Robust Controller Design

Outline:
@ Introduction to Convex Optimization
o Convex sets and convex functions

o Linear Matrix Inequalities (LMls)
o Convex optimization

e Ha/Ho Control (model-based)
o Hy/Heo state feedback control

o Linear Fractional Transformation (LFT)
e Ho, control with a simulation example
@ Robust Loopshaping by Convex Optimization (data-driven)
Plant and controller structure
Quadratic Matrix Inequalities
Loopshaping and H,/H control
Stability theorem
Practical issues
Application to mechatronic systems
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Introduction to Convex Optimization

The main property of a convex optimization problem is that any local
minimum is a global minimum.

Definition (Convex set)

A set S in a vector space is said to be convex if the line segment between
any two points of the set lies inside the set.

x,€ES=M+(1-A)xeS Vie[0 1]

Convex set Non-convex set
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Introduction to Convex Optimization

Definition (Convex Combination)

Let x1,.. ,Xn €S then :
n
X—Z)\X, with A\; >0 and Z)\;zl
i=1
is called a convex combination of xi, ..., Xp.

Definition (Convex hull)

For any set S in a vector space the convex hull consists of all convex
combinations of the elements of S and is a convex set.

Properties of convex sets

Let S; and S, be two convex sets. Then
@ aS; = {x|x = ac,c € S;} is convex for any scalar a.
@ S1+Se={x|x=c1+ 2, €S1, €Sy} is convex.
@ S;1 NSy is convex but S; USy is not necessarily convex.
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Introduction to Convex Optimization

Definition (Convex function)
A function f : S — R is convex if
© S is a convex set and
@ for all xi,x2 € Sand A € [0 1] there holds that

FOxa + (1= Ax) < M(x) + (1= \)f(x)

Y
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Introduction to Convex Optimization

Show that f(x) = x? with x € R is a convex function.

Solution: It is clear that R is a convex set, so we should show for all
x1,x2 € Rand A € [0 1], it holds that:

Mg+ (1= A)xa]® < AxZ + (1 — \)x2
In order to show the above, we bring all terms to the left side:

AX2 4 X3 4+ A2x5 — 20x3 + 2 xaxa — 2X%xix0 — A — x5 + g < 0

(A2 = A)x? —2(A° = Nxxo + (A2 = \)x3 <0

(A = A)(xa —x2)* <0
which is always true because (A2 — \) < 0 for all A € [0, 1].
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Introduction to Convex Optimization

Show that the norm function f(x) = ||x|| with x € R" is a convex function.

Solution: It is clear that R” is a convex set, so we should show for all
x1,x2 € R"and A € [0 1], it holds that:

f()\Xl aF (1 = )\)Xg) < )\f(Xl) aF (1 = )\)f(X2)

or:
A1+ (1 = Ape|l < Alxall + (1 = A)llxe|]
In order to show the above, we use the norm properties:
[Ax1 + (1 = N)x2|l < |[Axa]l + [|(1 = A)x2||  (Triangle inequality)
< Axall + (1 = A)||x|| (Homogeneity)
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Introduction to Convex Optimization

Convex Functions

f(x) =x?on R, f(x) =sinx on [r 27] and f(x) = |x| on R are convex,
but f(x) = —x? is not convex.

A twice differentiable function is convex if its domain is convex and its
second derivative is non negative.

Is f(x) = log(x) a convex function x € R*?

Solution: No, because f/(x) = 1/x and f"(x) = —1/x? < 0.

Is f(x) = (x1x2) ! a convex function (x € R? and x; > 0,x; > 0)?
Solution: Yes, because

T 2 1
f'(x) = {1 1 } and f'(x) = = [ ;112 % ] -0
X1X0

2 2
XiX2  X1X5 X1X2
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Introduction to Convex Optimization

Convex Functions
@ Linear and affine functions are convex.

@ If f(y) is convex and y = g(x) is linear, f(g(x)) is convex.
© Convex combination of convex functions is also a convex function.

g:i)\ifi A€o 1] and i)\;zl
i=1

i=1

is convex if fi,...,f, are convex functions.

Is f(x) = fi(x)f2(x) a convex function where f;(x) and f>(x) are convex
functions?

Answer: Not necessarily. As a counterexample, take fi(x) = x and
f2(x) = —x that are both linear and so convex, but f(x) = —x? is not
convex.
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Introduction to Convex Optimization

Links between convex sets and convex functions:

@ Epigraph of a convex function (the set of all points lying on or above
its graph) is a convex set.

@ If f(x) is a convex function, then
D = {x| f(x) <0} is a convex set
@ If f(x) is a linear function on R then
f(x) <0, f(x)>0 and f(x)=0 define the convex sets.
Q Let f1,..., 1, be convex functions then
D={x]|fi(x)<0 fori=1,...,n}

is the intersection of convex sets and defines a convex set.

@ If f(x) is a nonlinear convex function, neither
f(x) > 0nor —f(x) < O defines a convex set.
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Linear Matrix Inequalities

A linear matrix inequality is an expression of the form:

m
F(X) =F —i—ZX,'F,' =0
i=1

@ x =[x1,...,Xm] is a vector of m decision variables,
o FF=Fl eR™"i=0,....m

@ The special inequality > 0, means positive definite.

Positive definite matrices: Matrix F > 0 if u” Fu > 0 for all u € R" and
u # 0. The following statements are necessary and sufficient for a real
symmetric matrix F to be positive definite:

o All eigenvalues of F are positive.
@ All principal minors of F (det. of principal submatrices) are positive.

If F > 0, then its determinant is positive and all values on the main
diagonal of F are also positive.
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Linear Matrix Inequalities

Further properties of real positive definite matrices:

© Every positive definite matrix is invertible and the inverse is also
positive definite.
If F>0and A > 0is a real number, then AF > 0.
If F>~0and G > 0then F+ G >0 and GFG > 0 and FGF > 0 and
tr(FG) > 0. The product FG is also positive definite if FG = GF .
If F > 0 and M has full rank, then MTFM = 0. In the same way. if
F <0, then MTFM < 0.
If F >~ 0 then there is § > 0 such that F > 4/ (it means that
F —41>0).
Main property: F(x) = 0 and F(x) < 0 define convex sets on x.

For example the set S = {x|F(x) > 0} is convex. It means if x;,x2 € S
and A € [0 1], then:

© © 00

FOwr+ (1= MNx) = AF(x1) + (1 = A)F(x2) = 0
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Linear Matrix Inequalities

Many convex sets can be represented by LMI:

X2 > X1 xp > x2 X2+ x5 <1
1 1 X1 X2
F(x)=[x—x]>0 F(x) = { o 2 } =0 Fx)=| x« 1 0 | =0
X2 0 l
F(x) > 0 can always be represented as an LMI if its elements are affine
w.r.t x.
1 00 010 0 01
F(xX)=101 0[+x|100]|+4+x|000
0 01 0 00 100

Moreover, any matrix inequality which is affine w.r.t F(x) and symmetric
is also an LMI (i.e. AF(x)AT + BBT = 0)
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Linear Matrix Inequalities

Geometry of LMlIs: An LMI is the intersection of constraints on some
polynomial functions (the principal minors).

1—x1 x1+x X1
Fix)=1| x1+x 2-x 0 =0
X1 0 1+X2

m: 1—x>0
my: (1—x1)(2—x1)— (x1+x)%>0
my: x2(x2—2)+ (1+x)[(1—-x)2-x)—(x1+x)?>0

m; >0 my >0 m3 >0
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Linear Matrix Inequalities

Schur lemma: IfA= AT and C = CT7 then :

A B
F_[BT C]FO
A B
F_[BT C]<O

—
—

—
—

A=0 and C
C>0 and A

A<0 and C
C=<0 and A

~BTA 1B+
—BC BT »0

—BTA1B=<0
—BC BT <0

C—BTA 1B and A— BC~1BT are called Schur complements.

Proof:
I —AB1'[ A B
0 / BT ¢

I

/
0

e ] _ [

A 0
0 C—BTAlB

Note that M7 FM has the same sign of F if M is nonsingular.

Robust Controller Design (Chapter 2)

Advanced Control Systems

Spring 2025

14 /70



Introduction to Convex Optimization

Convex optimization problem

min fo(x)

subject to
filx) < 0 i=1,...,n f; Convex
g(x)=0 j=1,....m gj Linear

Linear programming: fo(x) and fj(x) are linear.
Quadratic programming: fy(x) is quadratic, but fj(x) are linear.
Semidefinite programming: fo(x) is linear and the constraints are
symmetric semidefinite matrices (Linear Matrix Inequalities).
Semi-infinite programming: The constraints are defined for a parameter
6 € © (number of constraints goes to infinity). This type of
problems is called robust optimization.

Spring 2025
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LMls in Control

Example (Stability analysis)

A continuous-time LTI autonomous system x(t) = Ax(t) is asymptotically

stable (tlim x(t) =0, Vxgp # 0) iff there exists a quadratic Lyapunov
—00

function V(x) = x” Px such that:

V(x)>0 and V(x)<0

These two conditions are verified iff there exists a symmetric matrix
P > 0 such that

V(x) =xTPx+x"Px=x"(ATP + PA)x <0
This is equivalent to the feasibility of the following LMI:

= 0

0 —(ATP+pa) |0
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LMls in Control

Question (Stability of discrete-time systems)

Consider an autonomous discrete-time LTI system x(k + 1) = Ax(k).
Define a Lyapunov function V/(k) = xT (k)Px(k) with P = 0. Represent
the stability condition by an LMI.

Solution: The system is stable if V(k+ 1) — V(k) < 0. We have:

V(k+1) = V(k) = x"(k +1)Px(k + 1) — x (k) Px(k)
= xT(k)AT PAx(k) — x T (k)Px(k)
= xT(k)[ATPA — P]x(k)

Therefore, AT PA — P should be negative definite. The stability condition

in LMI form is:
P 0

0 P_aTpa|” 0

Robust Controller Design (Chapter 2) Advanced Control Systems Spring 2025 17 /70



LMls in Control

Example (Stability of polytopic systems)

Consider the LTI system x(t) = Ax(t) where A € co{A1,...,An}.
This system is quadratically stable iff there exists P > 0 such that :

ATP+PA <0 Vie[l N

Proof: We know that :

co{A1,...,An} = {A

N N
A()\):Z)‘IAI, )‘IZO and ZAI:]_}

i=1 i=1
N
On the other hand : > Ai(A] P+ PA;) = AT(\)P + PA(X) < 0
i=1

@ Stability of a polytopic system is ensured by stability of its vertices.
@ Quadratic stability guarantees stability for fast parameter variations.
@ Quadratic stability condition is too conservative for robust stability.
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LMls in Control

Stability of polytopic systems

Consider the discrete-time LTI system with polytopic uncertainty as

x(k +1) = A(\)x(k) where AA) = SN NA, A>0and SV, A =1
Show that this system is quadratically stable iff there exists P > 0 such
that : ATPA; —P <0 Vie[l N

Proof: The stability condition for A; can be reformulated using the Schur
Lemma as the following matrix inequality:

P AT
A,‘ Pfl =0

If we multiply the inequality by A; and take the sum over /, we have:

Sia AP SLNAT | T P AT
ZII.V:].)\"A" ZI{V:].)\’.P_I AR\ P

That is equivalent to AT (A\)PA(\) — P < 0.
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LMls in Control
Bounded Real Lemma

Al B
Let7>OandG(s)—[C )
exists P = 0 such that

], then || G||oc < 7 if and only if there

ATP+PA PB crT
BTP —21 DT

If uis the input and y the output of G then the infinity norm can be
defined as the supremum of the two-norm gain:

][C D]=<0

16 e = sup 1212
P o

The state space representation of G is given by:

x(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) x(0)=0
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LMls in Control

Proof of Bounded Real Lemma
We prove only the sufficient condition. The LMI implies:

O[5 a5 e o} [)] <0
[x(t) ]T [ ATBPTJFPPA —Pﬁ/ } [x(t)]

+[Cx(t) + Du(t)] T [Cx(t) + Du(t)] < 0
P e

y(t)

= xT(ATP+PA)x+xTPBu+uTBTPx—fy2uTu+yTy<0
= (Ax+Bu)TPx+xTP(Ax+Bu)—fyzuTu+yTy<0
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LMls in Control

Proof of Bounded Real Lemma

Taking a Lyapunov function V(x) = xTPx, we have
V(x) = x"Px + xT Px and:

V(x) = 72uTu+yTy <0
Taking the integral of the above inequality we obtain:

/ V(X)dt—’y2/ uTudt+/ yTydt <0
0 0 0

V(x(00)) = V(x(0)) = +*[[ull3 + lly[I3 < 0
Since ATP + PA < 0 from the LMI in the lemma, G is stable and
x(00) = x(0) = 0 that leads to V/(x(o0)) = V/(x(0)) = 0. Therefore:

2
VB 2y o gl
Jul3 2l

<7 = |Glle<n
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LMls in Control

Example (Computing ., norm by convex optimization)

Using the bounded real lemma for a strictly proper system (D = 0), we
should minimize 72 ( the square of the co-norm) such that:

ATP+PA+CTC PB ]
BTP —2

The nonlinearity in 42 can be fixed by change of variable to convert the
above inequality to an LMI.

This problem can be solved by the following YALMIP code:
gammaZ=sdpvar (1,1);
P=sdpvar (n,n, 'symmetric');
Imi=[A'"'+P+P+A+C'*C P#B; B'x*P —gammalxeye (n)]<0;
Imi=[1Imi, P>0];
options=sdpsettings('solver', 'mosek');
optimize (1lmi, gammaZ2, options) ;
gamma=sqrt (value (gammaZ) )
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H., state feedback control

Problem: Given a controllable representation of the plant model:

co-[442]

Compute a state feedback controller K such that the Hs.-norm of the
closed-loop system from an input disturbance v(t) to the output is
minimized.

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) =

u(t) = v(t) — Kx(t)

x(t) = (A— BK)x(t) + Bv(t)
y(t) = Cx(1)

Solution: Using the bounded real lemma (and applying the Schur
lemma) we have :

(A—BK)TP+P(A-BK)+CTC+PBy?BTP <0

which is not an LMI.
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H., state feedback control

e Now, multiply the inequality from left and right by X = 2P~

X(A—=BK)"7?* 4+ 72(A—= BK)X ++°BBT + XCTCX <0

2

@ Denoting Y = KX and multiplying by 77, we derive:

XAT + AX = YTBT —BY +BBT + XCT7v72CX <0
@ This matrix inequality can be converted to an LMI using the Schur
lemma:

XAT + AX—-YTBT —BY +BBT XCT

CX 2 <0, X>0

o After minimizing 7 subject to the above LMI constraints the state
feedback controller is computed by K = YX~1.
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Computing H, norm

Lemma (#2 norm by SDP)

Let G(s) be a strictly proper stable transfer function with a state-space
representation (A, B, C,0). Then ||G||3 = trace[CL°CT] where L° is the
optimal solution to the following SDP problem:

mLin trace[CLCT]

AL+ LAT +BBT <0 ; L>=0 (1)

v

Proof: Let L* = 0 be the unique solution to AL+ LAT + BBT = 0. Since
L* satisfies the equality, it also satisfies the inequality in (1). Therefore,
trace(CL°CT) < trace(CL*CT), which implies trace(C(L° — L*)CT) <0
and hence L° — L* < 0. On the other hand, subtracting

AL+ LAT + BBT =0 from (1) yeilds A(L° — L*) + (L° — L*)AT < 0. By
stability of A, this implies L° — L* = 0 . Combining both inequalities, we
conclude L° — L* =0, i.e. L° = L*, which complete the proof.
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Computing H, norm

Example (Computing #, norm by convex optimization)

the 2-norm of a transfer function can be obtained by the following SDP
problem:

mLin trace[CLCT]

AL+ LAT +BBT <0 : L=0

This can be coded using Yalmip as follows:
L=sdpvar (n,n, 'symmetric'),;
Imi=A*L+L+A'+B+B' <0;
Imi=[1mi, L>0];
options=sdpsettings('solver', 'mosek');
optimize (Imi, trace (C+xL+C'),options);
L=value (L) ;
HZ2Norm=sqrt (trace (CxLxC"))
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H, state feedback control

Problem: Given a controllable representation of the plant model:

co-[412]

Compute a state feedback controller K such that the two norm of the
closed-loop system from the input disturbance to the output is minimized.
x(t) = Ax(t) + Bu(t)

y(t) = Cx(1) =

u(t) = v(t) — Kx(t)
Solution: The two-norm minimization can be converted to a convex
optimization problem.

x(t) = (A— BK)x(t) + Bv(t)
y(t) = Cx(t)

mintr(CLCT)
(A-BK)L+L(A-BK)T+BB" <0 ; L=0
The inequality can be converted to an LMI denoting Y = KL:
AL+ LAT —BY —YTBT +BBT <0
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H., state feedback control

Example (State disturbance rejection:)

Consider a controllable state-space model of a system as:
x(t) = Ax(t) + Bru(t) + Bow(t)
y(t) = Cx(1)

Design a state feedback controller that minimizes the infinity-norm of the transfer
function between w(t) and [y(t); u(t)].

Solution:
@ Replace u(t) = —Kx(t) to find the closed-loop state-space model as:
x(t) = (A— BiK)x(t) + Bow(t)
y(t) = Cx(t)
u(t) = —Kx(t)

@ Define a new output variable z(t) = [y(t); u(t)] as one performance
output. The output equation of the closed-loop system will be:

2(t) = [ W }x(t)
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H., state feedback control

Example (State disturbance rejection:)

@ Apply bounded real lemma to the closed-loop state-space model (P > 0):

(A—B1K)TP+P(A—BiK)+ CTC+ K"K+ PBy(yv%)BJ P <0
Which is not an LMI.

@ Multiply from left and right by X = 7?P~!, and define a new variable
Y = KX and multiply the whole inequality by 72 to obtain:

XAT —YTB] + AX —B1Y + XCTy2CX + YTy 2Y + B,B] <0
@ Which can be rewritten as:
XAT + AX —YTB] —BY + BBy

_[xcT oyr )|t 0 71[XCT Y717 <0
0 -2l

y
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H., state feedback control

Example (State disturbance rejection:)

@ Which can be rewritten as:

XAT + AX —YTB] —BY + BB}

-’10

T T
—[ xc™ v ]{ Y

@ Then apply Schur Lemma to find the following LMI:

XAT + AX —YTB] —BY+B,B] XCT YT
cX -2l 0 <0 ,
Y 0 -2l

@ The final state feedback controller that achieve this performance is
K=YXL

—1
} [ xcT vT]" <o

X =0

Robust Controller Design (Chapter 2) Advanced Control Systems Spring 2025

31/70



Ho/H o output feedback control

e In many systems the states are not all available/measurable.

@ The feedback controller has access only to the measurable states
(outputs).

e A state observer/estimator should be used.

@ Only one transfer function can be minimized.

@ The feedback system should be rearranged to consider all robust
stability and performance in ONE transfer function.

e Linear Fractional Transformation (LFT) is used to rearrange the
feedback system.
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Linear Fractional Transformation

A feedback control system can be rearranged as an LFT:

w: all external inputs W >
u: control inputs P(s)
u y
z: error signals
y: measured outputs K(s)
z P11 P12:| [W] z = Puw+ P2Ky
= u=K =
[Y} [le Px| |u Y y = Paw+ PnKy

Tow = Fi(P,K) = P11 + P1oK(l — PooK) 1Py

@ P(s), called augmented plant, includes the plant model G(s) and all
weighting filters.

e T,, = F/(P,K) is the transfer function between the error signals z
and external inputs w. In H,/H control problems the objective
is to minimize ||F;(P, K)||.
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Linear Fractional Transformation

Example (Nominal Performance)

Show the nominal performance problem as an LFT (Find the augmented
plant P and F(P,

K)):

z

—

z = Wi(w — Gu)
y=w— Gu

u

W
L

P

T’

Fi(P, K)

—~
T 2\ (Wi —WAG) (w
y) 1 -G u
P11 + PioK(l — PoK) 1Py
Wi+ (-W1G)K(1 + GK) 11
GK W,
i = 1+GK)_ 1+ GK

ws

Remark: The Matlab command P=augw (G, W1) will generate the

augmented plant.
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Linear Fractional Transformation

Example (Robust Performance)

Show the robust performance problem for multiplicative uncertainty as an LFT:

Z1

K|—”—{G}T{WQFS

71 = Wi(w — Gu) z1 Wi iW1G

2 = WsGu (22> = ( 0 WG ) (VD
y=w— Gu y 1 -G
- () (oo (25
e k= ()| =7 (e i)

5P VIWi(jw) (JW)|2 + [Wa(jw) T (jw) 2
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Linear Fractional Transformation

Example (Mixed Sensitivity Problem)

In many practical problems we are interested in shaping three closed-loop
sensitivity functions

Augmented Plant P

ulTLc
L=

The controller K can be found by the following optimization problem:

w7

WS [S(jw)] < AWy (jw)| Ve
WoKS <y = |K(jw)S(jw)| < y|W5*(jw)]| Ve
At e TG < vIWs (jw)| - Ve

Robust Controller Design (Chapter 2) Advanced Control Systems Spring 2025 36/70



H ., Control

State-Space LFT Representation

Consider the system described by:

Al B B
P(S) = C1 0 D12
G| Dy 0 — P(s) -
u y

x(t) = Ax(t)+ Biw(t) + Byu(t)
2(t) = Gx(t) + Diou(t) K(s)
y(t) e C2X(t) aF D21W(t)

Optimal H~ Control: Find all admissible controllers K(s) such that
| Towl|co is minimized.

Suboptimal H., Control: Given v > 0, find all admissible controllers
K(s), if there are any, such that || T, |/co < 7.
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H ., Control

Assumptions:
(A1) (A, Bi, (q) is controllable and observable ; (A, By, (3) is
stabilizable and detectable:
(A2) Ds5 has full column rank and D1 has full row rank.

(A3) A-juwl B has full column rank for all w.
G Do

(A4) [ A _CJWI gl ] has full row rank for all w.
2 il

Assumption (A1)

It is a standard assumption for the existence of a stabilizing controller.
Stabilizable and detectable are weaker conditions than controllable and
observable. If the uncontrollable states are stable the system is stabilizable
and if the unobservable states are stable the system is detectable.
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Ho Control (Assumptions)

Assumption (A2)

If D15 has not full column rank, it means that some control inputs have no direct
effect on the controlled outputs z = Cix + Diou. This makes the problem
singular and cannot be solved. The solution is to add some weighting filters on
these control inputs (even a very small gain to avoid the singularity in the
computations).

If D51 has not full row rank, it means that one of the measured outputs

y = Gox + Dyyw is not directly affected by any of external inputs. This makes the
problem singular and cannot be solved. The solution is to add some external
inputs (noise or disturbance) on all measured output (with a very small gain).

Assumption (A3, A4)

These Assumptions are not satisfied if there are some poles of the plant model or
weighting filters on the imaginary axis. This problem can be solved by a small
perturbation of the poles on the imaginary axis.
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H ., Control

Integrator in the controller

In order to have an integral action in the controller the filter W should include
an integrator. In this case, the sensitivity function S should have a zero at origin
to have || Wi S|/« bounded then K must have a pole at origin. However, this will
violate Assumptions A3 and A4. The remedy is to consider a quasi-integrator in
W, (a pole very close to zero). This will lead to a quasi integrator in the
controller that can be replaced with an integrator.

This problem occurs when we transform a discrete system to a continuous
system. In this case we can solve the problem for Dy, = 0 and compute the
controller Ky and then the final controller is: K = Ko(/ + DapKp) L.

.

Simplifying Assumption

(A5) DL[ G D J=[0 /] and |:DB211:|D2§:|:(I):|
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H ., Control

Under Assumptions Al to A5 for an augmented plant in an LFT
representation, there exists a suboptimal controller such that || T,y ||co < 7y
as:

B A | -12vX)tyd]
KSUb(S) _ |: —BQTX ‘ 0

where:  A=A+~2B1B] X — BBJ X — (I =y 2YX)"'Y (] G.

Moreover, Y = 0 and X = 0 are the solutions to the following Riccati
equations:

XA+ATX + X(v2B1Bf — BB )X +C/ G =0

AY + YAT + Y(v 2/ G - G Q)Y + B1B] =0

that satisfy p(XY) < 2 p(+) = |Amax()|: spectral radius
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H Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Plant Model: Consider an unstable system G,(s) = as the nominal model

s —
with the following multimodel uncertainty:
. _ 2
Extra |ag G]_(S) = (0.065+1)(s—2)
5 e70.025
Time delay: Gy(s) = 2(572)

2500

High frequency resonance: Gsz(s) = {71051 7500)

2
s—2
High frequency resonance: Gy(s) = ﬁ%

Pole/gain migration: Gs(s) = (53';2)
Pole/gain migration: Go(s) = oom)

Control Performance: We should design a controller that stabilizes all plant

models and achieves a closed-loop bandwidth of 10 rad/s.
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H Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Model Uncertainty: The multimodel uncertainty can be converted to
multiplicative uncertainty.

s=tf('s");

Gn = 2/(s-2);

Gl = Gn/(0.06%s+1);

G2 = Gn*(50-s)/(5+50);

G3 = Gnk5072/ (s™2+2%. 1x50%s+50"2) ;
G4 = Gnk7072/ (s™2+2%.2%70%s+70"2) ;
G5 = 2.4/(s-2.2);

= 1.6/(s-1.8);

nominal model

extra lag

time delay (Pade approximation)
high frequency resonance

high frequency resonance
pole/gain migration

pole/gain migration

o o o° of o° o°

D
[=)]
|

o°

o

% command to gather the plant models Gl through G6 into one array.
G = stack(1,G1,G2,G3,G4,G5,G6)
% Try a 4th-order filter W2 for Multiplicative uncertainty:

orderW2 = 4;

Gf = frd(G, logspace(-1,3,60));

[Gu,Info]l = ucover(Gf,Gn,orderW2, 'InputMult');
W2 = Info.W1;

bodemag((Gn-Gf)/Gn, *b——",W2,'r'); grid
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Magnitude (dB)

_40F

_s0[

—60F

-70 -

Robust Controller Design (Chapter 2)

Example (Robust control of a system with multimodel uncertainty)

Model Uncertainty: The multimodel uncertainty can be converted to
multiplicative uncertainty (Wa(s) is computed).

Relative Gaps vs. Magnitude of W2

10' 10° 10°
Frequency (rad/s)
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H Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Wi (s) Filter Design: In order to have a bandwidth of at least wp=10 rad/s and
a modulus margin of bigger than m = 0.5, we choose:

s 2s s+ 10

W:l(s) = = Wi(s) = ——— —
)= e " sr0 )= 35 0.00000)

Mixed Sensitivity Design: In order to obtain the robust performance we
minimize

IIMiS WaT]|lo
Matlab Code:

W1=(s+10)/2/(s+0.000001) ;
K=mixsyn(Gn,W1, [1,W2);
T=feedback(GxK,1);
U=feedback(K,G);

v
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Example (Robust control of a system with multimodel uncertainty)

Controller Validation: The bode diagram of the sensitivity function and the step

responses for control input and plant output are drawn.

Ampiitude

Step Response

L

{

05 1
‘Time (seconds)

Sensitivity function U

10 10?
Frequency (rad/s)

Control signal

04 06
Time (seconds)

Sensitivity function S

10!

"

0 10?
Frequency (rad/s)

The control signal is too large!
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H Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Controller Redesign: We can add a constraint on the magnitude of Z(s) such
that [U(jw)| < |W; !(jw)| for all w. For example if we choose W; !(s) = 15 we
have

Step Response Control signal

Amplitude
Amplitud

Magnitude (d8)
Magnitude (dB)

0 10 10' 02
Frequency (radls) Frequency (rad’s)

W3=1/15; K=mixsyn (Gn,Wl,W3,W2);
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H, Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

H> Controller Design: The same problem can be solved by minimizing
([([WAS WLT  WsU]|2

P=augw (Gn,Wl,W3,W2); K=h2syn (P);
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‘H> and H,, Control

State of the art of robust control methods:

@ H; and Ho control: They minimize the 2- or infinity-norm of one
multivariable transfer function (h2syn, hinfsyn).

@ They lead to high order controllers (order of the augmented plant).
@ We cannot combine 2 and infinity norm for different sensitivity
functions or consider the loopshaping performance.

@ Other methods have been developed and implemented in Matlab:

@ Loopshaping with 1oopsyn (G, Ld) that computes a stabilizing
controller that minimizes ||GK — Lg||o-

@ -Synthesis approach in which a robust controller is designed for an
uncertain model (no need to convert parametric uncertainty to
frequency-domain uncertainty). Like the H., approach || Tow||co is
minimized by a non-convex optimization algorithm (dksyn).

© Mixed H, and Ho, with pole placement constraints (hinfmix).

© Fixed-structure H control using hinfstruc command that designs
low-order controllers by non-smooth optimization algorithms.
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Data-Driven Control

Main properties of data-driven method:

Only the frequency-response data of the system is required (no need
to a parametric model).

Fixed-structure (low-order, centralized, decentralized or distributed)
controller is designed by convex optimization.

Pure time delay (transportation delay or communication delay) is
considered in the design.

Mixed Ho and Ho control can be considered for any sensitivity
function or for open-loop shaping.

Multimodel uncertainty can be directly taken into account.

It can be used for designing discrete- and continuous-time controllers
in the same framework.

The method needs an initial stabilizing controller.

The number of frequency data and the frequency range of interest for
controller design should be chosen with care.
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Data-Driven Control

Consider an LTI-MIMO system with n, inputs and n, outputs and its
frequency response G(e/*) € C™*™ that can be identified from n, sets of
input/output sampled data as:

N—1 ' N—1 . -1
> \Y(k)e—fwTsk] > U(k)e‘f“’Tsk]
k=0 k=0

where N is the number of data points for each experiment. Each column
of U(k) € R™*™ and Y(k) € R™*"™ represents respectively the inputs
and the outputs at sample k from one experiment and T; is the sampling

period. Therefore:
<w< = }

T
Ts Ts

G(e¥) =

wea={u]

For simplicity, we assume that G(e/*) is bounded for all w € Q. This
assumption can be relaxed to include systems with poles on the unit circle.
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Data-Driven Control

A fixed-structure controller is defined as K = XY~ where X and Y are
rational stable matrix transfer functions with bounded infinity norm. X
with dimension n, X n, and Y with dimension n, x n, are affine in the
controller parameters (optimization variables).

Fixed degree controller:

) Fixed order controller:
Polynomial controller

State-space controller
n k
X=3X—2—, o<1  X=G(d-A)B+D
(Z - a)n 1
k=0 Y = C2(ZI = A) B+ D>

n k
z .
Y = Z Yi - @—a)’ Yk diagonal A is stable and
k=0 (A, B) is controllable.
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Data-Driven Control

Centralised, decentralised and distributed fixed degree controller

X1 X2 X3 Yiu Y2 Yi3
X=| Xo1 Xoo Xo3 Y= Ya Yo Y3
X1 X3 X33 Y1 Y32 VY33

Xij, Yjj are discrete-time stable transfer functions.

Example (PID Controller)

Give a controller parametrisation for designing a SISO PID controller:

-1 K,z2—K, Kiz2 + Kyz2 — 2K, K
K(z) = Kyt K + Kot = 1o Ko b Kz Koz DMzt K
z—1 z z(z—1)
X X X 2
(z—a)? (z - a)?

Note that Y(z) is fixed and Xp = Ky, X1 = —K, — 2Ky and X = K, + Ki + K4,
from which we can compute the PID parameters.
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Control Performance
Quadratic Matrix Inequality (QMI)

Consider the application of the Schur Lemma on the following matrix inequalities:

A B ) = ®O-BATIBNO
B* %o = A-B(®*®)"1B* =0

where A € C™" - 0,B,® € C"*" are linear in optimization variables.

QMI Convexification Lemma

The above QMI can be linearized using:

(P—D ) (P—D) =0 = 0= d"d. +PId— dXD,
where @ is any known matrix. Then a sufficient convex condition can be
obtained as an LMI:

A B

B &b, + b — drd, | 7O

The conservatism is reduced if ®. is close to ¢.
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Control Performance

Loop-shaping (oo-norm):

Given a desired open-loop transfer function Ly, compute a controller that
minimizes ||GK — Lg||oo- This is equivalent to minimizing 7 subject to:

[G(e)K(e") - La(e*)[G()K (&) - La(®)]* <7I  VweQ

Replacing K(e/*) with X (€)Y ~1(e/*) in the constraint and dropping (¢/*’), we
obtain:
Yl —(GX = LgY)(Y*Y) HGX — LgY)* =0 VweQ
Using QMI convexification Lemma, a convex optimization problem is obtained:
nin Y

vl GX — LgY

where Y, should be chosen close to Y.
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Control Performance

Loop-shaping (2-norm):

In the same way, minimizing ||GK — L,||3 leads to:

s

mKin/Ts trace](GK — Ly)(GK — Ly)*]dw

T
which is equivalent to minimizing the trace of a matrix I'(w) > 0 that satisfies:
(GK — Lg)(GK — Lg)" <T(w) YweQ

This constraint can be written as: (GX — LgY)(Y*Y) 1(GX — LgY)* < ['(w).
Using QMI convexification Lemma, the following convex optimization problem is
obtained:

n [ ” [(w)]d
)n(u\r)/_Ltrace[ (w)]dw

)
s

M(w) GX — LgY

(GX = LyY) Y*Yo4Yry—yry, |70 e
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Control Performance

‘H, Performance
Consider the following H., problem:

mKin [IWAS |0 where S =(/+GK)!

Ignoring the closed-loop stability, it can be rewritten as the minimization of
under a spectral norm constraint:

(Wi(l + GK) H[Wi(l + GK) 1" <yl YweQ

Replacing K = XY =1 we obtain: W1 Y (Y + GX)7 (Y + GX)~*(WAY)* < ~l.
Then, taking ® = Y + GX, we obtain: W; Y ($*®)~ (W1 Y)* <41,
Choosing ®. = Y. + GX., where K. = X, YC’1 is an initial controller, the H,
control can be written as a convex optimization problem:
Py
~l wry

(WYY oo+ 00—z, | 70 TWERD
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Control Performance

Mixed Sensitivity Performance Consider the following H ., problem:

|| WAS _ _ 1
minl o HOO where U=KS=K(l+ GK)

It can be rewritten as the minimization of v under a spectral norm constraint:
[Wa(l + GK) T [WA(I + GK) ] + [WaK(I + GK) " [WaK (1 + GK) ] <~
Replacing K = XY ! and ® = Y + GX we obtain:

YWyt WLY + X Wyt e X — d*d <0

Using the Schur Lemma we obtain a convex optimization problem:

R
PP+ Prd — D, (WLY)*  (WaX)*
mwY vl 0 >0 Yw € Q
WsX 0 o}
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Control Performance

Ho, Performance

Consider the following #, control problem:
mKin |WAS|13 where S =(/+GK)™!

Ignoring the closed-loop stability, the integral of the trace of I'(w) should be
minimized subject to:

[WA(I + GK) HIWA(I + GK) " < T(w) VYweQ

Replacing K = XY~ and ® = Y + GX in the constraint, we obtain:
WL Y (9*®)~L (W1 Y)* < T(w). Using QMI convexification Lemma, H, control is
converted to the following convex optimization problem:

X’r;17i|_r1(w) /_T; trace[l(w)]dw
Mw) A%

(MAY)* o0+ drd — drd, } S SR
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Robust Stability

Multimodel uncertainty

Suppose that the frequency response of a system in m different operating
points are available:

G(e) € {Gi(e), Go(e), ..., Gm(e/*)}
The robust performance problem for minimzing ||W;S||« is defined as:

min
Y7

)

1 Wy Y o
(WAY)* ®rd, + dLd; — &L b,

for i=1,...,m and Yw € Q

where ®; = Y 4 G;X and &, = Y. + G Xc.
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LFT Framework

2‘7["311 P12]‘7W

Tow = P11+ PoK(l — PyaK) 1Py
Pr1 Pa

y ( W u Assumptions:
K Al: Pi(jw) has full row rank Yw € Q.
A2: P(jw) is bounded Yw € Q.

Al is made to ensure that any possible disturbances have an effect on the
measurements. As a result the right inverse of P,; exists, i.e.

Pg = P;l(Pz;[P;l)_l, such that P21P£ = /.

A2 is not fundamental and can be relaxed if there are poles on the
imaginary axis.

Let's define ® = PR (Y — Px»X), then its left inverse is
oL = (Y — Py X)71Py;. Therefore, denoting W = | — oL = | — PR Py,
we have:

Tow = P1i4P1aX®l = Py (@0l +W)4PpX ol = (Pyd+PoX)dl+P W
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LFT Framework

‘H> and H, Control

Subject to closed-loop stability, the synthesis problem can be written as:

min
KF7

3

Tow (jw) T (jw) < T(jw)
for the Hoo case, I =/ and for the H» case v = [, trace[l (jw)]dw.

The inequality constraint can be written as:

Tow T2, = (P11® + P1oX)(®*0)L(P11d + P X)* + (P V) (P V)
using the fact that ®LY* = oLy = oL — dplodl = 0.
Then using Shur and QMI Lemma, we obtain the following LMI:

Mr— (Pll\U)(Pll\U)* (P11¢ + P12X)

(P + PpoX)* & b+ &b — oz, | 7O
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Closed-loop Stability

Given a generalized plant model P, the controller K = XY ! stabilizes the
closed-loop system if

o
2]

o

det[Y (e/%)] and det[Y.(e/*)] have no zeros on the unit circle.

OO+ PED — PED. >0, YweQ
where ® = P2R1(Y — P»X) and &, = P2"§(YC — Px»Xc) and

Ke = Xe Yc_1 is a stabilizing controller.

First condition can be relaxed with some infinitely small detours on
the Nyquist contour. However there is no need to evaluate ®*®. on
the modified contour because its variation around the zeros of
det[Y(e*)] and det[Y.(e/*)] is small and can be ignored.

The condition ®*®. + ¢7d — ¢Zd. > 0,Vw € Q appears in Ho and
Hoo control LMIs, so it is always satisfied.

For the Proof see the course notes.

Robust Controller Design (Chapter 2) Advanced Control Systems Spring 2025 63 /70



Implementation Issues

Frequency Gridding

The convex constraints should be satisfied Vw € Q = [0 7/ T] which is a
semi-infinite programming. A practical approach is to choose a reasonably
large set of frequency samples Q, = {w1,...,wg} instead.

The convex optimization problem for loopshaping in 2-norm is as follows:

g
i Z trace[l x| Awg
k=1
|: I'k Gka — Ldk Yk :| “ 0
(Gka = Ldk Yk)* Y; Yck + Yg:( Yk - Yc*k Yck

Prde, + L Py - O D, fork=1,...,g

where the subscript k denotes the frequency response at wy, e.g.
Gy = G(eﬂ"k).

Robust Controller Design (Chapter 2)

Advanced Control Systems Spring 2025 64 /70



Implementation Issues

Initial controller

@ For stable systems a very low gain controller will always be stabilizing.

@ For unstable system, we should have a stabilizing controller for data
acquisition in a data-driven setting.

@ It can be shown that starting with any initial stabilizing controller, the
objective will converge to the global optimal solution when the controller
order increases.

Iterative algorithm

@ For fixed-structure controllers, the results depend on the initial controller. In
fact, we choose a convex set around an initial controller and we find the
suboptimal controller in this convex set.

@ The results can be improved if the obtained controller is used as an initial
controller in a second iteration. It can be shown that the solution will
converge to a local optimum of the initial non-convex problem when the
number of iterations goes to infinity. In practice after a few iteration the
result converges to the vicinity of the optimal solution.
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)
Working Principle

G 3 Readout .
d} Transducer |
i
Deflection — i
Setpoint i
|

=

8=

o

G

Z 5

S

Raster Scan > HV
Waveform Ampli_fie r
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)
Working Principle

[imaging |

!

i
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Frequency-domain data: The input is the vertical position of the sample (100
periods of a PRBS) and the output is the deflection of the cantilever. The
sampling frequency is 50 kHz.

Magnitude (dB)

1 kHz 5kHz 10 kHz 20 kHz
Frequency

Control specifications:
e Closed-loop bandwidth of w, = 8kHz.

e No steady-state error and overshoot of less than 5% for step reference.
e A modulus margin of at least 0.5.

e The control signal is limited to 10 v, i.e. |u(t)| < 10.

4
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Design method: Loopshaping with constraints in weighted sensitivity functions

min | GK — La]l
ISl <1 [WoTllw <1 [Waldoo < 1

@ W is chosen for a bandwidth of 8kHz and a modulus margin of 0.5.

W, is chosen to have the same bandwidth and limit the overshoot to 5%
(W, ' is a low-pass filter with cutoff frequency of wy).

@ W3 =cte. is chosen to limit the maximum of the control signal.

Ly = wp/s is chosen.
@ An integrator is fixed in the controller.

@ The initial controller is: K.(z) = 0.001.

@ N = 1000 logarithmically spaced frequency points from 4kHz to 25kHz.
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Convex optimization problem Designed controller
10 ‘
>
min Ik 2
k=1 @
[ Tk Gk Xk — Lay Yi } o 1;, 0L
(kX = Lay Vi)™ Vi Yo, + Y, Y = Yo Yo, E 20| —— Plant
1 W, Y, § Controller
k —40 |
Wi, Y)* 0o +0F b — 0F b }*0 :
[ W12 ke T Pe P = O P 1 kHz 5kHz 10 kHz 20 kHz
! Way CiXi @ Achieved performance
(Wa, GeXi)™ ®fdg + &L & — &7 O 20 ‘ . :
1 Wi, X —~
[ (Wa, Xi)* 0 g, + 0% ) — OF Oy ] =0 g 0
L3
— = L
for k=1....¢ 2 207~ — Constraint
. & — Proposed Controller
10 times faster than a PI S0 PI Controller ¥
controller! 1 kHz 5kHz 10 kHz 20 kHz
v
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