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Introduction to Convex Optimization

The main property of a convex optimization problem is that any local
minimum is a global minimum.

Definition (Convex set)

A set S in a vector space is said to be convex if the line segment between
any two points of the set lies inside the set.

x1, x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S ∀λ ∈ [0 1]
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Introduction to Convex Optimization

Definition (Convex Combination)

Let x1, . . . , xn ∈ S then :

x =
n∑

i=1

λixi with λi ≥ 0 and
n∑

i=1

λi = 1

is called a convex combination of x1, . . . , xn.

Definition (Convex hull)

For any set S in a vector space the convex hull consists of all convex
combinations of the elements of S and is a convex set.

Properties of convex sets

Let S1 and S2 be two convex sets. Then

αS1 = {x |x = αc , c ∈ S1} is convex for any scalar α.

S1 + S2 = {x |x = c1 + c2, c1 ∈ S1, c2 ∈ S2} is convex.

S1 ∩ S2 is convex but S1 ∪ S2 is not necessarily convex.
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Introduction to Convex Optimization

Definition (Convex function)

A function f : S → R is convex if

1 S is a convex set and

2 for all x1, x2 ∈ S and λ ∈ [0 1] there holds that

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)
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Introduction to Convex Optimization

Example

Show that f (x) = x2 with x ∈ R is a convex function.

Solution: It is clear that R is a convex set, so we should show for all
x1, x2 ∈ R and λ ∈ [0 1], it holds that:

[λx1 + (1− λ)x2]
2 ≤ λx21 + (1− λ)x22

In order to show the above, we bring all terms to the left side:

λ2x21 + x22 + λ2x22 − 2λx22 + 2λx1x2 − 2λ2x1x2 − λx21 − x22 + λx22 ≤ 0

(λ2 − λ)x21 − 2(λ2 − λ)x1x2 + (λ2 − λ)x22 ≤ 0

(λ2 − λ)(x1 − x2)
2 ≤ 0

which is always true because (λ2 − λ) ≤ 0 for all λ ∈ [0 , 1].
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Introduction to Convex Optimization

Example

Show that the norm function f (x) = ∥x∥ with x ∈ Rn is a convex function.

Solution: It is clear that Rn is a convex set, so we should show for all
x1, x2 ∈ Rn and λ ∈ [0 1], it holds that:

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

or:
∥λx1 + (1− λ)x2∥ ≤ λ∥x1∥+ (1− λ)∥x2∥

In order to show the above, we use the norm properties:

∥λx1 + (1− λ)x2∥ ≤ ∥λx1∥+ ∥(1− λ)x2∥ (Triangle inequality)

≤ λ∥x1∥+ (1− λ)∥x2∥ (Homogeneity)
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Introduction to Convex Optimization

Convex Functions

f (x) = x2 on R, f (x) = sin x on [π 2π] and f (x) = |x | on R are convex,
but f (x) = −x2 is not convex.

A twice differentiable function is convex if its domain is convex and its
second derivative is non negative.

Example

Is f (x) = log(x) a convex function x ∈ R+?

Solution: No, because f ′(x) = 1/x and f ′′(x) = −1/x2 < 0.

Example

Is f (x) = (x1x2)
−1 a convex function (x ∈ R2 and x1 > 0, x2 > 0)?

Solution: Yes, because

f ′(x) =

[
−1

x21x2

−1

x1x22

]T
and f ′′(x) =

1

x1x2

[
2
x21

1
x1x2

1
x1x2

2
x22

]
≻ 0
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Introduction to Convex Optimization

Convex Functions
1 Linear and affine functions are convex.

2 If f (y) is convex and y = g(x) is linear, f (g(x)) is convex.

3 Convex combination of convex functions is also a convex function.

g =
n∑

i=1

λi fi λi ∈ [0 1] and
n∑

i=1

λi = 1

is convex if f1, . . . , fn are convex functions.

Example

Is f (x) = f1(x)f2(x) a convex function where f1(x) and f2(x) are convex
functions?

Answer: Not necessarily. As a counterexample, take f1(x) = x and
f2(x) = −x that are both linear and so convex, but f (x) = −x2 is not
convex.
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Introduction to Convex Optimization

Links between convex sets and convex functions:

1 Epigraph of a convex function (the set of all points lying on or above
its graph) is a convex set.

2 If f (x) is a convex function, then

D = {x | f (x) ≤ 0} is a convex set

3 If f (x) is a linear function on R then

f (x) ≤ 0, f (x) ≥ 0 and f (x) = 0 define the convex sets.

4 Let f1, . . . , fn be convex functions then

D = {x | fi (x) ≤ 0 for i = 1, . . . , n}

is the intersection of convex sets and defines a convex set.

5 If f (x) is a nonlinear convex function, neither
f (x) ≥ 0 nor −f (x) ≤ 0 defines a convex set.
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Linear Matrix Inequalities

A linear matrix inequality is an expression of the form:

F (x) = F0 +
m∑
i=1

xiFi ≻ 0

x = [x1, . . . , xm] is a vector of m decision variables,

Fi = FT
i ∈ Rn×n, i = 0, . . . ,m,

The special inequality ≻ 0, means positive definite.

Positive definite matrices: Matrix F ≻ 0 if uTFu > 0 for all u ∈ Rn and
u ̸= 0. The following statements are necessary and sufficient for a real
symmetric matrix F to be positive definite:

All eigenvalues of F are positive.

All principal minors of F (det. of principal submatrices) are positive.

If F ≻ 0, then its determinant is positive and all values on the main
diagonal of F are also positive.
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Linear Matrix Inequalities

Further properties of real positive definite matrices:
1 Every positive definite matrix is invertible and the inverse is also

positive definite.
2 If F ≻ 0 and λ > 0 is a real number, then λF ≻ 0.
3 If F ≻ 0 and G ≻ 0 then F + G ≻ 0 and GFG ≻ 0 and FGF ≻ 0 and

tr(FG ) > 0. The product FG is also positive definite if FG = GF .
4 If F ≻ 0 and M has full rank, then MTFM ≻ 0. In the same way. if

F ≺ 0, then MTFM ≺ 0.
5 If F ≻ 0 then there is δ > 0 such that F ⪰ δI (it means that

F − δI ⪰ 0).

Main property: F (x) ≻ 0 and F (x) ≺ 0 define convex sets on x .
For example the set S = {x |F (x) ≻ 0} is convex. It means if x1, x2 ∈ S
and λ ∈ [0 1], then:

F (λx1 + (1− λ)x2) = λF (x1) + (1− λ)F (x2) ≻ 0
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Linear Matrix Inequalities

Many convex sets can be represented by LMI:

x2 > x1

F (x) = [x2 − x1] > 0

x2 > x21

F (x) =

[
1 x1
x1 x2

]
≻ 0

x21 + x22 < 1

F (x) =

 1 x1 x2
x1 1 0
x2 0 1

 ≻ 0

F (x) ≻ 0 can always be represented as an LMI if its elements are affine
w.r.t x .

F (x) =

 1 0 0
0 1 0
0 0 1

+ x1

 0 1 0
1 0 0
0 0 0

+ x2

 0 0 1
0 0 0
1 0 0


Moreover, any matrix inequality which is affine w.r.t F (x) and symmetric
is also an LMI (i.e. AF (x)AT + BBT ≻ 0)
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Linear Matrix Inequalities

Geometry of LMIs: An LMI is the intersection of constraints on some
polynomial functions (the principal minors).

F (x) =

 1− x1 x1 + x2 x1
x1 + x2 2− x1 0

x1 0 1 + x2

 ≻ 0

m1 : 1− x1 > 0
m2 : (1− x1)(2− x1)− (x1 + x2)

2 > 0
m3 : x21 (x2 − 2) + (1 + x2)[(1− x1)(2− x2)− (x1 + x2)

2 > 0

m1 > 0 m2 > 0 m3 > 0
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Linear Matrix Inequalities

Lemma

Schur lemma: If A = AT and C = CT then :

F =

[
A B
BT C

]
≻ 0

⇐⇒ A ≻ 0 and C − BTA−1B ≻ 0
⇐⇒ C ≻ 0 and A− BC−1BT ≻ 0

F =

[
A B
BT C

]
≺ 0

⇐⇒ A ≺ 0 and C − BTA−1B ≺ 0
⇐⇒ C ≺ 0 and A− BC−1BT ≺ 0

C − BTA−1B and A− BC−1BT are called Schur complements.

Proof:[
I −A−1B
0 I

]T [
A B
BT C

] [
I −A−1B
0 I

]
=

[
A 0
0 C − BTA−1B

]
Note that MTFM has the same sign of F if M is nonsingular.
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Introduction to Convex Optimization

Convex optimization problem

min
x

f0(x)

subject to

fi (x) ≤ 0 i = 1, . . . , n fi Convex

gj(x) = 0 j = 1, . . . ,m gj Linear

Linear programming: f0(x) and fi (x) are linear.

Quadratic programming: f0(x) is quadratic, but fi (x) are linear.

Semidefinite programming: f0(x) is linear and the constraints are
symmetric semidefinite matrices (Linear Matrix Inequalities).

Semi-infinite programming: The constraints are defined for a parameter
θ ∈ Θ (number of constraints goes to infinity). This type of
problems is called robust optimization.
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LMIs in Control

Example (Stability analysis)

A continuous-time LTI autonomous system ẋ(t) = Ax(t) is asymptotically
stable ( lim

t→∞
x(t) = 0, ∀x0 ̸= 0) iff there exists a quadratic Lyapunov

function V (x) = xTPx such that:

V (x) > 0 and V̇ (x) < 0

These two conditions are verified iff there exists a symmetric matrix
P ≻ 0 such that

V̇ (x) = ẋTPx + xTPẋ = xT (ATP + PA)x < 0

This is equivalent to the feasibility of the following LMI:[
P 0
0 −(ATP + PA)

]
≻ 0
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LMIs in Control

Question (Stability of discrete-time systems)

Consider an autonomous discrete-time LTI system x(k + 1) = Ax(k).
Define a Lyapunov function V (k) = xT (k)Px(k) with P ≻ 0. Represent
the stability condition by an LMI.

Solution: The system is stable if V (k + 1)− V (k) < 0. We have:

V (k + 1)− V (k) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

= xT (k)ATPAx(k)− xT (k)Px(k)

= xT (k)[ATPA− P]x(k)

Therefore, ATPA− P should be negative definite. The stability condition
in LMI form is: [

P 0
0 P − ATPA

]
≻ 0
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LMIs in Control

Example (Stability of polytopic systems)

Consider the LTI system ẋ(t) = Ax(t) where A ∈ co{A1, . . . ,AN}.
This system is quadratically stable iff there exists P ≻ 0 such that :

AT
i P + PAi ≺ 0 ∀i ∈ [1 N]

Proof: We know that :

co{A1, . . . ,AN} =

{
A

∣∣∣∣∣A(λ) =
N∑
i=1

λiAi , λi ≥ 0 and
N∑
i=1

λi = 1

}

On the other hand :
N∑
i=1

λi (A
T
i P + PAi ) = AT (λ)P + PA(λ) ≺ 0

Stability of a polytopic system is ensured by stability of its vertices.

Quadratic stability guarantees stability for fast parameter variations.

Quadratic stability condition is too conservative for robust stability.

Robust Controller Design (Chapter 2) Advanced Control Systems Spring 2025 18 / 70



LMIs in Control

Stability of polytopic systems

Consider the discrete-time LTI system with polytopic uncertainty as
x(k + 1) = A(λ)x(k) where A(λ) =

∑N
i=1 λiAi , λ ≥ 0 and

∑N
i=1 λi = 1.

Show that this system is quadratically stable iff there exists P ≻ 0 such
that : AT

i PAi − P ≺ 0 ∀i ∈ [1 N].

Proof: The stability condition for Ai can be reformulated using the Schur
Lemma as the following matrix inequality:[

P AT
i

Ai P−1

]
≻ 0

If we multiply the inequality by λi and take the sum over i , we have:[ ∑N
i=1 λiP

∑N
i=1 λiA

T
i∑N

i=1 λiAi
∑N

i=1 λiP
−1

]
=

[
P AT (λ)

A(λ) P−1

]
≻ 0

That is equivalent to AT (λ)PA(λ)− P ≺ 0.
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LMIs in Control

Bounded Real Lemma

Let γ > 0 and G (s) =

[
A B

C D

]
, then ∥G∥∞ < γ if and only if there

exists P ≻ 0 such that[
ATP + PA PB

BTP −γ2I

]
+

[
CT

DT

] [
C D

]
≺ 0

Proof:

If u is the input and y the output of G then the infinity norm can be
defined as the supremum of the two-norm gain:

∥G∥∞ = sup
u

∥y∥2
∥u∥2

The state space representation of G is given by:

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) x(0) = 0
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LMIs in Control

Proof of Bounded Real Lemma

We prove only the sufficient condition. The LMI implies:[
x(t)
u(t)

]T {[
ATP + PA PB

BTP −γ2I

]
+

[
CT

DT

] [
C D

]} [
x(t)
u(t)

]
< 0

[
x(t)
u(t)

]T [
ATP + PA PB

BTP −γ2I

] [
x(t)
u(t)

]
+[Cx(t) + Du(t)︸ ︷︷ ︸

y(t)

]T [Cx(t) + Du(t)] < 0

⇒ xT (ATP + PA)x + xTPBu + uTBTPx − γ2uTu + yT y < 0

⇒ (Ax + Bu)TPx + xTP(Ax + Bu)− γ2uTu + yT y < 0
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LMIs in Control

Proof of Bounded Real Lemma

Taking a Lyapunov function V (x) = xTPx , we have
V̇ (x) = ẋTPx + xTPẋ and:

V̇ (x)− γ2uTu + yT y < 0

Taking the integral of the above inequality we obtain:∫ ∞

0
V̇ (x)dt − γ2

∫ ∞

0
uTudt +

∫ ∞

0
yT ydt < 0

V (x(∞))− V (x(0))− γ2∥u∥22 + ∥y∥22 < 0

Since ATP + PA ≺ 0 from the LMI in the lemma, G is stable and
x(∞) = x(0) = 0 that leads to V (x(∞)) = V (x(0)) = 0. Therefore:

∥y∥22
∥u∥22

< γ2 ∀u ⇒ sup
u

∥y∥2
∥u∥2

< γ ⇒ ∥G∥∞ < γ
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LMIs in Control

Example (Computing H∞ norm by convex optimization)

Using the bounded real lemma for a strictly proper system (D = 0), we
should minimize γ2 ( the square of the ∞-norm) such that:[

ATP + PA+ CTC PB
BTP −γ2I

]
≺ 0

The nonlinearity in γ2 can be fixed by change of variable to convert the
above inequality to an LMI.

This problem can be solved by the following YALMIP code:
gamma2=sdpvar(1,1);
P=sdpvar(n,n,'symmetric');
lmi=[A'*P+P*A+C'*C P*B; B'*P −gamma2*eye(n)]<0;
lmi=[lmi, P>0];
options=sdpsettings('solver','mosek');
optimize(lmi,gamma2,options);
gamma=sqrt(value(gamma2))
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H∞ state feedback control

Problem: Given a controllable representation of the plant model:

G (s) =

[
A B

C 0

]
Compute a state feedback controller K such that the H∞-norm of the
closed-loop system from an input disturbance v(t) to the output is
minimized.

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
u(t) = v(t)− Kx(t)

⇒ ẋ(t) = (A− BK )x(t) + Bv(t)
y(t) = Cx(t)

Solution: Using the bounded real lemma (and applying the Schur
lemma) we have :

(A− BK )TP + P(A− BK ) + CTC + PBγ−2BTP ≺ 0

which is not an LMI.
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H∞ state feedback control

Now, multiply the inequality from left and right by X = γ2P−1:

X (A− BK )Tγ2 + γ2(A− BK )X + γ2BBT + XCTCX ≺ 0

Denoting Y = KX and multiplying by γ−2, we derive:

XAT + AX − Y TBT − BY + BBT + XCTγ−2CX ≺ 0

This matrix inequality can be converted to an LMI using the Schur
lemma:[

XAT + AX − Y TBT − BY + BBT XCT

CX −γ2I

]
≺ 0, X ≻ 0

After minimizing γ2 subject to the above LMI constraints the state
feedback controller is computed by K = YX−1.
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Computing H2 norm

Lemma (H2 norm by SDP)

Let G (s) be a strictly proper stable transfer function with a state-space
representation (A,B,C , 0). Then ∥G∥22 = trace[CL◦CT ] where L◦ is the
optimal solution to the following SDP problem:

min
L

trace[CLCT ]

AL+ LAT + BBT ⪯ 0 ; L ≻ 0 (1)

Proof: Let L∗ ≻ 0 be the unique solution to AL+ LAT + BBT = 0. Since
L∗ satisfies the equality, it also satisfies the inequality in (1). Therefore,
trace(CL◦CT ) ≤ trace(CL∗CT ), which implies trace(C (L◦ − L∗)CT ) ≤ 0
and hence L◦ − L∗ ⪯ 0. On the other hand, subtracting
AL+ LAT + BBT = 0 from (1) yeilds A(L◦ − L∗) + (L◦ − L∗)AT ⪯ 0. By
stability of A, this implies L◦ − L∗ ⪰ 0 . Combining both inequalities, we
conclude L◦ − L∗ = 0, i.e. L◦ = L∗, which complete the proof.
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Computing H2 norm

Example (Computing H2 norm by convex optimization)

the 2-norm of a transfer function can be obtained by the following SDP
problem:

min
L

trace[CLCT ]

AL+ LAT + BBT ⪯ 0 ; L ≻ 0

This can be coded using Yalmip as follows:
L=sdpvar(n,n,'symmetric');

lmi=A*L+L*A'+B*B' ≤0;

lmi=[lmi, L>0];

options=sdpsettings('solver','mosek');

optimize(lmi,trace(C*L*C'),options);

L=value(L);

H2Norm=sqrt(trace(C*L*C'))
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H2 state feedback control

Problem: Given a controllable representation of the plant model:

G (s) =

[
A B

C 0

]
Compute a state feedback controller K such that the two norm of the
closed-loop system from the input disturbance to the output is minimized.

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
u(t) = v(t)− Kx(t)

⇒ ẋ(t) = (A− BK )x(t) + Bv(t)
y(t) = Cx(t)

Solution: The two-norm minimization can be converted to a convex
optimization problem.

min tr(CLCT )

(A− BK )L+ L(A− BK )T + BBT ⪯ 0 ; L ≻ 0

The inequality can be converted to an LMI denoting Y = KL:

AL+ LAT − BY − Y TBT + BBT ⪯ 0
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H∞ state feedback control

Example (State disturbance rejection:)

Consider a controllable state-space model of a system as:

ẋ(t) = Ax(t) + B1u(t) + B2w(t)
y(t) = Cx(t)

Design a state feedback controller that minimizes the infinity-norm of the transfer
function between w(t) and [y(t) ; u(t)].
Solution:

Replace u(t) = −Kx(t) to find the closed-loop state-space model as:

ẋ(t) = (A− B1K )x(t) + B2w(t)
y(t) = Cx(t)
u(t) = −Kx(t)

Define a new output variable z(t) = [y(t) ; u(t)] as one performance
output. The output equation of the closed-loop system will be:

z(t) =

[
C
−K

]
x(t)
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H∞ state feedback control

Example (State disturbance rejection:)

Apply bounded real lemma to the closed-loop state-space model (P ≻ 0):

(A− B1K )TP + P(A− B1K ) + CTC + KTK + PB2(γ
−2)BT

2 P ≺ 0

Which is not an LMI.

Multiply from left and right by X = γ2P−1, and define a new variable
Y = KX and multiply the whole inequality by γ−2 to obtain:

XAT − Y TBT
1 + AX − B1Y + XCTγ−2CX + Y Tγ−2Y + B2B

T
2 ≺ 0

Which can be rewritten as:

XAT + AX − Y TBT
1 − B1Y + B2B

T
2

−
[
XCT Y T

] [ −γ2I 0
0 −γ2I

]−1 [
XCT Y T

]T ≺ 0
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H∞ state feedback control

Example (State disturbance rejection:)

Which can be rewritten as:

XAT + AX − Y TBT
1 − B1Y + B2B

T
2

−
[
XCT Y T

] [ −γ2I 0
0 −γ2I

]−1 [
XCT Y T

]T ≺ 0

Then apply Schur Lemma to find the following LMI: XAT + AX − Y TBT
1 − B1Y + B2B

T
2 XCT Y T

CX −γ2I 0
Y 0 −γ2I

 ≺ 0 , X ≻ 0

The final state feedback controller that achieve this performance is
K = YX−1.
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H2/H∞ output feedback control

In many systems the states are not all available/measurable.

The feedback controller has access only to the measurable states
(outputs).

A state observer/estimator should be used.

Only one transfer function can be minimized.

The feedback system should be rearranged to consider all robust
stability and performance in ONE transfer function.

Linear Fractional Transformation (LFT) is used to rearrange the
feedback system.
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Linear Fractional Transformation

A feedback control system can be rearranged as an LFT:

w : all external inputs

u: control inputs

z : error signals

y : measured outputs

P(s)

K (s)

-
--

�

u y

w z

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
u = Ky ⇒ z = P11w + P12Ky

y = P21w + P22Ky

Tzw = Fl(P,K ) = P11 + P12K (I − P22K )−1P21

P(s), called augmented plant, includes the plant model G (s) and all
weighting filters.
Tzw = Fl(P,K ) is the transfer function between the error signals z
and external inputs w . In H2/H∞ control problems the objective
is to minimize ∥Fl(P,K )∥.
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Linear Fractional Transformation

Example (Nominal Performance)

Show the nominal performance problem as an LFT (Find the augmented
plant P and Fl(P,K )):

z = W1(w − Gu)
y = w − Gu

(
z
y

)
=

P︷ ︸︸ ︷(
W1 −W1G
1 −G

)(
w
u

)
Fl(P,K ) = P11 + P12K (I − P22K )−1P21

= W1 + (−W1G )K (1 + GK )−11

= W1(1−
GK

1 + GK
) =

W1

1 + GK
= W1S

Remark: The Matlab command P=augw(G,W1) will generate the
augmented plant.
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Linear Fractional Transformation

Example (Robust Performance)

Show the robust performance problem for multiplicative uncertainty as an LFT:

z1 = W1(w − Gu)
z2 = W2Gu
y = w − Gu

z1
z2
y

 =

P︷ ︸︸ ︷W1 −W1G
0 W2G
1 −G

(
w
u

)

Fl(P,K ) =

(
W1

0

)
+

(
−W1G
W2G

)
K (1 + GK )−1 =

(
W1S
W2T

)
∥Fl(P,K )∥∞ =

∥∥∥∥(W1S
W2T

)∥∥∥∥
∞

= sup
ω

σ̄

(
W1(jω)S(jω)
W2(jω)T (jω)

)
= sup

ω

√
|W1(jω)S(jω)|2 + |W2(jω)T (jω)|2
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Linear Fractional Transformation

Example (Mixed Sensitivity Problem)

In many practical problems we are interested in shaping three closed-loop
sensitivity functions

The controller K can be found by the following optimization problem:

min
K ,γ

γ∥∥∥∥∥∥
 W1S

W2KS
W3T

∥∥∥∥∥∥
∞

< γ ⇒
|S(jω)| < γ|W−1

1 (jω)| ∀ω
|K (jω)S(jω)| < γ|W−1

2 (jω)| ∀ω
|T (jω)| < γ|W−1

3 (jω)| ∀ω
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H∞ Control

State-Space LFT Representation

Consider the system described by:

P(s) =

 A B1 B2

C1 0 D12

C2 D21 0


ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D21w(t)

P(s)

K (s)

-
--

�

u y

w z

H∞ Control:

Optimal H∞ Control: Find all admissible controllers K (s) such that
∥Tzw∥∞ is minimized.

Suboptimal H∞ Control: Given γ > 0, find all admissible controllers
K (s), if there are any, such that ∥Tzw∥∞ < γ.
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H∞ Control

Assumptions:

(A1) (A,B1,C1) is controllable and observable ; (A,B2,C2) is
stabilizable and detectable:

(A2) D12 has full column rank and D21 has full row rank.

(A3)

[
A− jωI B2

C1 D12

]
has full column rank for all ω.

(A4)

[
A− jωI B1

C2 D21

]
has full row rank for all ω.

Assumption (A1)

It is a standard assumption for the existence of a stabilizing controller.
Stabilizable and detectable are weaker conditions than controllable and
observable. If the uncontrollable states are stable the system is stabilizable
and if the unobservable states are stable the system is detectable.
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H∞ Control (Assumptions)

Assumption (A2)

If D12 has not full column rank, it means that some control inputs have no direct
effect on the controlled outputs z = C1x + D12u. This makes the problem
singular and cannot be solved. The solution is to add some weighting filters on
these control inputs (even a very small gain to avoid the singularity in the
computations).

If D21 has not full row rank, it means that one of the measured outputs
y = C2x +D21w is not directly affected by any of external inputs. This makes the
problem singular and cannot be solved. The solution is to add some external
inputs (noise or disturbance) on all measured output (with a very small gain).

Assumption (A3, A4)

These Assumptions are not satisfied if there are some poles of the plant model or
weighting filters on the imaginary axis. This problem can be solved by a small
perturbation of the poles on the imaginary axis.
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H∞ Control

Integrator in the controller

In order to have an integral action in the controller the filter W1 should include
an integrator. In this case, the sensitivity function S should have a zero at origin
to have ∥W1S∥∞ bounded then K must have a pole at origin. However, this will
violate Assumptions A3 and A4. The remedy is to consider a quasi-integrator in
W1 (a pole very close to zero). This will lead to a quasi integrator in the
controller that can be replaced with an integrator.

D22 ̸= 0

This problem occurs when we transform a discrete system to a continuous
system. In this case we can solve the problem for D22 = 0 and compute the
controller K0 and then the final controller is: K = K0(I + D22K0)

−1.

Simplifying Assumption

(A5) DT
12

[
C1 D12

]
=

[
0 I

]
and

[
B1

D21

]
DT

21 =

[
0
I

]
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H∞ Control

Theorem

Under Assumptions A1 to A5 for an augmented plant in an LFT
representation, there exists a suboptimal controller such that ∥Tzw∥∞ < γ
as:

Ksub(s) =

[
Â (I − γ−2YX )−1YCT

2

−BT
2 X 0

]
where: Â = A+ γ−2B1B

T
1 X − B2B

T
2 X − (I − γ−2YX )−1YCT

2 C2.

Moreover, Y ≻ 0 and X ≻ 0 are the solutions to the following Riccati
equations:

XA+ ATX + X (γ−2B1B
T
1 − B2B

T
2 )X + CT

1 C1 = 0

AY + YAT + Y (γ−2CT
1 C1 − CT

2 C2)Y + B1B
T
1 = 0

that satisfy ρ(XY ) < γ2 ρ(·) = |λmax(·)|: spectral radius
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H∞ Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Plant Model: Consider an unstable system Gn(s) =
2

s − 2
as the nominal model

with the following multimodel uncertainty:

Extra lag: G1(s) =
2

(0.06s+1)(s−2)

Time delay: G2(s) =
2e−0.02s

(s−2)

High frequency resonance: G3(s) =
2

s−2
2500

(s2+10s+2500)

High frequency resonance: G4(s) =
2

s−2
4900

(s2+28s+4900)

Pole/gain migration: G5(s) =
2.4

(s−2.2)

Pole/gain migration: G6(s) =
1.6

(s−1.8)

Control Performance: We should design a controller that stabilizes all plant
models and achieves a closed-loop bandwidth of 10 rad/s.
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H∞ Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Model Uncertainty: The multimodel uncertainty can be converted to
multiplicative uncertainty.
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H∞ Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Model Uncertainty: The multimodel uncertainty can be converted to
multiplicative uncertainty (W2(s) is computed).
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H∞ Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

W1(s) Filter Design: In order to have a bandwidth of at least ωb=10 rad/s and
a modulus margin of bigger than m = 0.5, we choose:

W−1
1 (s) =

s

m(s + ωb)
=

2s

s + 10
⇒ W1(s) =

s + 10

2(s + 0.00001)

Mixed Sensitivity Design: In order to obtain the robust performance we
minimize

∥[W1S W2T ]∥∞
Matlab Code:
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H∞ Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Controller Validation: The bode diagram of the sensitivity function and the step
responses for control input and plant output are drawn.
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The control signal is too large!
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H∞ Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

Controller Redesign: We can add a constraint on the magnitude of U(s) such
that |U(jω)| < |W−1

3 (jω)| for all ω. For example if we choose W−1
3 (s) = 15 we

have
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W3=1/15; K=mixsyn(Gn,W1,W3,W2);
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H2 Control (example from Matlab toolbox)

Example (Robust control of a system with multimodel uncertainty)

H2 Controller Design: The same problem can be solved by minimizing

∥[W1S W2T W3U ]∥2
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P=augw(Gn,W1,W3,W2); K=h2syn(P);
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H2 and H∞ Control

State of the art of robust control methods:

H2 and H∞ control: They minimize the 2- or infinity-norm of one
multivariable transfer function (h2syn, hinfsyn).

1 They lead to high order controllers (order of the augmented plant).
2 We cannot combine 2 and infinity norm for different sensitivity

functions or consider the loopshaping performance.

Other methods have been developed and implemented in Matlab:

1 Loopshaping with loopsyn(G,Ld) that computes a stabilizing
controller that minimizes ∥GK − Ld∥∞.

2 µ-Synthesis approach in which a robust controller is designed for an
uncertain model (no need to convert parametric uncertainty to
frequency-domain uncertainty). Like the H∞ approach ∥Tzw∥∞ is
minimized by a non-convex optimization algorithm (dksyn).

3 Mixed H2 and H∞ with pole placement constraints (hinfmix).
4 Fixed-structure H∞ control using hinfstruc command that designs

low-order controllers by non-smooth optimization algorithms.
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Data-Driven Control

Main properties of data-driven method:

Only the frequency-response data of the system is required (no need
to a parametric model).

Fixed-structure (low-order, centralized, decentralized or distributed)
controller is designed by convex optimization.

Pure time delay (transportation delay or communication delay) is
considered in the design.

Mixed H2 and H∞ control can be considered for any sensitivity
function or for open-loop shaping.

Multimodel uncertainty can be directly taken into account.

It can be used for designing discrete- and continuous-time controllers
in the same framework.

The method needs an initial stabilizing controller.

The number of frequency data and the frequency range of interest for
controller design should be chosen with care.
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Data-Driven Control

Plant

Consider an LTI-MIMO system with nu inputs and ny outputs and its
frequency response G (e jω) ∈ Cny×nu that can be identified from nu sets of
input/output sampled data as:

G (e jω) =

[
N−1∑
k=0

Y(k)e−jωTsk

][
N−1∑
k=0

U(k)e−jωTsk

]−1

where N is the number of data points for each experiment. Each column
of U(k) ∈ Rnu×nu and Y(k) ∈ Rny×nu represents respectively the inputs
and the outputs at sample k from one experiment and Ts is the sampling
period. Therefore:

ω ∈ Ω =

{
ω

∣∣∣∣− π

Ts
≤ ω ≤ π

Ts

}
For simplicity, we assume that G (e jω) is bounded for all ω ∈ Ω. This
assumption can be relaxed to include systems with poles on the unit circle.
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Data-Driven Control

Controller

A fixed-structure controller is defined as K = XY−1 where X and Y are
rational stable matrix transfer functions with bounded infinity norm. X
with dimension nu × ny and Y with dimension ny × ny are affine in the
controller parameters (optimization variables).

Example

Fixed degree controller:
Polynomial controller

X =
n∑

k=0

Xk ·
zk

(z − α)n
, |α| < 1

Y =
n∑

k=0

Yk ·
zk

(z − α)n
, Yk diagonal

Fixed order controller:
State-space controller

X = C1(zI − A)−1B + D1

Y = C2(zI − A)−1B + D2

A is stable and
(A,B) is controllable.
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Data-Driven Control

Centralised, decentralised and distributed fixed degree controller

X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 Y =

 Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33


Xij ,Yij are discrete-time stable transfer functions.

Example (PID Controller)

Give a controller parametrisation for designing a SISO PID controller:

K (z) = Kp + Ki
z

z − 1
+ Kd

z − 1

z
=

Kpz
2 − Kpz + Kiz

2 + Kdz
2 − 2Kdz + Kd

z(z − 1)

We take X (z) =
X0 + X1z + X2z

2

(z − α)2
and Y (z) =

z2 − z

(z − α)2
.

Note that Y (z) is fixed and X0 = Kd ,X1 = −Kp − 2Kd and X2 = Kp + Ki + Kd ,
from which we can compute the PID parameters.

Centralised controller

X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 Y =

 Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33


Xij ,Yij are discrete-time stable transfer functions. Decentralized controller

X =

 X11 0 0
0 X22 0
0 0 X33

 Y =

 Y11 0 0
0 Y22 0
0 0 Y33


Xij ,Yij are discrete-time stable transfer functions. Distributed controller

X =

 X11 0 X13

0 X22 0
X31 0 X33

 Y =

 Y11 0 0
0 Y22 0
0 0 Y33


Xij ,Yij are discrete-time stable transfer functions.

Example (PID Controller)

Give a controller parametrisation for designing a SISO PID controller:

K (z) = Kp + Ki
z

z − 1
+ Kd

z − 1

z
=

Kpz
2 − Kpz + Kiz

2 + Kdz
2 − 2Kdz + Kd

z(z − 1)

We take X (z) =
X0 + X1z + X2z

2

(z − α)2
and Y (z) =

z2 − z

(z − α)2
.

Note that Y (z) is fixed and X0 = Kd ,X1 = −Kp − 2Kd and X2 = Kp + Ki + Kd ,
from which we can compute the PID parameters.
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Control Performance

Quadratic Matrix Inequality (QMI)

Consider the application of the Schur Lemma on the following matrix inequalities:[
A B
B∗ Φ∗Φ

]
≻ 0

⇐⇒ Φ∗Φ− B∗A−1B ≻ 0
⇐⇒ A− B(Φ∗Φ)−1B∗ ≻ 0

where A ∈ Cn×n ≻ 0,B,Φ ∈ Cn×n are linear in optimization variables.

QMI Convexification Lemma
The above QMI can be linearized using:

(Φ− Φc)
∗(Φ− Φc) ⪰ 0 ⇒ Φ∗Φ ⪰ Φ∗Φc +Φ∗

cΦ− Φ∗
cΦc

where Φc is any known matrix. Then a sufficient convex condition can be
obtained as an LMI:[

A B
B∗ Φ∗Φc +Φ∗

cΦ− Φ∗
cΦc

]
≻ 0

The conservatism is reduced if Φc is close to Φ.
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Control Performance

Loop-shaping (∞-norm):

Given a desired open-loop transfer function Ld , compute a controller that
minimizes ∥GK − Ld∥∞. This is equivalent to minimizing γ subject to:

[G (e jω)K (e jω)− Ld(e
jω)][G (e jω)K (e jω)− Ld(e

jω)]∗ ≺ γI ∀ω ∈ Ω

Replacing K (e jω) with X (e jω)Y−1(e jω) in the constraint and dropping (e jω), we
obtain:

γI − (GX − LdY )(Y ∗Y )−1(GX − LdY )∗ ≻ 0 ∀ω ∈ Ω

Using QMI convexification Lemma, a convex optimization problem is obtained:

min
X ,Y

γ[
γI GX − LdY

(GX − LdY )∗ Y ∗Yc + Y ∗
c Y − Y ∗

c Yc

]
≻ 0 ∀ω ∈ Ω

where Yc should be chosen close to Y .
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Control Performance

Loop-shaping (2-norm):

In the same way, minimizing ∥GK − Ld∥22 leads to:

min
K

∫ π
Ts

− π
Ts

trace[(GK − Ld)(GK − Ld)
∗]dω

which is equivalent to minimizing the trace of a matrix Γ(ω) ≻ 0 that satisfies:

(GK − Ld)(GK − Ld)
∗ ≺ Γ(ω) ∀ω ∈ Ω

This constraint can be written as: (GX − LdY )(Y ∗Y )−1(GX − LdY )∗ ≺ Γ(ω).
Using QMI convexification Lemma, the following convex optimization problem is
obtained:

min
X ,Y

∫ π
Ts

− π
Ts

trace[Γ(ω)]dω

[
Γ(ω) GX − LdY

(GX − LdY )∗ Y ∗Yc + Y ∗
c Y − Y ∗

c Yc

]
≻ 0 ∀ω ∈ Ω
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Control Performance

H∞ Performance

Consider the following H∞ problem:

min
K

∥W1S∥∞ where S = (I + GK )−1

Ignoring the closed-loop stability, it can be rewritten as the minimization of γ
under a spectral norm constraint:

[W1(I + GK )−1][W1(I + GK )−1]∗ ≺ γI ∀ω ∈ Ω

Replacing K = XY−1 we obtain: W1Y (Y + GX )−1[(Y + GX )−1]∗(W1Y )∗ ≺ γI .
Then, taking Φ = Y + GX , we obtain: W1Y (Φ∗Φ)−1(W1Y )∗ ≺ γI .
Choosing Φc = Yc + GXc , where Kc = XcY

−1
c is an initial controller, the H∞

control can be written as a convex optimization problem:

min
X ,Y

γ[
γI W1Y

(W1Y )∗ Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc

]
≻ 0 ∀ω ∈ Ω
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Control Performance
Mixed Sensitivity Performance Consider the following H∞ problem:

min
K

∥∥∥∥ W1S
W2U

∥∥∥∥
∞

where U = KS = K (I + GK )−1

It can be rewritten as the minimization of γ under a spectral norm constraint:

[W1(I + GK )−1]∗[W1(I + GK )−1] + [W2K (I + GK )−1]∗[W2K (I + GK )−1] ≺ γI

Replacing K = XY−1 and Φ = Y + GX we obtain:

Y ∗W ∗
1 γ

−1W1Y + X ∗W ∗
2 γ

−1W2X − Φ∗Φ ≺ 0

Using the Schur Lemma we obtain a convex optimization problem:

min
X ,Y

γ Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc (W1Y )∗ (W2X )∗

W1Y γI 0
W2X 0 γI

 ≻ 0 ∀ω ∈ Ω
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Control Performance

H2 Performance

Consider the following H2 control problem:

min
K

∥W1S∥22 where S = (I + GK )−1

Ignoring the closed-loop stability, the integral of the trace of Γ(ω) should be
minimized subject to:

[W1(I + GK )−1][W1(I + GK )−1]∗ ≺ Γ(ω) ∀ω ∈ Ω

Replacing K = XY−1 and Φ = Y + GX in the constraint, we obtain:
W1Y (Φ∗Φ)−1(W1Y )∗ ≺ Γ(ω). Using QMI convexification Lemma, H2 control is
converted to the following convex optimization problem:

min
X ,Y ,Γ(ω)

∫ π
Ts

− π
Ts

trace[Γ(ω)]dω

[
Γ(ω) W1Y

(W1Y )∗ Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc

]
≻ 0, ∀ω ∈ Ω
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Robust Stability

Multimodel uncertainty

Suppose that the frequency response of a system in m different operating
points are available:

G (e jω) ∈ {G1(e
jω),G2(e

jω), . . . ,Gm(e
jω)}

The robust performance problem for minimzing ∥W1S∥∞ is defined as:

min
X ,Y

γ

[
γI W1Y

(W1Y )∗ Φ∗
i Φci +Φ∗

ci
Φi − Φ∗

ci
Φci

]
≻ 0

for i = 1, . . . ,m and ∀ω ∈ Ω

where Φi = Y + GiX and Φci = Yc + GiXc .
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LFT Framework

[
P11 P12

P21 P22

]
z w

K

y u

Tzw = P11 + P12K (I − P22K )−1P21

Assumptions:
A1: P21(jω) has full row rank ∀ω ∈ Ω.
A2: P(jω) is bounded ∀ω ∈ Ω.

A1 is made to ensure that any possible disturbances have an effect on the
measurements. As a result the right inverse of P21 exists, i.e.
PR
21 = P∗

21(P21P
∗
21)

−1, such that P21P
R
21 = I .

A2 is not fundamental and can be relaxed if there are poles on the
imaginary axis.

Let’s define Φ = PR
21(Y − P22X ), then its left inverse is

ΦL = (Y − P22X )−1P21. Therefore, denoting Ψ = I − ΦΦL = I − PR
21P21,

we have:

Tzw = P11+P12XΦL = P11(ΦΦ
L+Ψ)+P12XΦL = (P11Φ+P12X )ΦL+P11Ψ
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LFT Framework

H2 and H∞ Control

Subject to closed-loop stability, the synthesis problem can be written as:

min
K ,Γ

γ

Tzw (jω)T
∗
zw (jω) ≺ Γ(jω)

for the H∞ case, Γ = γI and for the H2 case γ =
∫
Ω trace[Γ(jω)]dω.

The inequality constraint can be written as:

TzwT
∗
zw = (P11Φ+ P12X )(Φ∗Φ)L(P11Φ+ P12X )∗ + (P11Ψ)(P11Ψ)∗

using the fact that ΦLΨ∗ = ΦLΨ = ΦL − ΦLΦΦL = 0.
Then using Shur and QMI Lemma, we obtain the following LMI:[

Γ− (P11Ψ)(P11Ψ)∗ (P11Φ+ P12X )
(P11Φ+ P12X )∗ Φ∗Φc +Φ∗

cΦ− Φ∗
cΦc

]
≻ 0
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Closed-loop Stability

Theorem

Given a generalized plant model P, the controller K = XY−1 stabilizes the
closed-loop system if

1 det[Y (e jω)] and det[Yc(e
jω)] have no zeros on the unit circle.

2 Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc > 0, ∀ω ∈ Ω
where Φ = PR

21(Y − P22X ) and Φc = PR
21(Yc − P22Xc) and

3 Kc = XcY
−1
c is a stabilizing controller.

First condition can be relaxed with some infinitely small detours on
the Nyquist contour. However there is no need to evaluate Φ∗Φc on
the modified contour because its variation around the zeros of
det[Y (e jω)] and det[Yc(e

jω)] is small and can be ignored.

The condition Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc > 0,∀ω ∈ Ω appears in H2 and
H∞ control LMIs, so it is always satisfied.

For the Proof see the course notes.
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Implementation Issues

Frequency Gridding

The convex constraints should be satisfied ∀ω ∈ Ω = [0 π/Ts ] which is a
semi-infinite programming. A practical approach is to choose a reasonably
large set of frequency samples Ωg = {ω1, . . . , ωg} instead.

Example

The convex optimization problem for loopshaping in 2-norm is as follows:

min
X ,Y

g∑
k=1

trace[Γk ]∆ωk

[
Γk GkXk − LdkYk

(GkXk − LdkYk)
∗ Y ∗

k Yck + Y ∗
ck
Yk − Y ∗

ck
Yck

]
≻ 0

Φ∗
kΦck +Φ∗

ck
Φk ≻ Φ∗

ck
Φck for k = 1, . . . , g

where the subscript k denotes the frequency response at ωk , e.g.
Gk = G (e jωk ).
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Implementation Issues

Initial controller
For stable systems a very low gain controller will always be stabilizing.

For unstable system, we should have a stabilizing controller for data
acquisition in a data-driven setting.

It can be shown that starting with any initial stabilizing controller, the
objective will converge to the global optimal solution when the controller
order increases.

Iterative algorithm

For fixed-structure controllers, the results depend on the initial controller. In
fact, we choose a convex set around an initial controller and we find the
suboptimal controller in this convex set.

The results can be improved if the obtained controller is used as an initial
controller in a second iteration. It can be shown that the solution will
converge to a local optimum of the initial non-convex problem when the
number of iterations goes to infinity. In practice after a few iteration the
result converges to the vicinity of the optimal solution.
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Working Principle
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Working Principle
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Frequency-domain data: The input is the vertical position of the sample (100
periods of a PRBS) and the output is the deflection of the cantilever. The
sampling frequency is 50 kHz.

Control specifications:
• Closed-loop bandwidth of ωb = 8kHz .
• No steady-state error and overshoot of less than 5% for step reference.
• A modulus margin of at least 0.5.
• The control signal is limited to 10 v, i.e. |u(t)| < 10.
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Design method: Loopshaping with constraints in weighted sensitivity functions

min
K

∥GK − Ld∥2

∥W1S∥∞ < 1 ∥W2T ∥∞ < 1 ∥W3 U∥∞ < 1

W1 is chosen for a bandwidth of 8kHz and a modulus margin of 0.5.

W2 is chosen to have the same bandwidth and limit the overshoot to 5%
(W−1

2 is a low-pass filter with cutoff frequency of ωb).

W3 =cte. is chosen to limit the maximum of the control signal.

Ld = ωb/s is chosen.

An integrator is fixed in the controller.

The initial controller is: Kc(z) = 0.001.

N = 1000 logarithmically spaced frequency points from 4kHz to 25kHz.
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Data-Driven Controller Design

Example (Control of an Atomic Force Microscope)

Convex optimization problem

min

g∑
k=1

Γk

[
Γk GkXk − Ldk

Yk

(GkXk − Ldk
Yk )

∗ Y∗
k Yck

+ Y∗
ck

Yk − Y∗
ck

Yck

]
≻ 0

[
1 W1k

Yk

(W1k
Yk )

∗ Φ∗
k Φck

+ Φ∗
ck

Φk − Φ∗
ck

Φck

]
≻ 0

[
1 W2k

GkXk

(W2k
GkXk )

∗ Φ∗
k Φck

+ Φ∗
ck

Φk − Φ∗
ck

Φck

]
≻ 0

[
1 W3k

Xk

(W3k
Xk )

∗ Φ∗
k Φck

+ Φ∗
ck

Φk − Φ∗
ck

Φck

]
≻ 0

for k = 1 . . . , g

10 times faster than a PI
controller!

Designed controller

Achieved performance
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