

. . . 0

1 0
. . . 0

0 1
. . . 0

...
...

. . .
...

0 · · · 0 1



d nA
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Model Reference Control (MRC)

Tracking : By choosing T (q−1) = P(q−1) the transfer function
between the reference r(k) and y(k) will be :

Hcl(q
−1) =

q−dBm(q
−1)

Am(q−1)
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Model Reference Control

Example : Consider the following discrete-time second-order plant model :

G (q−1) =
0.2q−2 + 0.1q−3

1− 1.3q−1 + 0.42q−2

Design an RST controller based on MRC technique for placing the closed
loop dominant pole at 0.7.

B⋆(q−1) = 0.2 + 0.1q−1 has a zero at -0.5 (inside the unit circle).
Taking Pd = 1− 0.7q−1 and solving AS + q−dB⋆R = PdB

⋆ gives
S = B⋆S ′. So we should solve AS ′ + q−dR = Pd

We have nS ′ = d − 1 = 1 and nR = nA − 1 = 1 so we should solve :

(1− 1.3q−1 + 0.42q−2)(1 + s ′1q
−1) + q−2(r0 + r1q

−1) = 1− 0.7q−1
1 0 0 0

−1.3 1 0 0
0.42 −1.3 1 0
0 0.42 0 1




1
s ′1
r0
r1

 =


1

−0.7
0
0


−1.3 + s ′1 = −0.7 ⇒ s ′1 = 0.6

0.42− 1.3s ′1 + r0 = 0 ⇒ r0 = 0.36

0.42s ′1 + r1 = 0 ⇒ r1 = −0.252

T (q−1) = Pd(q
−1) = 1− 0.7q−1
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Robust Pole Placement

A pole placement controller may not be implemented on the real system
for the following reasons :

1 The controller may not be robust with respect to model uncertainty.

If an uncertainty weighting filter is available the robust stability
condition should be verified. For multiplicative uncertainty we should
have ∥W2T ∥∞ < 1.
Robustness can be verified using the robustness margins like gain,
phase and modulus margin Mm (the inverse of the infinity norm of the
sensitivity function). Mm ≥ 0.5 implies a gain margin of greater than 2
and a phase margin of greater than 29◦.

∥S∥∞ = max
ω

|S(e−jω)| < 6dB ≡ Mm > 0.5

2 The control input may be too large and saturated in real experiment.

The magnitude of the transfer function between the external input and
the control input should be reduced at high frequencies.
The dominant closed loop poles should be slowed down.
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Robust Pole Placement

Example

Consider the following plant model with h = 1s :

G (q−1) =
q−1 + 0.5q−2

1− 1.5q−1 + 0.7q−2

Desired closed-loop poles : z1,2 = 0.3± j0.2.

Integrator in the controller : HS(q
−1) = 1− q−1.

Solving the Bezout equation, we obtain :

R(q−1) = 1.4667− 1.72q−1 + 0.6067q−2

S(q−1) = 1− 0.5667q−1 − 0.4333q−2

This controller gives :

Mm = ∥S∥−1
∞ = 0.39 ; ∥U∥∞ ≈ 17 dB.

|u(k)| > 2 for an impulse output disturbance and ∥u∥2 = 4.05.

Settling time of the output disturbance step response : 6 sec
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Robust Pole Placement

Example

Slowing down the closed loop poles :
The dominant poles of the plant model have ωn = 0.4926 and ζ = 0.362.
We choose the same ωn with ζ = 0.9 to compute the desired closed-loop
poles (z1,2 = 0.6272± j0.1368).
Solving the Bezout equation, we obtain :

R(q−1) = 0.8721− 1.29q−1 + 0.5231q−2

S(q−1) = 1− 0.6264q−1 − 0.3736q−2

This controller gives :

Mm = ∥S∥−1
∞ = 0.566 ; ∥U∥∞ ≈ 10 dB.

|u(k)| < 1.5 for an impulse output disturbance and ∥u∥2 = 1.92.

Settling time of the output disturbance step response : 12 sec

The new controller is more robust but it’s slower.
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Robust Pole Placement

Example

Shaping the input sensitivity function :
We add a fixed term HR(q

−1) = 1 + q−1 in the controller to reduce the
input sensitivity function at high frequencies but we keep the same
closed-loop poles as the original controller (fast poles). This leads to :

R(q−1) = 0.8740− 0.2382q−1 − 0.6973q−2 + 0.4149q−3

S(q−1) = 1 + 0.0260q−1 − 0.7297q−2 − 0.2964q−3

This controller gives :

Mm = ∥S∥−1
∞ = 0.3913 ; ∥U∥∞ ≈ 10 dB.

|u(k)| < 1 for an impulse output disturbance and ∥u∥2 = 1.87.

Settling time of the output disturbance step response : 7 sec
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Robust Pole Placement

Example
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(c) Output sensitivity function
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(d) Input sensitivity function
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Original controller (blue curves), slowing down the closed-loop poles (red curves),

adding a fixed term HR(q
−1) = 1 + q−1 (green curves)
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Q-Parametrization

Suppose that R0(q
−1) and S0(q

−1) are computed for a nominal model and a
given P(q−1). Then, the following set of controllers :

R(q−1) = R0(q
−1) + A(q−1)Q(q−1)

S(q−1) = S0(q
−1)− B(q−1)Q(q−1)

where Q(q−1) = q0 + q1q
−1 + · · ·+ qnqq

−nq , are also the (non minimal order)
solutions of the Bezout equation :

AS + BR = AS0 − ABQ + BR0 + BAQ

= AS0 + BR0

The main advantage of this parameterization is that the sensitivity functions will
depend linearly on the Q parameters.

S(q−1) =
AS

P
=

A(S0 − BQ)

P
U(q−1) =

AR

P
=

A(R0 + AQ)

P

As a result, any norm of S or U is a convex function of the Q parameters.
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Q-Parametrization (with fixed terms)

Suppose that R0(q
−1) = R ′

0(q
−1)HR(q

−1) and S0(q
−1) = S ′

0(q
−1)HS(q

−1) are
computed for a nominal model and a given P(q−1).
Then, the following set of controllers :

R(q−1) = R0(q
−1) + A(q−1)HR(q

−1)HS(q
−1)Q(q−1)

S(q−1) = S0(q
−1)− B(q−1)HS(q

−1)HR(q
−1)Q(q−1)

are also the (non minimal order) solutions of the Bezout equation :

AS + BR = AS0 − ABHSHRQ + BR0 + BAHRHSQ

= AS0 + BR0

Sensitivity function shaping by convex optimization

The two norm of U can be minimized under a constraint on the modulus margin
and the maximum amplitude of the input sensitivity function :

minQ ∥U(Q)∥2
subject to : ∥MmS(Q)∥∞ < 1

∥U(Q)∥∞ < Umax
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Robust Pole Placement

Example

Consider the following plant model with h = 1s :

G (q−1) =
q−1 + 0.5q−2

1− 1.5q−1 + 0.7q−2

Desired closed-loop poles : z1,2 = 0.3± j0.2.

Integrator in the controller : HS(q
−1) = 1− q−1.

Solving the Bezout equation, we obtain :

R(q−1) = 1.4667− 1.72q−1 + 0.6067q−2

S(q−1) = 1− 0.5667q−1 − 0.4333q−2

This controller gives :

Mm = ∥S∥−1
∞ = 0.39 ; ∥U∥∞ ≈ 17 dB.

|u(k)| > 2 for an impulse output disturbance and ∥u∥2 = 4.05.

Settling time of the output disturbance step response : 6 sec
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Robust Pole Placement

Example

This problem can be solved by standard convex optimization solvers that
leads to :

Q(q−1) = −0.895 + 0.307q−1 + 0.343q−2 + 0.245q−3

R(q−1) = 0.572− 0.07q−1 − 0.137q−2 − 0.054q−3 − 0.128q−4 + 0.172q−5

S(q−1) = 1.0 + 0.329q−1 − 0.293q−2 − 0.497q−3 − 0.417q−4 − 0.123q−5

This controller gives :

Mm = ∥S∥−1
∞ = 0.5 ; ∥U∥∞ ≈ 3.66 dB.

|u(k)| < 1 for an impulse output disturbance and ∥u∥2 = 0.896.

Settling time of the output disturbance step response : 8 sec
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Robust Pole Placement by Q parameterization

Example
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(c) Output sensitivity function
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Q parametrization (blue curves), initial controller (green curves)
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Adaptive Control

Definition (Adaptive Control)

Covers a set of techniques which provide a systematic approach for
automatic adjustment of controllers in real time, in order to achieve or to
maintain a desired level of control system performance when the
parameters of the plant dynamic model are unknown and/or change in
time.

Unknown parameters : Adaptive control techniques can provide an
automatic tuning procedure in closed loop for the controller
parameters (the effect of the adaptation vanishes by time).

Time-varying parameters : To maintain an acceptable level of control
system performance, an adaptive control approach has to be
considered (non-vanishing adaptation).
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Adaptive Control

Adaptive control : Implementation of the classical control and tuning
procedure in real time.

Desired 
Performance

Adaptation
Scheme 

Plant
Adjustable
Controller

u
yReference

Controller
parameters

The disturbances acting on a control system can be classified as :

a) disturbances acting upon the controlled variables (rejected by
conventional feedback) ;

b) parameter disturbances acting upon the performance of the control
system (rejected by adaptive control).
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Adaptive Control

Direct Adaptive Control

An error signal related to control performance is chosen.

The controller parameter are adapted to minimize the error signal.

Indirect Adaptive Control

The plant model is identified on-line.

A controller is designed based on the new model.

The updated controller is implemented on the system.

Switching Adaptive Control

A finite set of model are identified off-line.

For each model a controller is designed off-line.

The best model is chosen based on error signal on-line and the
corresponding controller will be implemented.
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Parameter Adaptation Algorithms

Parameter Adaptation Algorithm (PAA)

It is the main part of an adaptive control system and used for on line
estimation of the parameters.

Example (PAA for model parameter estimation)

D.A.C.
+

Z.O.H.
PLANT A.D.C.

+

 -

DISCRETIZED PLANT

Adjustable
Discrete-time

Model

Parameter
Adaptation
Algorithm

estimated
model
parameters

y(k)

ε

u(k) y(k)

(k)

The prediction error is used by the PAA to modify, at each sampling
instant, the plant model parameters.
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Parameter Adaptation Algorithms

Integral type adaptation algorithm New estimated
parameters
(vector)

 =

 Previous estimated
parameters
(vector)

+

 Adaptation
gain

(matrix)



×


Measurement

function
Observation vector

(vector)

×


Prediction error

function
Adaptation error

(scalar)


θ̂(k + 1) = θ̂(k) + F (k)ϕ(k)ϵ(k + 1)

θ̂(k + 1) New estimated parameters

θ̂(k) Previous estimated parameters

F (k) Adaptation gain

ϕ(k) Observation vector

ϵ(k + 1) Adaptation error
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Parameter Adaptation Algorithms

Consider the discrete-time model of a plant :

y(k + 1) = −a1y(k) + b1u(k) = θTϕ(k)

with
θT = [a1, b1] ϕT (k) = [−y(k), u(k)]

The adjustable a priori predictor will be :

ŷ◦(k + 1) = ŷ [(k + 1)|θ̂(k)] = −â1(k)y(k) + b̂1(k)u(k) = θ̂T (k)ϕ(k)

The a posteriori predicted output is given by :

ŷ(k + 1) = ŷ [(k + 1)|θ̂(k + 1)] = θ̂T (k + 1)ϕ(k)

Then the a priori and a posteriori prediction errors defined as :

ϵ◦(k + 1) = y(k + 1)− ŷ◦(k + 1)

ϵ(k + 1) = y(k + 1)− ŷ(k + 1)
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Recursive Least Squares Algorithm

Find a recursive algorithm which minimizes the least squares criterion :

min
θ̂(k)

J(k) =
k∑

i=1

[y(i)− θ̂T (k)ϕ(i − 1)]2

where θ̂T (k)ϕ(i − 1) = ŷ [i | θ̂(k)]. The value of θ̂(k) is obtained by solving :

δJ(k)

δθ̂(k)
= −2

k∑
i=1

[y(i)− θ̂T (k)ϕ(i − 1)]ϕ(i − 1) = 0

Taking into account that :

[θ̂T (k)ϕ(i − 1)]ϕ(i − 1) = ϕ(i − 1)ϕT (i − 1)θ̂(k)

one obtains :

θ̂(k) =

[
k∑

i=1

ϕ(i − 1)ϕT (i − 1)

]−1 k∑
i=1

y(i)ϕ(i − 1) = F (k)
k∑

i=1

y(i)ϕ(i − 1)

which is not recursive !
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Recursive Least Squares Algorithm

F−1(k + 1) =
k+1∑
i=1

ϕ(i − 1)ϕT (i − 1) = F−1(k) + ϕ(k)ϕT (k)

θ̂(k + 1) = F (k + 1)
k+1∑
i=1

y(i)ϕ(i − 1)

= F (k + 1)

[
k∑

i=1

y(i)ϕ(i − 1) + y(k + 1)ϕ(k)

]
= F (k + 1)[F−1(k)θ̂(k) + y(k + 1)ϕ(k)]

Note that
F−1(k)θ̂(k) = F−1(k + 1)θ̂(k)− ϕ(k)ϕT (k)θ̂(k)

Therefore :

θ̂(k + 1) = F (k + 1)
{
F−1(k + 1)θ̂(k) + ϕ(k)[y(k + 1)− ϕT (k)θ̂(k)]

}
= θ̂(k) + F (k + 1)ϕ(k)ϵ◦(k + 1)
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Recursive Least Squares Algorithm

Lemma (Matrix Inversion Lemma)

Let F and R be nonsingular matrices and H a full rank one, then the
following identity holds :

(F−1 + HR−1HT )−1 = F − FH(R + HTFH)−1HTF

Choose H = ϕ(k), R = 1 to obtain :

F (k + 1) = F (k)− F (k)ϕ(k)ϕT (k)F (k)

1 + ϕT (k)F (k)ϕ(k)

Parameter Adaptation Algorithm

ϵ◦(k + 1) = y(k + 1)− θ̂T (k)ϕ(k)

F (k + 1) = F (k)− F (k)ϕ(k)ϕT (k)F (k)

1 + ϕT (k)F (k)ϕ(k)

θ̂(k + 1) = θ̂(k) + F (k + 1)ϕ(k)ϵ◦(k + 1)
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Choice of the Adaptation Gain

Least squares algorithm leads to the following adaptation gain :

F−1(k + 1) = F−1(k) + ϕ(k)ϕT (k)

The trace of F is non-increasing and converges asymptotically to zero.
As a result the parameter estimates will not be adapted even if the
true parameter changes. A large adaptation error will not change the
parameters.
So it can be used just for the case that the true parameters are fixed.

Generalized Adaptation Gain

The adaptation gain can be generalized by :

F−1(k + 1) = λ1(k)F
−1(k) + λ2(k)ϕ(k)ϕ

T (k)

0 < λ1(k) ≤ 1 ; 0 ≤ λ2(k) < 2 ; F (0) > 0

Note that λ1(k) < 1 tends to increase the adaptation gain but λ2(k) > 0
tends to decrease it.
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Choice of the Adaptation Gain

Decreasing Gain : λ1(k) = λ1 = 1 ; λ2(k) = 1

The least squares criterion is minimized :

J(k) =
k∑

i=1

[y(i)− θ̂T (k)ϕ(i − 1)]2

This type of profile is suited to stationary systems.

Constant forgetting factor : λ1(k) = λ1 ; 0 < λ1 < 1 ; λ2(k) = 1

The typical values for λ1, the forgetting factor, are 0.95 to 0.99.

The criterion to be minimized will be :

J(k) =
k∑

i=1

λ
(k−i)
1 [y(i)− θ̂T (k)ϕ(i − 1)]2

This type of profile is suited to slowly time-varying systems.

If the {ϕ(k)ϕT (k)} sequence becomes null in the average (steady
state case), F (k) goes to infinity.
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Choice of the Adaptation Gain

Variable forgetting factor : In this case λ2(k) = 1 and the forgetting
factor λ1(k) is given by : λ1(k) = λ0λ1(k − 1) + 1− λ0 ; 0 < λ0 < 1

The typical values are : λ1(0) = 0.95 to 0.99 ; λ0 = 0.5 to 0.99
The criterion minimized will be :

J(k) =
k∑

i=1

 k∏
j=1

λ1(j − i)

 [y(i)− θ̂T (k)ϕ(i − 1)]2

Recommended for stationary systems, since it avoids too fast decrease
of the adaptation gain and accelerates the convergence.
Other choice of λ1(k) (It goes to 1 if ϕ(k)ϕT (k) becomes null).

λ1(k) = 1− ϕT (k)F (k)ϕ(k)

1 + ϕT (k)F (k)ϕ(k)

Another possible choice is (It goes to 1 when ϵ◦(k) → 0) :

λ1(k) = 1− α
[ϵ◦(k)]2

1 + ϕT (k)F (k)ϕ(k)
; α > 0
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Choice of the Adaptation Gain

Constant trace : In this case, λ1(k) and λ2(k) are automatically chosen
at each step in order to ensure a constant trace of the gain matrix
(constant sum of the diagonal terms) : trF (k + 1) = trF (k) = trF (0)
where F (0) = δnpI and typically 0.1 < δ < 4.

At each step there is a movement in the optimal direction of the RLS,
but the gain is maintained approximately constant.

This type of profile is suited to systems with time-varying parameters
and for adaptive control with non-vanishing adaptation.

(Decreasing gain or Variable forgetting factor)+ constant trace : In
this case, decreasing gain or variable forgetting factor algorithm is
switched to constant trace when : trF (k) ≤ δnp.

This profile is suited to time-varying systems and for adaptive control
in the absence of initial information on the parameters.
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Robust Parameter Estimation

The conventional assumptions for PAA are :

1 The true plant model and the estimated plant model have the same
structure (the true plant model is described by a discrete-time model
with known upper bounds for the degrees nA, nB).

2 The disturbances are zero mean and of stochastic nature (with
various assumptions).

3 For parameter estimation in closed-loop operation, the controller

a) has constant parameters and stabilizes the closed loop ;
b) contains the internal model of the deterministic

disturbance for which perfect state disturbance rejection
is assured.

4 The parameters are constant or piece-wise constant.
5 The domain of possible parameters values is in general not

constrained.

In practice these assumptions may be violated so PAA should be robust.
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Robust Parameter Estimation

Filtering of input/output data : Usually, we would like to estimate
a model characterizing the low frequency behaviour of a plant, so we
have to filter the high-frequency content of input-output, in order to
reduce the effect of the unmodelled dynamics.

PAA with dead zone : A dead-zone is introduced on the adaptation
error such that the PAA stops when the adaptation error is smaller
than the upper magnitude of the disturbance (because the adaptation
error smaller than the bound of the disturbance is irrelevant).

PAA with projection : In many applications, the possible domain of
variation of the parameter vector θ is known (for example, the model
is stable, or the sign of a component of θ is known). In such cases, the
estimated parameters should be projected to a given convex domain.

Data normalization : In PAA, the parameter estimates and the
adaptation error remain bounded if the regressor ϕ containing plant
inputs and outputs is bounded. Since we cannot assume its
boundedness, we have to“normalize” the data by a norm of ϕ.
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Direct Adaptive Control

Definition

Direct adaptive control covers those schemes in which the parameters of
the controller are directly updated from a signal error (adaptation error)
reflecting the difference between attained and desired performance.

Direct adaptive control schemes are generally obtained by defining an
equation for a signal error (adaptation error) which is a function of
the difference between the tuned controller parameters and the
current controller parameters.

ϵ(k + 1) ∝ (θC − θ̂C (k))

Although direct adaptive control is very appealing, it cannot be used
for all types of plant model and control strategies (like pole
placement, linear quadratic control or generalized predictive control).

Model reference control can be applied if for any values of the plant
parameters the finite zeros of the model are inside the unit circle.
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Direct Adaptive Control

Model Reference Adaptive Control (MRAC) : Direct adaptive control
using the MRC criterion will be used.

First we recall MRC for known parameters.

Model Reference Control : In this approach the zeros of the plant model
in

Hcl(q
−1) =

Bm(q
−1)

Am(q−1)

q−dB⋆(q−1)T (q−1)

A(q−1)S(q−1) + q−dB⋆(q−1)R(q−1)

are cancelled by the closed-loop poles :

A(q−1)S(q−1) + q−dB⋆(q−1)R(q−1) = B⋆(q−1)P(q−1)

This can be done if

the zeros of B⋆(q−1) are stable,

complex zeros have a sufficiently high damping factor (ζ > 0.2).
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Model Reference Control (MRC)

Tracking : By choosing T (q−1) = P(q−1) the transfer function
between the reference r(k) and y(k) will be :

Hcl(q
−1) =

q−dBm(q
−1)

Am(q−1)
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Model Reference Adaptive Control

The controller equation for known parameters is given by :

S(q−1)u(k) + R(q−1)y(k) = P(q−1)y⋆(k + d)

or in a regressor form as : θTC ϕC (k) = P(q−1)y⋆(k + d)
where :

ϕT
C (k) = [u(k), . . . , u(k − nS), y(k), . . . , y(k − nR)]

θTC = [s0, . . . , snS , r0, . . . , rnR ]

Therefore, the control law in the adaptive case will be chosen as :

Ŝ(k, q−1)u(k) + R̂(k, q−1)y(k) = P(q−1)y∗(k + d)

or θ̂TC (k)ϕC (k) = P(q−1)y⋆(k + d)

The effective control input will be computed as :

u(k) =
1

ŝ0(k)

[
P(q−1)y⋆(k + d)− Ŝ⋆(k, q−1)u(k − 1)− R̂(k, q−1)y(k)

]
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Model Reference Adaptive Control

ε�(k)

r(k)
Bm

Am

T = P q-d B*

A

P

PAA

q-d

y(k)

+

-

+

-

Bm

Am

Reference Model

1

S

R

y*(k)

y*(k+d)

The a priori adaptation error (linear in θ̂C ) is defined as :

ϵ◦(k + d) = P(q−1)y(k + d)− P(q−1)y⋆(k + d) = [θC − θ̂C (k)]
TϕC (k)
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Model Reference Adaptive Control

Example
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At k = 25, the model parameters change. Two different values of the
regulation polynomial are considered : P1(q

−1) = 1 (deadbeat control) ;
P2(q

−1) = 1− 1.262q−1 + 0.4274q−2 corresponds to a second-order
system with ω0 = 0.5 rad/s and ζ = 0.85.
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Indirect Adaptive Control

Adaptation of the controller parameters is done in two stages :

1 on-line estimation of the plant parameters ;

2 on-line computation of the controller parameters based on the current
estimated plant model.

Plant model
estimation

Controller
design

Adjustable
controller

yu

Desired 
performance

Reference

Plant

Certainty Equivalence Principle :The current plant model parameter
estimates are used to compute the controller parameters as if they are
equal to the true ones.
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Indirect Adaptive Control

u y

+

-

Adaptation 
mechanism 1

Adjustable
predictor

Adjustable
controller

Adaptation 
mechanism 2

(design)

parameter estimates

Adaptive predictor

Reference

Plant

^
y

Separation Principle : The adaptive predictor gives a good prediction (or
estimation) of the plant output (or states) when the plant parameters are
unknown. An appropriate control for the predictor is computed and this
control is also applied to the plant.

The stability of the closed-loop system is analyzed separately.
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Indirect Adaptive Control (implementation)

Strategy 1 : Strategy 2 :

1 sample the plant output sample the plant output

2 update the plant model compute the control signal based
parameters on the past controller parameters

3 update the controller parameters send the control signal

4 compute the control signal update the plant model parameters

5 send the control signal update the controller parameters

6 wait for the next sample wait for the next sample

Strategy 1 Add extra delay ; A posteriori adaptation should be analyzed.

Strategy 2 Smaller delay ; A priori adaptation should be analyzed.

Strategy 3 Update the estimates of the plant model parameters at each
sampling instant, but update the controller parameters only
every N ≫ 1 sampling instants. More sophisticated controller
can be designed (robust). The risk of getting non-admissible
plant model is reduced.
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Adaptive Pole Placement

Step 1 : Estimation of the plant model parameters
The plant output can be expressed as : y(k + 1) = θTϕ(k) where :

θT = [a1 · · · anA , bd · · · bnB ]
ϕT (k) = [−y(k) · · · − y(k − nA + 1), u(k − d + 1) · · · u(k − nB + 1)]

The a priori output of the adjustable predictor is given by :

ŷ◦(k + 1) = θ̂T (k)ϕ(k)

where : θ̂T (k) = [â1(k) · · · ânA(k), b̂d(k) · · · b̂nB (k)]

Parameter Adaptation Algorithm

ϵ◦(k + 1) = y(k + 1)− θ̂T (k)ϕ(k)

F−1(k + 1) = λ1(k)F
−1(k) + λ2(k)ϕ(k)ϕ

T (k);

0 < λ1(k) ≤ 1 ; 0 ≤ λ2(k) < 2 ; F (0) > 0

θ̂(k + 1) = θ̂(k) + F (k + 1)ϕ(k)ϵ◦(k + 1)
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Adaptive Pole Placement

Step 2 : Computation of the control law
We will use Strategy 1 for updating the controller parameters. The
controller equation generating u(k) is :

u(k) = −Ŝ⋆(k, q−1)u(k − 1)− R̂(k, q−1)y(k) +
1

B̂(k, 1)
P(q−1)y⋆(k + d)

where :

Ŝ(k, q−1) = 1 + ŝ1(k)q
−1 + · · ·+ ŝnS (k)q

−nS = 1 + q−1Ŝ∗(k, q−1)

R̂(k, q−1) = r̂0(k) + r̂1(k)q
−1 + · · ·+ r̂nR (k)q

−nR

and Ŝ(k, q−1), R̂(k, q−1) are solutions of :

Â(k, q−1)Ŝ(k, q−1) + B̂(k, q−1)R̂(k, q−1) = P(q−1)

The admissibility condition for the estimated model is :

| detM[θ̂(k)]| ≥ δ > 0

where M[θ̂(k)] is the Sylvester matrix.
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Robust Adaptive Pole Placement

Example

The continuous time plant to be controlled is characterized by the transfer
function :

G (s) =
2

s + 1
· 229

(s2 + 30s + 229)

The system will be controlled in discrete time with a sampling period
h = 0.04 s. For this sampling period the true discrete time plant model is
given by :

G (q−1) =
b1q

−1 + b2q
−2 + b3q

−3

1 + a1q−1 + a2q−2 + a3q−3

with :

a1 a2 a3
−1.8912 1.1173 −0.21225

b1 b2 b3
0.0065593 0.018035 0.0030215
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Robust Adaptive Pole Placement

Example

The desired closed-loop poles used are as follows :

for n = 1 : P1(q
−1) = (1− 0.8q−1)(1− 0.9q−1)

for n = 2, 3 : Pn(q
−1) = P1(q

−1)(1− 0.2q−1)(1− 0.1q−1)

The controller has an integrator.

Same dynamics has been used in tracking and regulation.

For the case n = 2, a filter HR(q
−1) = 1 + q−1 has been introduced.

Variable forgetting factor + constant trace adaptation gain has been
used (F (0) = αI ; α = 1000 desired trace : TrF (k) = 6).

The filter used on input/output data is : L(q−1) = 1/P(q−1).

The normalizing signal m(k) can be generated by :

m(k) = max(∥ϕf (k)∥, 1)
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Robust Adaptive Pole Placement

Example
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Robust Adaptive Pole Placement

Example
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Robust Adaptive Pole Placement

Example
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Indirect Adaptive Control

Concluding Remarks :

1 Indirect adaptive control algorithms emerged as a solution for adaptive
control of systems featuring discrete time models with unstable zeros.

2 It offers the possibility of combining (in principle) any linear control
strategy with a parameter estimation scheme.

3 The design of the controller based on the estimated plant models
should be done such that some robustness constraints on the
sensitivity functions be satisfied.

4 For each type of underlying linear control strategy used in indirect
adaptive control a specific admissibility test has to be done on the
estimated model prior to the computation of the control.

5 Robustification of the parameter adaptation algorithms used for plant
model parameter estimation may be necessary in the presence of
unmodelled dynamics and bounded disturbances.

6 Adaptive pole placement and adaptive generalized predictive control
are the most used indirect adaptive control strategies.
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Switching Adaptive control
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Switching Adaptive control with tuning

After a parameter variation (a large estimation error)

First the controller corresponding to the closest model (fixed model)
is chosen (switching).
Then the adaptive model is initialized with the parameter of this
model and will be adapted (tuning).
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Structure of Switching Adaptive Control

Plant : LTI-SISO (for analysis) with parametric uncertainty and
unmodelled dynamics : ⋃

θ∈Θ
P(θ)

where P(θ) = P0(θ)[1 +W2∆] with ∥∆∥∞ < 1. Other type
of uncertainty can also be considered.

Multi-Estimator : Kalman filters, fixed models, adaptive models. If Θ is a
finite set of n models, these models can be used as estimators
(output-error estimator). If Θ is infinite but compact, a finite
set of n models with and adaptive model can be used.

Multi-Controller : We suppose that for each P(θ) there exists C (θ) in the
multi-controlller set that stabilizes P(θ) and satisfies the
desired performances (the controllers are robust with respect
to unmodelled dynamics).
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Structure of Switching Adaptive Control

Monitoring Signal : is a function of the estimation error to indicate the
best estimator at each time.

Ji (k) = αε2i (k) + β

k∑
j=0

e−λ(k−j)ε2i (j)

with λ > 0 a forgetting factor, α ≥ 0 and β > 0 weightings
for instantaneous and past errors.

Switching Logic : Based on the monitoring signal, a switching signal σ(k)
is computed that indicates which control input should be
applied to the real plant. To avoid chattering, a minimum
dwell-time between two consecutive switchings or a
hysteresis is considered.

The dwell-time and hysteresis play an important role on the stability of the
switching system.
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Switching Logic

Dwell-Time : After each switching, the switching signal σ remains
unchanged for Tdh second. A large value for Td may
deteriorate the performance and a small value can lead to
instability.

Hysteresis : A hysteresis cycle with a design parameter µ is considered
between two switchings. It means that a switching to
another controller will occur if the performance index
concerning a model is improved by µJi . With hysteresis, large
errors are rapidly detected and a better controller is chosen.
However, the algorithm does not switch to a better controller
in the set if the performance improvement is not significant.

A combination of two logics (dwell-time and hysteresis) may also be
considered.

For both algorithm the minimum value of Td and µ can be computed
that guarantee the closed-loop stability.
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Stability of Switching Adaptive Control

Trivial case :

No unmodelled dynamics and no noise,

the set of models is finite,

parameters of one of the estimators matches those of the plant
model,

plant is detectable.

Main steps toward stability :
1 One of the estimation errors (say εi) goes to zero.
2 εσ(k) = y(k)− yσ(k) goes to zero as well.
3 After a finite time τ switching stops (σ(τ) = i k ≥ τ).
4 If εi goes to zero, θi will be equal to θ and the controller Ci

stabilizes the plant P(θ) :

(Certainty equivalence stabilization theorem)
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Stability of Switching Adaptive Control

Assumptions : Presence of unmodelled dynamics and noise. Existence of
some“good”estimators in the multi-estimator block. The plant P is
detectable.

1 εi for some i is small.

2 εσ is small (because of a“good”monitoring signal).

3 All closed-loop signals and states are bounded if :
The injected system is stable.
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Stability of Switching Systems

Each controller stabilizes the corresponding model in the
multi-estimator for frozen σ.
Question : Is the injected system stable for a time-varying switching
signal σ(k) ?

Is fσ(x) stable ? No
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Stability of Switching Systems

Consider a set of stable systems :

ẋ = A1x , ẋ = A2x , . . . ẋ = Anx

then ẋ = Aσx is stable if : A1 to An have a common Lyapunov matrix.
This can be verified by a set of Linear Matrix Inequalities (LMIs) :

Continuous-time

AT
1 P + PA1 ≺ 0

AT
2 P + PA2 ≺ 0

...

AT
n P + PAn ≺ 0

Discrete-time

AT
1 PA1 − P ≺ 0

AT
2 PA2 − P ≺ 0

...

AT
n PAn − P ≺ 0

The stability is guaranteed for arbitrary fast switching.

The stability condition is too conservative.
Digital Controller Design (Chapter 3) Advanced Control Systems Spring 2025 76 / 86



Switching Adaptive Control

Concluding Remarks :

1 Large and fast parameter variations may lead to poor transient
performance or even instability in classical adaptive control systems.

2 Adaptive control with switching can significantly improve the
transient behaviour of adaptive systems.

3 The basic idea is to use a multi-estimator instead of a unique
estimator in the adaptive control scheme. During the transients, one
of the estimator can provide rapidly a good estimate of the plant
output and an appropriate controller can be chosen.

4 The main issue in adaptive control with switching is the stability of
the closed-loop system. It can be shown that a dwell-time can be
computed that guarantees closed-loop stability.

5 The use of robust pole placement technique in adaptive control with
switching guarantees quadratic stability of the injected system and
consequently stability of the adaptive system with arbitrary fast
switching.
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Gain-Scheduled Controller Design

Motivation : A large class of nonlinear systems can be represented
by a set of linear models that approximate the dynamics of the
systems in different operating points.

Such nonlinear behaviour cannot be controlled by classical linear
control methods.

Robust controllers with respect to multimodel uncertainty is a
solution but may lead to poor performance.

Direct and indirect adaptive control need a permanent
persistently excitation signal and are difficult to implement.

If the information about the operating point can be measured,
called scheduling parameter, it can be included in the controller
by making it dependent on these parameters.
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Gain-Scheduled Controller Design

Gain-Scheduling method :

Step 1 : A finite grid of operating points is chosen within the
whole range of operating points, then a controller is
designed for each of these selected operating points
based on the local model.

Step 2 : An interpolation between the controller parameters is
done to get a gain-scheduled controller.

Advantages : Very good performance ; all classical controller design
methods can be used ; easy implementation.

Drawback : The stability is not guaranteed for fast variations of the
scheduling parameters.

Remark : Comparing with switching adaptive control, it does not
need the multi-estimator part but some sensors to measure the
scheduling parameters.
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Gain-Scheduled Controller Design

Data-Driven Method : The two steps can be combined in one convex
optimization problem.
Models : G (jω, θ) is a function of a scheduling parameter θ ∈ Θ = [θmin , θmax].
Gain-Scheduled Controller : K (z , θ) = X (θ)Y−1(θ), where for a second order
interpolation, we have

X (θ) = X0 + θX1 + θ2X2

Y (θ) = Y0 + θY1 + θ2Y2

Gain-Scheduled H∞ Controller

min
X ,Y

γ[
γI W1Y (θ)

(W1Y (θ))∗ Φ(θ)∗Φc(θ) + Φc(θ)
∗Φ(θ)− Φc(θ)

∗Φc(θ)

]
≻ 0 ∀ω ∈ Ω

and ∀θ ∈ Θ, where Φ(θ) = Y (θ) + G (θ)X (θ) and Φc(θ) = Yc(θ) + G (θ)Xc(θ).
This problem is convex wrt the controller parameters but has infinite number of
constraints (SIP). As before, it can be solved by gridding the frequency and the
scheduling parameter.
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Active Suspension Benchmark

Active suspension system is used to reject the effect of disturbance.

An inertial actuator creates vibrational forces to counteract the
disturbances (like loudspeakers).

A shaker used to generate the disturbances.
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Active Suspension Benchmark

Control Objective :

The disturbance consists of one sinusoidal signal with unknown
time-varying frequency, which lies in an interval from 50 to 95Hz.

The controller should reject the disturbance as fast as possible.

The magnitude of input sensitivity function |U| should be less than 10
dB at high frequencies.

The noise at other frequencies should not be amplified more than 6
dB (Mm = 0.5).

Linear controller design : If the frequency of the disturbance was known,
it could be rejected using the internal model principle.

A fixed term in the controller should be considered as follows :

Fy (z , θ) = z2 + θz + 1 f = cos−1(−θ/2)/2π
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Active Suspension Benchmark

Gain-scheduled controller design :
1 A very fine frequency grid with a resolution of 0.5 rad/s (5027

frequency points) is considered.
2 A resolution of 1Hz, which corresponds to 46 points in the interval

[−1.8478 , −1.4686] is considered for the scheduling parameter θ.
3 The following controller structure is chosen K (θ) = X (θ)Y−1(θ) :

X (z , θ) =
X0(z) + θX1(z)

(z − α)n
; Y (z , θ) =

Fy (z , θ)

(z − α)n

4 The following optimization problem is solved :

min
X ,Y

γ∥∥∥∥ W1S(θ)
W3 U(θ)

∥∥∥∥
∞

< γ ; ∥S(θ)∥∞ < 2 ; ∀θ ∈ Θ

where W1 = F−1
y and W3 = 1.
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Active Suspension Benchmark

Control performance for known and fixed disturbance frequency
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Active Suspension Benchmark

Estimator design : The disturbance frequency should be estimated on
line.

If we model p(k) as the output of an ARMA model with white noise
as input, we have : Dp(q

−1)p(k) = Np(q
−1)e(k),

Since p(k) is not available, it is estimated using the measured signal
y(k) and the known model of the secondary path.

Then a standard PAA is used to estimate θ.
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Active Suspension Benchmark
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