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Introduction

Control objective :

The objective in a control system is to make some output y , behave in a
desired way by manipulating some input u.

Regulation : Keep y close to some equilibrium point.

Tracking : Keep y close to a reference signal r .

Mathematical model :

In this chapter we consider linear time-invariant models subject to some
uncertainty :

y = (G +∆)u + v

v : unknown noise or disturbance.

∆ : unknown plant perturbation.

Both v and ∆ will be assumed to belong to sets, that is, some a priori
information is assumed about v and ∆.
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Introduction

Open-loop Solution :

The controller is chosen as the inverse of the plant model.

Problems :

G−1 may be not causal or not stable.

G may be unstable.

Uncertainty in ∆ and v cannot be considered.

Closed-loop Solution :

A feedback controller is designed that guarantees the stability and
performance in the presence of uncertainty in ∆ and v .
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Question

What is the transfer function between r and y

a)
1

1 + GK
b)

G

1 + GK
c)

K

1 + GK
d)

GK

1 + GK

What is the transfer function between v and y

a)
1

1 + GK
b)

G

1 + GK
c)

K

1 + GK
d)

GK

1 + GK
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Introduction
The aim of feedback is to overcome the model uncertainty

Whatever the plant model is, large GK leads to

T =
GK

1 + GK
≈ 1 (good tracking) ; S =

1

1 + GK
≈ 0 (good regulation)

For an open-loop stable system :

K = 0 (Robust stability) K → ∞ (good performance)-

No performance No Robustness

Feedback controller design is a trade-off between robust stability
and good performance.
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Stability

Stability :

An LTI system represented by a transfer function G (s) is stable if it is
analytic in the closed Right Half Plane RHP (Re s ≥ 0). In other words,
the system is stable if all poles of G (s) are strictly in the Left Half Plane
(LHP).

Minimum Phase :

An LTI system represented by a transfer function G (s) is minimum phase
if its inverse is stable.

Internal Stability :

A closed-loop system is internally stable if the transfer functions from all
external inputs to all internal signals are stable. For a unity feedback
system the following four transfer functions should be stable.

1

1 + GK

G

1 + GK

K

1 + GK

GK

1 + GK
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Question

Suppose that

G (s) =
2s − 1

s2 + 2

Is the closed loop system internally stable with K (s) = 1 ?

(A) Yes (B) No

Is the closed-loop system internally stable with

K (s) =
4s + 2

2s − 1

(A) Yes (B) No
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Internal Stability

Theorem

A unity feedback system is internally stable if and only if

there are no zeros in Re s ≥ 0 in the characteristic polynomial

NGNK +MGMK = 0

where

G =
NG

MG
, K =

NK

MK

or the following two conditions hold :

(a) The transfer function 1 + GK has no zeros in Re s ≥ 0.
(b) There is no pole-zero cancellation in Re s ≥ 0 when the

product GK is formed.

or the Nyquist plot of GK does not pass through the point -1 and
encircles it n times counterclockwise, where n denotes the number of
unstable poles of G and K.
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Performance

Consider the following disturbance response for a regulation problem :

Which one is “smaller”?
(A) red (B) blue (C) green (D) It depends !

Which one is better ?
(A) red (B) blue (C) green (D) It depends !
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Norms for Signals

Consider piecewise continuous signals mapping (−∞,+∞) to R. A norm
must have the following four properties :

1 ∥u∥ ≥ 0 (positivity)

2 ∥au∥ = |a| ∥u∥,∀a ∈ R (homogeneity)

3 ∥u∥ = 0 ⇐⇒ u(t) = 0 ∀t (positive definiteness)

4 ∥u + v∥ ≤ ∥u∥+ ∥v∥ (triangle inequality)

1-Norm : ∥u∥1 =
∫ ∞

−∞
|u(t)|dt

2-Norm : ∥u∥2 =
(∫ ∞

−∞
u2(t)dt

)1/2

(∥u∥22 is the total signal energy)

∞-Norm : ∥u∥∞ = sup
t

|u(t)|

p-Norm : ∥u∥p =

(∫ ∞

−∞
|u(t)|pdt

)1/p

1 ≤ p ≤ ∞
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Norms for Signals

Example

Show that the one norm has all norm properties :

Positivity is evident : ∥u∥1 =
∫∞
−∞ |u(t)|dt ≥ 0

Homogeneity : ∥au∥1 =
∫∞
−∞ |au(t)|dt = |a|

∫∞
−∞ |u(t)|dt = |a|∥u∥1

Positive definitness : ∥u∥1 =
∫∞
−∞ |u(t)|dt = 0 ⇐⇒ u(t) = 0 ∀t

Triangle inequality :

∥u + v∥1 =
∫ ∞

−∞
|u(t) + v(t)|dt

≤
∫ ∞

−∞
|u(t)|dt +

∫ ∞

−∞
|v(t)|dt

≤ ∥u∥1 + ∥v∥1
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Question

Compute the 1-norm, 2-norm and ∞-norm of

u(t) =

{
2 0 ≤ t ≤ 10
0 elsewhere

One-Norm : (A) 10 (B) 2 (C) 1 (D) 20

Two-Norm : (A) 400 (B) 2
√
10 (C) 20 (D) 40

∞-Norm : (A) 1 (B) 2 (C) ∞ (D)
√
2

∥u∥1 =
∫ 10

0
2dt = 2t

∣∣∣10
0

= 20 ∥u∥2 =
(∫ 10

0
4dt

)1/2

= 2
√
10

Compute the 1-norm, 2-norm and ∞-norm of u(t) = sinωt.
One-Norm : (A) 0 (B) 1 (C) 2 (D)∞
Two-Norm : (A) 0 (B) 1 (C) 2 (D)∞
∞-Norm : (A) 0 (B) 1 (C) 2 (D)∞

Give a signal with bounded 1-norm and unbounded 2- and ∞-norm.
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Norms for Systems (SISO)

Consider linear, time-invariant, causal and finite-dimensional systems.

y(t) = g(t) ∗ u(t), y(t) =

∫ ∞

−∞
g(t − τ)u(τ)dτ , G (s) = L[g(t)]

Properness :

G (s) is proper if G (j∞) is finite (deg den ≥ deg num)

G (s) is strictly proper if G (j∞) = 0 (deg den > deg num)

G (s) is biproper if (deg den = deg num)

Example (Model Reference Control)

Suppose that the objective is to compute a controller such that the
closed-loop system T (s) is close to a reference model M(s). A good
controller should make ∥T −M∥ small. How can we define a norm for a
system ? Which system is smaller ?

E1(s) =
s + 16

s2 + 2s + 16
E2(s) =

10

(s + 6)
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Norms for Systems (SISO)

Frequency response : Let’s look at G (jω) as a complex infinite
dimensional vector. Then similar to the norm for signals, a norm in a
vector space can be defined.

Example

Consider the Bode diagram of E1(s) and E2(s) :
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Which one is smaller ?
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Norms for Systems (SISO)

2-Norm :

This norm is bounded if G (s) is strictly proper and has no pole on the
imaginary axis.

∥G∥2 =
(

1

2π

∫ ∞

−∞
|G (jω)|2dω

)1/2

Parseval’s theorem : Shows the relation between the 2-norm of a system
and the 2-norm of its impulse response signal (for stable systems) :

∥G∥2 =
(

1

2π

∫ ∞

−∞
|G (jω)|2dω

)1/2

=

(∫ ∞

−∞
|g(t)|2dt

)1/2

∞-Norm :

is bounded if G (s) has no pole on the imaginary axis.

∥G∥∞ = sup
ω

|G (jω)|
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Norms for Systems (MIMO)

Consider a multi-input multi-output system :

G (s) =

[
G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)

]
At each ω,G (jω) will be a complex matrix.
How can we define the norm of a matrix ?

Norms for matrices :

2-Norm : The spectral norm, induced 2-norm or simply the norm of A
is defined as :

∥A∥2 =
√
λmax(A∗A) = σ̄(A) = max

x ̸=0

∥Ax∥2
∥x∥2

F-Norm : Frobenius norm is defined as ∥A∥F =
√
trace(A∗A), where

trace(A∗A) =
n∑
i

λi (A
∗A) =

n∑
i

σ2
i (A)
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Norms for Systems (MIMO)

Given G (s) a multi-input multi-output system

2-Norm : This norm is defined as

∥G∥2 =
(

1

2π

∫ ∞

−∞
trace [G ∗(jω)G (jω)] dω

)1/2

∞-Norm : This norm is defined as

∥G∥∞ = sup
ω

∥G (jω)∥ = sup
ω

σ̄[G (jω)]

Remarks :

The two and infinity norm of stable systems are called respectively H2

and H∞ norm.

The infinity norm has an important property (submultiplicative)

∥GH∥∞ ≤ ∥G∥∞ ∥H∥∞
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Computing the Norms

How to compute the 2-norm :

Suppose that G has bounded two-norm (G is strictly proper), then :

The two-norm of G can be computed approximately by numerical
integration :

∥G∥22 ≈
1

π

N∑
k=0

|G (jωk)|2∆ωk

where ∆ωk = ωk+1 − ωk , ω0 = 0 and N is large enough such that
|G (jωk)| can be ignored ∀k > N.

For stable systems, thanks to Parseval’s Theorem, the 2-norm can be
computed using the impulse response of the system g(t) :

∥G∥22 =
∫ ∞

−∞
|g(t)|2dt ≈

N∑
k=0

|g(tk)|2∆tk

where N is large enough such that |g(tk)| can be ignored ∀k > N.
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Computing the Norms

Example

Compute the 2-norm of G (s) =
1

τs + 1
, where τ > 0.

Solution : The impulse response is g(t) = 1
τ e

−t/τ for t ≥ 0, therefore :

∥G∥22 =
∫ ∞

−∞
|g(t)|2dt =

∫ ∞

0

1

τ2
e−2t/τdt =

−τ

2τ2
e−2t/τ

∣∣∣∣∞
0

=
1

2τ

For higher order models computing analytically the integral is too difficult.
The Residue theorem can be used instead :

Residue Theorem

Consider a complex function F (z) and Γ a closed curve in complex plane
that does not pass on any poles of F (z) but encircles n poles (a1, . . . , an)
of F (z), then : ∮

Γ
F (z)dz = 2πj

n∑
k=1

Res(F , ak)

where Res(F , ak) = limz→ak (z − ak)F (z).
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Computing the Norms

How to compute the 2-norm using the residue theorem :

By the residue theorem, ∥G∥22 equals the sum of the residues of
G (−s)G (s) at its poles in the left half-plane.

∥G∥22 =
1

2π

∫ ∞

−∞
|G (jω)|2dω =

1

2πj

∫ j∞

−j∞
G (−s)G (s)ds

=
1

2πj

∮
Γ
G (−s)G (s)ds

=
n∑

k=1

Res[G (−s)G (s), pk ] ∀pk inside Γ

The contour Γ is taken as the imaginary axis and a semicircle with
infinite radius that covers the left half plane (LHP).

The equality comes from the fact that the contribution of the
semicircle to the integral equals zero because G is strictly proper.
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Computing the Norms

Example

Compute the 2-norm of G (s) =
K

s + a
, where a > 0.

(A) K/
√
a (B) 0 (C) K/

√
2a (D) K 2/2a

Solution : We have

G (−s)G (s) =
K

−s + a

K

s + a
=

K 2

(−s + a)(s + a)

There is only one pole p1 = −a in LHP and its residue at p1 is :

∥G∥22 = Res[G (−s)G (s), p1] = lim
s→−a

(s + a)
K 2

(−s + a)(s + a)
=

K 2

2a

⇒ ∥G∥2 =
K√
2a
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Computing the Norms

How to compute the ∞-norm :

Choose a fine grid of frequency points {ω1, . . . , ωN}, then

SISO : ∥G∥∞ ≈ max
1≤k≤N

|G (jωk)| MIMO : ∥G∥∞ ≈ max
1≤k≤N

σ̄[G (jωk)]

or alternatively, solve d |G(jω)|2
dω = 0

Example

Compute the infinity norm of

G (s) =
as + 1

bs + 1
a, b > 0

If a ≥ b : (A) 1 (B) b/a (C) a/b (D) ∞
If a < b : (A) 1 (B) b/a (C) a/b (D) ∞
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Computing the Norms (state-space methods)

Consider a state-space model for a stable strictly proper system :

ẋ(t) = Ax(t) + Bu(t) ; y(t) = Cx(t)

2-Norm :

The H2 norm of G is given by :

∥G∥2 =
√

trace[CLCT ]

where L = LT ≻ 0 is a symmetric positive definite solution to the following
equation :

AL+ LAT + BBT = 0
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Computing the Norms (state-space methods)

Proof

The impulse response of the system is given by : g(t) = CetAB for t > 0.
Calling on Parseval we get :

∥G∥22 = ∥g∥22 = trace

∫ ∞

0
g(t)gT (t)dt = trace

∫ ∞

0
CetABBT etA

T
CTdt

which is equal to trace[CLCT ], where

L =

∫ ∞

0
etABBT etA

T
dt

Now, integrate both sides of the following equation :

d

dt
etABBT etA

T
= AetABBT etA

T
+ etABBT etA

T
AT

from 0 to ∞, to get −BBT = AL+ LAT .
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Computing the Norms

Example

Compute the 2-norm of G (s) =
K

s + a
, where a > 0 using the state-space

method.

Solution : We first compute the state-space representation of G (s) :

A = −a B = K C = 1 D = 0

Then we solve the following equation for L :

AL+ LAT + BBT = 0 ⇒ −aL− La+ K 2 = 0 ⇒ L =
K 2

2a

⇒ ∥G∥22 = trace(CLCT ) = L =
K 2

2a
⇒ ∥G∥2 =

K√
2a
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Computing the Norms (state-space methods)

Lemma (Bounded Real Lemma)

Consider a strictly proper stable LTI system G and γ > 0. Then
∥G∥∞ < γ, if and only if the Hamiltonian matrix H has no eigenvalue on
the imaginary axis.

G (s) =

[
A B

C 0

]
H =

[
A γ−2BBT

−CTC −AT

]
Proof : (Sufficiency, SISO case) Consider Φ(s) = [1− γ−2GT (−s)G (s)]
then it can be shown that H is the state matrix of Φ−1(s).

∥G∥∞ < γ if and only if Φ(jω) > 0 for all ω ∈ R
Since G (s) is strictly proper Φ(j∞) = 1 > 0.

Since Φ(jω) is a continuous function of ω, Φ(jω) > 0 for all ω ∈ R if
and only if Φ(jω) is never equal to zero or Φ−1(s) has no pole on the
imaginary axis.

Therefore, if H has no eigenvalues on the imaginary axis ∥G∥∞ < γ.
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Computing the Norms (state-space methods)

Computing H∞ norm : The bounded real lemma and the bisection
optimization algorithm can be used to compute the H∞ norm of G :

Bisection algorithm :

1 Select an upper bound γu and a lower bound γl such that
γl ≤ ∥G∥∞ ≤ γu.

2 If (γu − γl)/γl < specified level, stop ; ∥G∥∞ ≈ (γu + γl)/2.
Otherwise go to the next step.

3 Set γ = (γu + γl)/2 ;

4 Test if ∥G∥∞ < γ by calculating the eigenvalues of H for the given γ.

5 If H has an eigenvalue on the imaginary axis, set γl = γ, otherwise
set γu = γ and go back to step 2.
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Input-output relationships

If we know how big the input is, how big is the
output going to be ?

If v(t) is a step disturbance then what will be the norm of y(t) ?

If v(t) = sin(ωt) then what will be the norm of y(t) ?

if ∥v(t)∥2 ≤ 1 then what will be the upper bound of ∥y(t)∥2,∞ ?

if ∥v(t)∥∞ ≤ 1 then what will be the upper bound of ∥y(t)∥2,∞ ?
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Input-output relationships

Known input : Consider an LTI system G (s) with input u(t) and
output y(t) and the impulse response g(t), then :

Output Norms for Two Inputs
u(t) δ(t) sin(ωt)
∥y∥2 ∥G∥2 ∞
∥y∥∞ ∥g∥∞ |G (jω)|

Proofs :
If u(t) = δ(t) then y(t) = g(t), therefore :

∥y∥2 = ∥g∥2 = ∥G∥2
∥y∥∞ = ∥g∥∞

If u(t) = sin(ωt) then y(t) = |G (jω)| sin(ωt + ϕ), therefore :
∥y∥2 = ∞
∥y∥∞ = |G (jω)|
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Input-output relationships

Bounded norm input : Consider an LTI system G (s) with input u(t)
and output y(t) and the impulse response g(t), then :

System Gains :
∥u∥2 = 1 ∥u∥∞ = 1

∥y∥2 ∥G∥∞ ∞
∥y∥∞ ∥G∥2 ∥g∥1

Entry (1,1) : We have

∥y∥22 =
1

2π

∫ ∞

−∞
|G (jω)|2|U(jω)|2dω ≤ ∥G∥2∞

1

2π

∫ ∞

−∞
|U(jω)|2dω

≤ ∥G∥2∞∥U∥22 = ∥G∥2∞∥u∥22

Two-norm system gain equals the infinity norm of the system

∥G∥∞ = sup
u ̸=0

∥y∥2
∥u∥2
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Input-output relationships

Bounded norm input :

System Gains :
∥u∥2 = 1 ∥u∥∞ = 1

∥y∥2 ∥G∥∞ ∞
∥y∥∞ ∥G∥2 ∥g∥1

Entry(2,1) : According to the Cauchy-Schwartz inequality

|y(t)| =
∣∣∣∣∫ ∞

−∞
g(t − τ)u(τ)dτ

∣∣∣∣ ≤
(∫ ∞

−∞
g2(t − τ)dτ

)1/2(∫ ∞

−∞
u2(τ)dτ

)1/2

= ∥g∥2∥u∥2 = ∥G∥2∥u∥2 ⇒ ∥y∥∞ ≤ ∥G∥2∥u∥2

Entry (2,2) : We have

|y(t)| =

∣∣∣∣∫ ∞

−∞
g(t − τ)u(τ)dτ

∣∣∣∣ ≤ ∫ ∞

−∞
|g(t − τ)||u(τ)|dτ

≤ ∥u∥∞
∫ ∞

−∞
|g(t − τ)|dτ = ∥g∥1∥u∥∞
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Asymptotic Tracking

Internal Model Principle : For perfect asymptotic tracking of r(t), the
loop transfer function L = GK must contain the unstable poles of r(s).

Theorem

Assume that the feedback system is internally stable and n=d=0.

(a) If r(t) is a step, then lim
t→∞

e(t) = r(t)− y(t) = 0 iff

S = (1 + L)−1 has at least one zero at the origin.

(b) If r(t) is a ramp, then lim
t→∞

e(t) = 0 iff S has at least two

zeros at the origin.

(c) If r(t) = sin(ωt), then lim
t→∞

e(t) = 0 iff S has at least one

zero at s = jω.

Final-Value Theorem :

If y(s) has no poles in Re s ≥ 0 except possibly one pole at s = 0 then :

lim
t→∞

y(t) = lim
s→0

sy(s)
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Asymptotic Tracking

Proof (a) :

r(s) =
c

s
and e(s) = S(s)c

s
⇒ lim

t→∞
e(t) = lim

s→0
sS(s)c

s

The limit is zero iff S has at least one zero at origin. For this, GK should have a

pole at origin, because : S(s) = 1

1 + GK
=

1

1 + NGNK

DGDK

=
DGDK

DGDK + NGNK

Proof (b) :

r(s) =
c

s2
and e(s) = S(s) c

s2
⇒ lim

t→∞
e(t) = lim

s→0
sS(s) c

s2

The limit is zero iff S has at least two zeros at origin (or GK two poles at origin).

Proof (c) :

r(s) =
c

s2 + ω2
0

and e(s) = S(s) c

s2 + ω2
0

⇒ lim
t→∞

e(t) = lim
s→0

sS(s) c

s2 + ω2
0

The limit is zero iff S has at least one zero at jω0 (the other will be at −jω). For
this, GK should have two poles at ±jω0.
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Question

Consider the following closed-loop system :

Which criterion should be minimized to minimize the two norm of the
input when r(t) = 0 and v(t) is a Dirac impulse signal.

(A)

∥∥∥∥ GK

1 + GK

∥∥∥∥
∞
(B)

∥∥∥∥ K

1 + GK

∥∥∥∥
2

(C)

∥∥∥∥ K

1 + GK

∥∥∥∥
∞
(D)

∥∥∥∥ 1

1 + GK

∥∥∥∥
2
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Question

Consider the following closed-loop system :

Which criterion should be minimized to minimize the two norm of the
tracking error when v(t) = 0 and r(t) is a step signal.

(A)

∥∥∥∥ 1

1 + GK

∥∥∥∥
2

(B)

∥∥∥∥ 1/s

1 + GK

∥∥∥∥
2

(C)

∥∥∥∥ 1

1 + GK

∥∥∥∥
∞
(D)

∥∥∥∥ 1/s

1 + GK

∥∥∥∥
∞
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Question

Consider the following closed-loop system :

Which criterion should be minimized to minimize the two norm of the
output when r(t) = 0 and v(t) = sinω0t.

(A)

∥∥∥∥(s2 + ω2
0)

−1

1 + GK

∥∥∥∥
2

(B)

∥∥∥∥ ω2
0

1 + GK

∥∥∥∥
2

(C)

∥∥∥∥(s2 + ω2
0)

−1

1 + GK

∥∥∥∥
∞

(D)

∥∥∥∥(s2 + ω2
0)

1 + GK

∥∥∥∥
∞
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Question

Consider the following closed-loop system :

Which criterion should be minimized to minimize the infinity norm of
the tracking error when v(t) = 0 and r(t) = sinω0t.

(A)

∥∥∥∥ S
(s2 + ω2

0)

∥∥∥∥
2

(B) |S(jω0)| (C)

∥∥∥∥ S
(s2 + ω2

0)

∥∥∥∥
∞

(D) ∥S∥∞

What about if r(t) = sinωt and ω1 ≤ ω ≤ ω2 ?
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Question

Consider the following closed-loop system :

Which criterion should be minimized to minimize the two norm of the
output when r(t) = 0 and v(t) is a bounded two-norm signal.

(A)

∥∥∥∥ 1

1 + GK

∥∥∥∥
2

(B)

∥∥∥∥ 1/s

1 + GK

∥∥∥∥
2

(C)

∥∥∥∥ 1

1 + GK

∥∥∥∥
∞
(D)

∥∥∥∥ 1/s

1 + GK

∥∥∥∥
∞

What about if the energy of v(t) is concentrated between ω1 and ω2 ?
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Nominal Performance

Performance Specification :

Many performance specifications can be represented by minimization of a
weighted closed-loop transfer function. Typically, the following criterion is
considered in this course :

min
K

∥W1S∥

W1(s) is called the performance filter and typically is a low-pass filter.

If the external signal (i. e. r(t) or v(t)) is known (e.g. step, ramp, sinusoid,
etc), the 2-norm is minimized. In this case, a good choice for W1(s) is the
Laplace transform of the external signal.

If the external signal belongs to the set of bounded 2-norm signals, the
∞-norm is minimized. In this case, a good choice for W1(s) is an upper
bound on the spectrum of the signals in the set.

Depending on the application, other sensitivity functions can also be
considered.
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Nominal Performance

In many applications, the nominal performance can be defined as a constraint :

|S(jω)| < |W−1
1 (jω)| ∀ω ⇒ |W1(jω)S(jω)| < 1 ∀ω ⇒ ∥W1S∥∞ < 1

where W1(s) is typically a low-pass filter.

Graphical interpretation :
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Bode Diagram

Frequency  (rad/s)∣∣∣∣ W1(jω)

1 + L(jω)

∣∣∣∣ < 1 ∀ω ⇔ |W1(jω)| < |1 + L(jω)| ∀ω

The open-loop transfer function L(jω) should not intersect the performance disk.
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Model Uncertainty

Model Uncertainty : Physical systems cannot be exactly modelled. They
belong to an uncertainty model set, which can be structured or
unstructured.

Structured model set

Parametric uncertainty :

G =

{
K

τs + 1
: τmin ≤ τ ≤ τmax,Kmin ≤ K ≤ Kmax

}
Multimodel uncertainty : G = {G0,G1,G2,G3}

Unstructured model set

Norm bounded uncertainty : G = {G0 +∆ : ∥∆∥∞ ≤ γ}
Frequency-domain uncertainty :

G = {G (jω)||S1(jω)| < |G (jω)| < |S2(jω)|}
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Model Uncertainty

Example (Norm bounded uncertainty)

Consider a plant model with unmodelled dynamics :

G̃ (s) =
12

(s + 2)(s + 3)

1

0.1s + 1

where G̃ (s) is the true model. The objective is to find a norm bounded
uncertainty set for this model as

G̃ ∈ {G +∆ : ∥∆∥∞ ≤ γ}

Solution : Let’s write G̃ (s) as :

G̃ (s) =
15

(s + 2)
+

−12/0.7

(s + 3)
+

15/7

s + 10
=

−2.143s + 10.71

s2 + 5s + 6︸ ︷︷ ︸
G(s)

+
15/7

s + 10︸ ︷︷ ︸
∆

It is clear that γ = ∥∆∥∞ = 15/70 = 0.214

Stability, Performance and Robustness Advanced Control Systems Spring 2025 39 / 74



Model Uncertainty

Example (Norm bounded uncertainty)

The uncertainty model set can be presented in the Nyquist diagram :

G̃ ∈ {G +∆ : ∥∆∥∞ ≤ γ}

Blue : Nominal Model G

Green : True model G̃

Red : Uncertainty set G +∆
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Can we reduce the size of the uncertainty set ?
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Model Uncertainty

Example (Norm bounded uncertainty)

G̃ (s) =
12

(s + 2)(s + 3)

1

0.1s + 1
=

−2.143s + 10.71

s2 + 5s + 6︸ ︷︷ ︸
G(s)

+
15/7

s + 10︸ ︷︷ ︸
W2∆

Blue : Nominal Model G

Green : True model G̃

Red : Uncertainty set G +W2∆

W2(s) =
15/7

s + 10
, ∥∆∥∞ ≤ 1
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The radius of the uncertainty disk at each frequency is |W2(jω)|,
which presents the size of uncertainty.
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Model Uncertainty

Unstructured uncertainty
Additive uncertainty :

G̃ = G +∆W2 ∥∆∥∞ ≤ 1

Multiplicative uncertainty :

G̃ = G (1 + ∆W2) ∥∆∥∞ ≤ 1

G̃ : true model G : nominal model
∆ : norm-bounded uncertainty W2 : Stable weighting filter

Remark : It is assumed that G and G̃ have the same number of unstable poles.

Multiplicative uncertainty can be converted to additive uncertainty by
changing the weighting filter : W add

2 ≡ GWmul
2
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Model Uncertainty

Unstructured uncertainty

Feedback uncertainty :

G̃ =
G

1 + ∆W2
∥∆∥∞ ≤ 1 G̃ =

G

1 + ∆W2G
∥∆∥∞ ≤ 1

G̃ : true model G : nominal model
∆ : norm-bounded uncertainty W2 : Stable weighting filter

Remark : It is assumed that G and G̃ have the same number of unstable poles.

All unstructured uncertainty models are equivalent from a theoretical point
of view, however, one may be preferred for some applications because the

computation of the weighting filter becomes simpler.
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Model Uncertainty

Remarks :

There are specific methods for analysis and control synthesis of
systems with structured (multimodel or parametric) uncertainty
and unstructured (frequency-domain) uncertainty.

Structured uncertainty can be converted to unstructured
uncertainty.

If we can analyze and synthesize closed-loop systems with
unstructured uncertainty, we can find a solution to many robust
control problems.

Controller design for a model set greater than the real model set
leads to a conservative design.
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Model Uncertainty

Converting structured to unstructured uncertainty

Multimodel to multiplicative uncertainty

Problem : A multimodel uncertainty set G = {G1,G2, . . . ,Gm} is given.
Find the uncertainty filter W2(s) in the multiplicative uncertainty set
G̃ = G (1 + ∆W2).

Choose one of the models as the nominal model G . Then we have :

G̃ = G (1 + ∆W2) ⇒
Gi

G
− 1 = ∆W2 for i = 1, . . . ,m

Since ∥∆∥∞ ≤ 1 ⇒
∣∣∣∣Gi (jω)

G (jω)
− 1

∣∣∣∣ ≤ |W2(jω)| for i = 1, . . . ,m

Compute W2(jω) such that |W2(jω)| = max
i

∣∣∣∣Gi (jω)

G (jω)
− 1

∣∣∣∣ ∀ω

Design W2(s) such that |W2(jω)| ≥ |W2(jω)| ∀ω.
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Model Uncertainty

Example (Multimodel to multiplicative uncertainty)

Suppose that G = {G0,G1,G2,G3,G4} is given. Compute a 3rd order
uncertainty filter for the multiplicative uncertainty set.

10
0

10
1

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a
g
n
it
u
d
e
 (

d
B

)

G0

G1

G2

G3

G4

Bode Diagram

Frequency  (rad/s)
10

0
10

1
-50

-40

-30

-20

-10

0

10

M
a
g
n
it
u
d
e
 (

d
B

)

Bode Diagram

Frequency  (rad/s)

10
0

10
1

-50

-40

-30

-20

-10

0

10

M
a
g
n
it
u
d
e
 (

d
B

)

Bode Diagram

Frequency  (rad/s)

Taking G2 as nominal model, Bode diagram of

∣∣∣∣Gi (jω)

G (jω)
− 1

∣∣∣∣ for
i = 0, 1, 3, 4.

Bode diagram of a 3rd order W2(s) computed by ucover in Matlab.
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Model Uncertainty

Example (Parametric to multiplicative uncertainty)

Given G̃ (s) =

{
k

s − 2
: 0.1 ≤ k ≤ 10

}
compute the uncertainty filter W2(s).

First we choose a nominal model : G (s) =
k0

s − 2
with k0 = 5.05

Then we compute :∣∣∣∣∣ G̃ (jω)

G (jω)
− 1

∣∣∣∣∣ ≤ |W2(jω)| ⇒ max
0.1≤k≤10

∣∣∣∣ k

5.05
− 1

∣∣∣∣ ≤ |W2(jω)|

By inspection we obtain W2(s) = 4.95/5.05 = 0.98.

Similar solution could be obtained by sampling k in the interval
0.1 ≤ k ≤ 10 and converting the multimodel to multiplicative uncertainty.

What is the uncertainty filter for additive uncertainty set ?

(A)
0.98(s − 2)

5.05
(B)

4.95

s − 2
(C)

4.95

s + 2
(D)

0.98

s − 2
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Model Uncertainty

Example (Parametric to feedback uncertainty)

Given G̃ (s) =

{
1

s2 + as + 1
: 0.4 ≤ a ≤ 0.8

}
compute the uncertainty

filter W2(s) in a feedback uncertainty set.

Choose the nominal model as G (s) =
1

s2 + 0.6s + 1
Represent the uncertain parameter as a function of ∆ :

a = 0.6 + 0.2∆, −1 ≤ ∆ ≤ 1

The uncertainty set is given by :

G̃ (s) =
1

s2 + 0.6s + 0.2∆s + 1
=

1
s2+0.6s+1

1 + 0.2∆s
s2+0.6s+1

=
G (s)

1 + ∆W2(s)G (s)

This gives W2(s) = 0.2s.
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Model Uncertainty

Example (Time-delay to multiplicative uncertainty)

Given G̃ (s) = e−τs 1

s2
where 0 ≤ τ ≤ 0.1, compute W2(s) in a multiplicative

uncertainty set with the nominal model as G (s) =
1

s2
.

For multiplicative uncertainty we should have :∣∣∣∣∣ G̃ (jω)

G (jω)
− 1

∣∣∣∣∣ ≤ |W2(jω)| ⇒ |e−τ jω − 1| ≤ |W2(jω)| ∀ω, τ

The worst case happens for τ = 0.1.

The Bode diagram of |e−0.1jω − 1| is given.

Using the Bode diagram we can find

W2(s) =
0.21s

0.1s + 1
.
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Model Uncertainty

Stochastic uncertainty

Different models in an uncertainty model set may have different
probabilities.

Large deterministic uncertainties lead to robust controllers with low
performance.

Stochastic uncertainty model sets may reduce the conservatism and
lead to high performance controllers.

Identification methods lead to nonparametric and parametric models
with stochastic uncertainty (because of measurement noise).

For stochastic uncertainty model sets we cannot guarantee the
closed-loop stability in a deterministic sense.
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Stochastic Uncertainty

Nonparametric uncertainty : The frequency-domain model of a system can be
estimated by the Fourier transform method :

Ĝ (e jω) =
Y (ω)

U(ω)
+

V (ω)

U(ω)
= G (e jω) +

V (ω)

U(ω)

The variance of Ĝ is Φv (ω)/Φu(ω).

The estimates Re{Ĝ (e jω)} and Im{Ĝ (e jω)} are asymptotically uncorrelated
and normally distributed with a variance of Φv (ω)/2Φu(ω).

Therefore, |Ĝ |2 has a chi-squared distribution
(or |Ĝ | has a Rayleigh distribution).

Knowing the distribution of |Ĝ |, the 0.95%
confidence interval in the Nyquist diagram can
be computed.

G = Ĝ +W3(ω)∆

Re

Im

ĜW3 =
√

5.99Φv̂

2Φu
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Stochastic Uncertainty

Parametric uncertainty : The parametric model of a system can be estimated
using the prediction error method. The covariance of the parameters can also be
estimated based on the data.

If θ̂ is a random variable with Gaussian distribution N (θ0,P), then f (θ̂)
converge in distribution to a normal distribution :

N

(
f (θ0),

(
∂f

∂θ

)
P

(
∂f

∂θ

)T
)

Therefore, if we take f (θ̂) = [Re{Ĝ (θ̂, jω)} Im{Ĝ (θ̂, jω)}],
we can compute the covariance of f and
the uncertainty in the Nyquist diagram.

Since P is not diagonal, the frequency-domain
uncertainty will be an ellipse.
So W3 is the radius of the smallest disk that
covers the ellipse.

Re

Im

Ĝ (θ̂, jω)
W3
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Stochastic Uncertainty

Example
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Robust Stability

Definition

Robustness : A controller is robust with respect to a closed-loop
characteristic, if this characteristic holds for every plant in G.

Definition

Robust Stability : A controller is robust in stability if it provides internal
stability for every plant in G.

Definition

Stability margin : For a given model set with an associate size, it can be
defined as the largest model set stabilized by a controller.

Definition

Stability margin for an uncertainty model : Given G̃ = G (1 + ∆W2)
with ∥∆∥∞ ≤ β, the stability margin for a controller C is the least upper
bound of β.
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Robust Stability

Definition

Modulus margin : The shortest distance from -1 to the open-loop
Nyquist curve.

Mm = inf
ω
| − 1− L(jω)| = inf

ω
|1 + L(jω)| =

[
sup
ω

1

1 + L(jω)

]−1

= ∥S∥−1
∞
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Robust Stability

Theorem (Small Gain)

Suppose H is stable and has bounded
infinity norm and let γ > 0. The following
feedback loop is internally stable for all
stable ∆(s) with

∥∆∥∞ ≤ 1/γ if and only if ∥H∥∞ < γ

- H(s)

∆(s) �

Robust stability condition for plants with additive uncertainty :

G̃ = G+∆W2 ⇒ H = W2
−K

1 + GK

Closed-loop system is internally
stable for all ∥∆∥∞ ≤ 1 iff

∥W2KS∥∞ < 1
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Robust Stability

Robust stability condition for plants with multiplicative uncertainty :

G̃ = G (1+∆W2) ⇒ H = W2
−GK

1 + GK

Closed-loop system is internally
stable for all ∥∆∥∞ ≤ 1 iff
∥W2T ∥∞ < 1.

Proof : Assume that ∥W2T ∥∞ < 1. We show that the winding number of
1 + GK around zero is equal to that of 1 + G̃K .

1+G̃K = 1+GK (1+∆W2) = 1+GK+GK∆W2 = 1+GK+(1+GK )T ∆W2

1 + G̃K = (1 + GK )(1 + ∆W2T )

so wno { (1 + G̃K )} = wno{(1 + GK )}+ wno{(1 + ∆W2T )}.
But wno {(1 + ∆W2T )} = 0 because ∥∆W2T ∥∞ < 1.
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Robust Stability

Robust stability condition for plants with feedback uncertainty (1) :

G̃ =
G

1 + ∆W2
⇒ H = W2

−1

1 + GK

Closed-loop system is internally
stable for all ∥∆∥∞ ≤ 1 iff
∥W2S∥∞ < 1.

Robust stability condition for plants with feedback uncertainty (2) :

G̃ =
G

1 + ∆W2G
⇒ H = W2

−G

1 + GK

Closed-loop system is internally
stable for all ∥∆∥∞ ≤ 1 iff
∥W2GS∥∞ < 1.
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Robust Stability

Robust Stability Condition :

The robust stability condition for systems with multiplicative uncertainty is

defined as ∥W2T ∥∞ < 1 where W2(s) is typically a high-pass filter. It

guarantees small |T (jω)| at high frequencies, where unmodelled dynamics
are large.

Graphical interpretation :

The robust stability condition in the frequency-domain is given by :

|W2(jω)T (jω)| < 1 ∀ω∣∣∣∣W2(jω)L(jω)

1 + L(jω)

∣∣∣∣ < 1 ∀ω,

⇔

|W2(jω)L(jω)| < |1 + L(jω)|, ∀ω
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Robust Performance

Nominal performance condition :

∥W1S∥∞ < 1

Robust stability condition for multiplicative uncertainty :

∥W2T ∥∞ < 1

Robust performance for multiplicative uncertainty :

∥W2T ∥∞ < 1 and ∥W1S̃∥∞ < 1

where :

S̃ =
1

1 + G̃K
=

1

1 + GK (1 + ∆W2)
=

1

(1 + GK )(1 + ∆W2T )
=

S
1 + ∆W2T
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Robust Performance

Theorem

A necessary and sufficient condition for robust performance of a plant
model with multiplicative uncertainty is

∥ |W1S|+ |W2T | ∥∞ < 1

Proof : (Sufficiency) The above robust performance condition is
equivalent to :

∥W2T ∥∞ < 1 and

∥∥∥∥ W1S
1− |W2T |

∥∥∥∥
∞

< 1

On the other hand : 1 = |1 + ∆W2T −∆W2T | ≤ |1 + ∆W2T |+ |W2T |
and therefore 1− |W2T | ≤ |1 + ∆W2T |. This implies that∥∥∥∥ W1S

1− |W2T |

∥∥∥∥
∞

≥
∥∥∥∥ W1S
1 + ∆W2T

∥∥∥∥
∞

⇒
∥∥∥∥ W1S
1 + ∆W2T

∥∥∥∥
∞

< 1

Stability, Performance and Robustness Advanced Control Systems Spring 2025 61 / 74



Robust Performance

Graphical interpretation :

The robust performance condition for systems with multiplicative
uncertainty is given by :

∥ |W1S|+ |W2T | ∥∞ < 1

∣∣∣∣ W1(jω)

1 + L(jω)

∣∣∣∣+ ∣∣∣∣W2(jω)L(jω)

1 + L(jω)

∣∣∣∣ < 1 ∀ω

⇔

|W1(jω)|+|W2(jω)L(jω)| < |1+L(jω)|, ∀ω
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Limit of Performance

Algebraic Constraints :
S + T = 1 therefore :

∣∣|S(jω)| − |T (jω)|
∣∣ ≤ =1︷ ︸︸ ︷

|S(jω) + T (jω)| ≤
∣∣|S(jω)|+ |T (jω)|

∣∣
So |S(jω)| and |T (jω)| cannot both be less than 1/2 at the same frequency.

A necessary condition for robust performance is that :

min{|W1(jω)|, |W2(jω)|} < 1, ∀ω

To illustrate this, assume that |W1| ≤ |W2| at a given frequency. Therefore :

|W1| = |W1[S + T ]| ≤ |W1S|+ |W1T | ≤ |W1S|+ |W2T | ≤ 1

The same conclusions can be obtained when |W2| ≤ |W1|. So at every
frequency either |W1| or |W2| must be less than 1. Typically |W1| is
monotonically decreasing and |W2| is monotonically increasing, thus their
intersection should be always below the zero dB axis.
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Limit of Performance

Preliminaries

If p is a pole and z a zero of L = GK both in Re s ≥ 0 then :

S(p) = 0 S(z) = 1 T (p) = 1 T (z) = 0

because L(p) = ∞ and L(z) = 0 and therefore : S(p) = 1

1 + L(p)
= 0

Define M as the set of stable transfer functions with bounded infinity
norm.

F (s) ∈ M is all-pass if |F (jω)| = 1 ∀ω
G (s) ∈ M is minimum-phase if it has no zeros in Re s > 0.
Every transfer function G ∈ M can be presented as G = GapGmp

Example

G (s) =
(s + 1)(s − 2)

(s + 3)(s + 4)
=

s − 2

s + 2︸ ︷︷ ︸
Gap(s)

(s + 2)(s + 1)

(s + 3)(s + 4)︸ ︷︷ ︸
Gmp(s)

Stability, Performance and Robustness Advanced Control Systems Spring 2025 64 / 74



Limit of Performance

Theorem (Maximum Modulus Theorem)

Suppose that Ω is a region (nonempty, open, connected set) in the
complex plane and F is a function that is analytic in Ω. Suppose that F is
not equal to a constant. Then |F | does not attain its maximum value at
an interior point of Ω.

A simple application of this theorem, with Ω equal to the open right
half-plane, shows that for F in M

∥F∥∞ = sup
Re s>0

|F (s)|
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Limit of Performance

Analytic Constraints :

Zeros of L = GK in RHP limit the nominal performance :

∥W1S∥∞ = sup
Res≥0

|W1(s)S(s)| ≥ |W1(z)S(z)| = |W1(z)|

If |W1(z)| > 1, nominal performance cannot be achieved.
Since W1(s) is typically a low-pass filter, a low frequency unstable zero
limits the performance more than a high frequency unstable zero.
In industry, it is usually said“the closed-loop bandwidth is limited to
the frequency of unstable zeros of the plant model ”.

Unstable poles of L = GK limit the robust stability :

∥W2T ∥∞ = sup
Res≥0

|W2(s)T (s)| ≥ |W2(p)T (p)| = |W2(p)|

if |W2(p)| > 1, robust stability cannot be achieved.
Since W2(s) is typically a high-pass filter, a high-frequency unstable
pole limits the robust stability more than a low frequency unstable pole.
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Analytic Constraints

Analytic Constraints :

Zeros and poles of L = GK in RHP limit the nominal performance
significantly. We have :

S =
1

1 + L̄ s−z
s−p

=
s − p

(s − p) + L̄(s − z)
=

Sap︷ ︸︸ ︷
s − p

s + p

Smp︷ ︸︸ ︷
s + p

(s − p) + L̄(s − z)

On the other hand S(z) = Sap(z)Smp(z) = 1 ⇒ Smp(z) = S−1
ap (z),

Then :

∥W1S∥∞ = ∥W1Smp∥∞ ≥ |W1(z)Smp(z)| =
∣∣∣∣W1(z)

z + p

z − p

∣∣∣∣
Unstable pole and zero close to each other limits significantly the
achievable performance.
The worst situation is when they are both in low frequencies (because
W1(s) is a low pass filter).

Stability, Performance and Robustness Advanced Control Systems Spring 2025 67 / 74



Analytic Constraints

Analytic Constraints :

Zeros and poles of L = GK in RHP limit the robust stability
significantly. We have :

T =
L̄ s−z
s−p

1 + L̄ s−z
s−p

=
L̄(s − z)

(s − p) + L̄(s − z)
=

Tap︷ ︸︸ ︷
s − z

s + z

Tmp︷ ︸︸ ︷
s + z

(s − p) + L̄(s − z)

On the other hand T (p) = Tap(p)Tmp(p) = 1 ⇒ Tmp(p) = T −1
ap (p),

Then :

∥W2T ∥∞ = ∥W2Tmp∥∞ ≥ |W2(p)Tmp(p)| =
∣∣∣∣W2(p)

p + z

p − z

∣∣∣∣
Unstable pole and zero close to each other limits significantly the
robust stability.
The worst situation is when they are both in high frequencies (because
W2(s) is a high-pass filter).
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Analytic Constraints

Example (Balancing a stick by hand)

If we want to balance a stick on our hand :

We choose
(A) A long stick (B) A short stick

We add a mass on the top of the stick
(A) No way (B) Off course

We look at
(A) Our hand (B) the top of the stick
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Analytic Constraints

Example

Consider the inverse pendulum problem.

(M +m)ẍ +ml(θ̈ cos θ − θ̇2 sin θ) = u

m(ẍ cos θ + l θ̈ − g sin θ) = d

x

y

u

M

m

l

Linearized model :(
x
θ

)
=

1

s2[Mls2 − (M +m)g ]

ls2 − g −ls2

−s2 M+m
m s2

(u
d

)
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Analytic Constraints

Example

Measuring x : (looking at the hand)

Tux =
ls2 − g

s2[Mls2 − (M +m)g ]

RHP poles and zeros : z =
√

g/l p = 0, 0,

√
(M +m)g

Ml

From a robust stability perspective :

It is a very difficult problem when m/M is small (unstable pole and
zero are too close).

By increasing m/M (for a fixed l) the situation improves (p+z
p−z is

decreased) but there is a trade-off because W2(p) will increase as well.

The best scenario is to increase l and m/M.

Stability, Performance and Robustness Advanced Control Systems Spring 2025 71 / 74



Analytic Constraints

Example

Measuring y : (looking at the top)

Tuy =
−g

s2[Mls2 − (M +m)g ]

From a robust stability perspective :

Since there is no RHP zero the system is much easier to stabilize.

A larger l gives a smaller p so the system can be better controlled.

The choice of the place of sensors changes the zeros of the system
can affects significantly the limit of performance.
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Analytic Constraints

Theorem (The Waterbed Effect)

Suppose that G has a zero at z with Re z > 0 and :

M1 := max
ω1≤ω≤ω2

|S(jω)| M2 := ∥S∥∞

Then there exist positive constants c1 and c2, depending only on ω1, ω2

and z, such that :

c1 logM1 + c2 logM2 ≥ log |S−1
ap (z)| ≥ 0

Note that |S−1
ap (z)| = 1 if L has no unstable pole. In this case

log |S−1
ap (z)| = 0.

If L has one unstable pole then log |S−1
ap (z)| ≥ 0.

To obtain better performance M1 should be reduced. The theorem
shows this necessarily leads to an increase of M2 = ∥S∥∞ (waterbed
effect) and reduces the modulus margin.
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Analytic Constraints

Theorem (The Area Formula)

Assume that the relative degree of L is at least 2. Then if the closed-loop
system is stable : ∫ ∞

0
log |S(jω)|dω = π(log e)

∑
i

Re pi

where {pi} denotes the set of poles of L in Re s > 0.

For a stable L, the right hand side is equal to zero. So the area of
disturbance attenuation is equal to the area of disturbance
amplification.

For unstable L, it is more difficult to improve the performance.

In contrast with the waterbed effect (which concerns only
non-minimum phase systems), improving the performance in some
frequency (decreasing M1) will not necessarily increase M2 = ∥S∥∞.
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