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Introduction

Control objective :

The objective in a control system is to make some output y, behave in a
desired way by manipulating some input u.

Regulation : Keep y close to some equilibrium point.

Tracking : Keep y close to a reference signal r.

Mathematical model :

In this chapter we consider linear time-invariant models subject to some
uncertainty :

y=(G+Au+v
v : unknown noise or disturbance.
A : unknown plant perturbation.

Both v and A will be assumed to belong to sets, that is, some a priori
information is assumed about v and A.
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Introduction

Open-loop Solution :

The controller is chosen as the inverse of the plant model.

A

Problems :
@ G~ may be not causal or not stable.
@ G may be unstable.

@ Uncertainty in A and v cannot be considered.

Closed-loop Solution :

A feedback controller is designed that guarantees the stability and
performance in the presence of uncertainty in A and v.
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v(t)
T PRtC )

@ What is the transfer function between r and y

1 G K GK

J 17k P 1rek 9 1ok P 1ick

@ What is the transfer function between v and y

1 G K GK
1+ GK
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Introduction
The aim of feedback is to overcome the model uncertainty

v(t)
K u(t) G + ﬂ

Whatever the plant model is, large GK leads to

GK 1
=12k~ 1(good tracking) ; S= Tk 0 (good regulation)
For an open-loop stable system :
K = 0 (Robust stability) » K — oo (good performance)
No performance No Robustness

Feedback controller design is a trade-off between robust stability
and good performance.
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Stability :

An LTI system represented by a transfer function G(s) is stable if it is
analytic in the closed Right Half Plane RHP (Re s > 0). In other words,
the system is stable if all poles of G(s) are strictly in the Left Half Plane

(LHP).

An LTI system represented by a transfer function G(s) is minimum phase
if its inverse is stable.

Internal Stability :

A closed-loop system is internally stable if the transfer functions from all
external inputs to all internal signals are stable. For a unity feedback
system the following four transfer functions should be stable.

1 G K GK
1+ GK 1+ GK 1+ GK 1+ GK

Stability, Performance and Robustness Advanced Control Systems Spring 2025 5/74



v(t)
r(t) e(t)_ K u(t) c +¥ ﬂ
Suppose that o 1
o)~ 2]

@ Is the closed loop system internally stable with K(s) =17
(A) Yes (B) No
@ Is the closed-loop system internally stable with
4s 42
K =
()= 553

(A) Yes (B) No
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Internal Stability

A unity feedback system is internally stable if and only if

@ there are no zeros in Re s > 0 in the characteristic polynomial
NegNk + MgMyk =0

where N
me K e
@ or the following two conditions hold :
(a) The transfer function 1 + GK has no zeros in Re s > 0.
(b) There is no pole-zero cancellation in Re s > 0 when the
product GK is formed.

G =

@ or the Nyquist plot of GK does not pass through the point -1 and
encircles it n times counterclockwise, where n denotes the number of
unstable poles of G and K.
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Performance

Consider the following disturbance response for a regulation problem :

@ Which one is “smaller”?

(A) red (B) blue (C) green (D) It depends!
@ Which one is better?
(A) red (B) blue (C) green (D) It depends!
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Norms for Signals

Consider piecewise continuous signals mapping (—o0, +00) to R. A norm
must have the following four properties :

Q |lu|| > 0 (positivity)
Q ||au|| = |al ||lu||,Va € R (homogeneity)
Q ||u| =0<= u(t) =0 Vt (positive definiteness)
Q |lu+ v] < |lull + ||v| (triangle inequality)
o
1-Norm : [[uflz = / lu(t)|dt

—0o0

0o 1/2
2-Norm : ||ul]2 = </ u2(t)dt)

(||lu]|3 is the total signal energy)

oo-Norm = ||ul|ee = sup |u(t)|
t

o0 1/p
o Jull = ([~ lu(ePee) " 1<p<oc

—0o0
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Norms for Signals

Show that the one norm has all norm properties :
o Positivity is evident : |lul|y = [ |u(t)|dt >0
o Homogeneity : [laully = [ |au(t)|dt = |a| [T

= |alllulla

@ Positive definitness : ||ul|; = ffo lu(t)|dt = 0 <= u( ) =0 WVt

o
@ Triangle inequality :

Ja+vis = [ a0+ v(o)de

g/Z|u(t)|dt+/Z

< flufly + fIvilx

|v(t)|dt
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o Compute the 1-norm, 2-norm and oco-norm of

u(t)
One-Norm :  (A) 10
Two-Norm : (A) 400
oo-Norm:  (A) 1

10 10
\Mh:/ 2t = 21|
0 0

(2 0<t<10

- { 0 elsewhere

(B) 2 ()1 (D)20
(B) 210 (C) 20 (D) 40
(B) 2 (C) © (D) v2

1/2

210

10
20 wm:</ Mﬁ
0

e Compute the 1-norm, 2-norm and co-norm of u(t) = sinwt.

One-Norm: (A)0 (B)1 (C)2 (D)
Two-Norm: (A)0 (B)1 (C)2 (D)
oo-Norm:  (A)0 (B)1 (C)2 (D)

@ Give a signal with bounded 1-norm and unbounded 2- and oco-norm.
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Norms for Systems (SISO)

Consider linear, time-invariant, causal and finite-dimensional systems.

y(t) = g(t)xu(t),  y(t)= /Oo g(t —m)u(r)dr,  G(s) = L[g(t)]

Properness :
o G(s) is proper if G(joo) is finite (deg den > deg num)
e G(s) is strictly proper if G(joo) = 0 (deg den > deg num)
e G(s) is biproper if (deg den = deg num)

Example (Model Reference Control)

Suppose that the objective is to compute a controller such that the
closed-loop system 7 (s) is close to a reference model M(s). A good
controller should make |7 — M|| small. How can we define a norm for a
system ? Which system is smaller ?

s+ 16 10
524+ 25+ 16 -

El(S) =
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Norms for Systems (SISO)

Frequency response : Let's look at G(jw) as a complex infinite
dimensional vector. Then similar to the norm for signals, a norm in a
vector space can be defined.

Example

Consider the Bode diagram of E;(s) and Ep(s) :

Bode Diagram

Magnitude (d8)

10
Frequency (rad’s)

Which one is smaller?
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Norms for Systems (SISO)

This norm is bounded if G(s) is strictly proper and has no pole on the

imaginary axis. e 1/2
161 = (5 [ 16Gw)Pdw )

Parseval’s theorem : Shows the relation between the 2-norm of a system
and the 2-norm of its impulse response signal (for stable systems) :

1Gll2 = (;ﬁ /:: ’G(J'w)lzdw) 2 </oo yg(t)|2dt> 1/2

—00

is bounded if G(s) has no pole on the imaginary axis.

6oc = sup|G(jw)
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Norms for Systems (MIMO)

Consider a multi-input multi-output system :
G(s) = [ Gii(s) Gia(s) Gus(s) ]
G21($) G22(S) G23(S)

At each w, G(jw) will be a complex matrix.
How can we define the norm of a matrix?

Norms for matrices :

2-Norm : The spectral norm, induced 2-norm or simply the norm of A

is defined as :
A
All2 = v/ Amax(A*A) = 5(A) = max [Ax][2
A0 ||x|]2
F-Norm : Frobenius norm is defined as ||A||r = \/trace(A*A), where

trace(A*A Z)\ (A*A) = En:a,-z(A)
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Norms for Systems (MIMO)

Given G(s) a multi-input multi-output system
2-Norm : This norm is defined as

el (2177 / _trace[G(js) G(i) d“) ;

—00

oo-Norm : This norm is defined as

1Glloc = sup | Gjw)l| = sup 7{G (jw)]

@ The two and infinity norm of stable systems are called respectively
and Ho, norm.

@ The infinity norm has an important property (submultiplicative)

IGHloo < [|Glloo [ Hll o
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Computing the Norms

How to compute the 2-norm :

Suppose that G has bounded two-norm (G is strictly proper), then :

@ The two-norm of G can be computed approximately by numerical
integration : N
1 .
1G5 ~ = > 16 (w) P Awk
k=0

where Awy = wk41 — wk, wo = 0 and N is large enough such that
|G (jwgk)| can be ignored Yk > N.

@ For stable systems, thanks to Parseval's Theorem, the 2-norm can be
computed using the impulse response of the system g(t) :

||G||%:/ O)2dt ~ Z\g )2,
—oo

where N is large enough such that |g(tx)| can be ignored Vk > N.
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Computing the Norms

Compute the 2-norm of G(s) = 1 where 7 > 0.
TS

Solution : The impulse response is g(t) = %e_t/T for t > 0, therefore :
2 2 1 oy 2t/ 1
Gl5 = t)|°dt = T dt = 2T =
IG5 = | le(oPde= [~ e —_

0 2T

v

For higher order models computing analytically the integral is too difficult.
The Residue theorem can be used instead :

Residue Theorem
Consider a complex function F(z) and I a closed curve in complex plane

that does not pass on any poles of F(z) but encircles n poles (a1, .., an)
of F(z), then : n
f F(z)dz = 27rjz Res(F, ak)
s k=1

where Res(F, ax) = lim,_,,, (z — ax) F(2).
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Computing the Norms

How to compute the 2-norm using the residue theorem :

By the residue theorem, ||G||3 equals the sum of the residues of
G(—s)G(s) at its poles in the left half-plane.

IGl5 = L OOIG(' )|?d _1/f°° G(—s)G(s)ds
27 o L YN T o e

_ 271”{ G(—5)G(s)ds
= z”: Res[G(—s)G(s), pk] Vpk inside [’
k=1

@ The contour I is taken as the imaginary axis and a semicircle with
infinite radius that covers the left half plane (LHP).

@ The equality comes from the fact that the contribution of the
semicircle to the integral equals zero because G is strictly proper.
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Computing the Norms

K
Compute the 2-norm of G(s) = Py where a > 0.

(A) K/va  (B) 0 (C)K/VZa (D) K*/2a

Solution : We have

K K K?
G(—=s)G(s) = =
—s+as+a (—s+a)(s+a)
There is only one pole py = —a in LHP and its residue at pj is :

2 )
16112 = Res[G(=s)6(s), p1l = lim (s + ) - +l:)(s ta) g_a

K
= [|Gll2 = —=

V2a
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Computing the Norms

How to compute the co-norm :

Choose a fine grid of frequency points {w1,...,wn}, then

SISO : ||G]|0o = 1;nkaSXN\G(jcuk)\ MIMO : |G| = 1r§nka§XN5[G(ka)]

i dGw)* _
or alternatively, solve ==~~~ =

Example

Compute the infinity norm of

as+1

(S):bs—i—l a,b>0

fa>b: (A) 1 (B) b/a (C) a/b (D) oo
fa<b: (A) 1 (B) b/a (C) a/b (D) oo
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Computing the Norms (state-space methods)

Consider a state-space model for a stable strictly proper system :

x(t) = Ax(t) + Bu(t) ; y(t) = Cx(t)

The Hy norm of G is given by :

|Gll2 = y/trace[CLCT]

where L = LT = 0 is a symmetric positive definite solution to the following
equation :

AL+ LAT +BBT =0
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Computing the Norms (state-space methods)

The impulse response of the system is given by : g(t) = Ce**B for t > 0.
Calling on Parseval we get :

= = trace t t)dt = trace e e CTdt
1612 = llgll2 g(t)g’ (t)d Ce”" BB e
0 0
which is equal to trace[CLC ], where
L:/ e BBT e dt
0

Now, integrate both sides of the following equation :

%etABBTetAT _ AetABBTetAT + etABBTetATAT

from 0 to oo, to get —BBT = AL+ LAT.
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Computing the Norms

K
Compute the 2-norm of G(s) = Py where a > 0 using the state-space
method.

Solution : We first compute the state-space representation of G(s) :
A= —-a B=K c=1 D=0

Then we solve the following equation for L :

K2

AL+ ILAT +BBT =0 = —al—Lla+K3*=0 = L:2—a
& 6B =tace(ctcTy = 1= € & o=
2 2a V2a
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Computing the Norms (state-space methods)

Lemma (Bounded Real Lemma)

Consider a strictly proper stable LTI system G and v > 0. Then

|Glloo < 7, if and only if the Hamiltonian matrix H has no eigenvalue on
the imaginary axis.

oo-[4le] a-] AT

Proof : (Sufficiency, SISO case) Consider ®(s) = [1 — 7 2G"(—s)G(s)]
then it can be shown that H is the state matrix of ®~1(s).

@ ||Gl|so < 7y if and only if ®(jw) > 0 for all w € R

@ Since G(s) is strictly proper ®(joo) =1 > 0.

@ Since ®(jw) is a continuous function of w, ®(jw) > 0 for all w € R if
and only if ®(jw) is never equal to zero or ®~1(s) has no pole on the
imaginary axis.

@ Therefore, if H has no eigenvalues on the imaginary axis || G|/ < 7.

Stability, Performance and Robustness Advanced Control Systems Spring 2025 23 /74



Computing the Norms (state-space methods)

Computing H., norm : The bounded real lemma and the bisection
optimization algorithm can be used to compute the Hs, norm of G :

Bisection algorithm :

@ Select an upper bound 7y, and a lower bound ~; such that
Y < [Glloo < V-

@ If (yu — v1)/v1 < specified level, stop; ||G|loc = (Y4 + V1)/2.
Otherwise go to the next step.

Set v = (vu +v)/2;

o
Q Test if ||G|lc < by calculating the eigenvalues of H for the given .
o

If H has an eigenvalue on the imaginary axis, set v, = y, otherwise
set v, = v and go back to step 2.
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Input-output relationships

If we know how big the input is, how big is the
output going to be?

- %V(ty)(t)

r(t) e(t) u(t)

o If v(t) is a step disturbance then what will be the norm of y(t)?

o If v(t) = sin(wt) then what will be the norm of y(t)?

o if [Jv(t )Hg <1 then what will be the upper bound of ||y(t)||2,00 ?
o if [[v(t)|looc <1 then what will be the upper bound of ||y (t)||2,00 7
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Input-output relationships

Known input : Consider an LTI system G(s) with input u(t) and
output y(t) and the impulse response g(t), then :

Output Norms for Two Inputs
u(t) i(t)  sin(wt)
vl 6. oo
ylloo llglloc  [G(jw)]

Proofs :
o If u(t) = o(t) then y(t) = g(t), therefore :

° |lyll=llgllz =Gl
° [lylloo = llglloo

o If u(t) =sin(wt) then y(t) = |G(jw)|sin(wt + ¢), therefore :

o [lylla=00

o [[ylloc = [GGw)l
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Input-output relationships

Bounded norm input : Consider an LTI system G(s) with input u(t)
and output y(t) and the impulse response g(t), then :

System Gains :
Julla=1 Jluffoc =1

Dl D6l o
vl UGl gl
Entry (1,1) : We have
1 [ . . 1 [ .
B = 5= [ 1GGwPIUGe)Pde < 1GIRag- [ UGie) P

< lGIZIUIE = 1G11Zlluli3

Two-norm system gain equals the infinity norm of the system

6loc = sup 1212

u#0 ||U||2
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Input-output relationships

Bounded norm input :

System Gains :

full2=1 [luflc =1
Iyllz [1Gllos 00
Iylloo NGl &l

Entry(2,1) : According to the Cauchy-Schwartz inequality

< ([t ([ o)

= llgllallullz = [[Gll2llulla = llyllee < [IGll2]lull2

y(8)] = \ | et nuror

Entry (2,2) : We have

vOl = || ste-nurr| < [ late—n)lutrlar
< ol [ lete=mldr = ol
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Asymptotic Tracking

Internal Model Principle : For perfect asymptotic tracking of r t) the
loop transfer function L = GK must contain the unstable poles of r(s

Assume that the feedback system is internally stable and n=d=0.
(a) If r(t) is a step, then tILrQO e(t) = r(t) — y(t) =0 iff
S = (1 + L)7! has at least one zero at the origin.
(b) If r(t) is a ramp, then tIer;o e(t) = 0 iff S has at least two
zeros at the origin.
(c) If r(t) = sin(wt), then tIer;o e(t) = 0 iff S has at least one

zero at s = jw.

Final-Value Theorem :
If y(s) has no poles in Re s > 0 except possibly one pole at s = 0 then :

lim y(t) = lim sy(s)

t—00 s—0
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Asymptotlc Tracking
Proof (a

r(s) = g and e(s) = S(s) = I|m e(t) = I|m 58( )s
The limit is zero iff S has at least one zero at origin. For this, GK should have a
1 1 DgDbx

pole at origin, because : S(s) = 156K~ 1 ! NGNK = DeDr + NeNe

Proof (

r(s) = 5—2 and e(s) = S(s)s2 = tllm e(t) = I|m sS(s) e

The limit is zero iff S has at least two zeros at origin (or GK two poles at origin).

Proof (c) :

C 0 o C
) =gy M) =SEgryz > [Jmet) = imsS) g

The limit is zero iff S has at least one zero at jwg (the other will be at —jw). For

this, GK should have two poles at +jwyp.
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Consider the following closed-loop system :

v(t)
T EPRtCam )

Which criterion should be minimized to minimize the two norm of the
input when r(t) = 0 and v(t) is a Dirac impulse signal.

™ |

o

D
1+GKH (B )H1+GK2 1+GKHOO( )H1+GK2
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Consider the following closed-loop system :

v(t)
r(t) Te(t) PRGOS +J y(t)

Which criterion should be minimized to minimize the two norm of the
tracking error when v(t) = 0 and r(t) is a step signal.

Q

1/s
1+ GK

, @ |ire] @ [

® | 7o

|

‘ oo
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Consider the following closed-loop system :

r(t) e(t)

v(t)
% (&)

Hf‘. K u(t) G

Which criterion should be minimized to minimize the two norm of the

output when r(t) =0 and v(t) = sinwot.

2 2\—1
(A) (8" +wg) " (B) 0
1+GK ||, 1+ GK ||,
(C) (®+wg)t (D) (s* +wj)
1+GK || 1+ GK
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Consider the following closed-loop system :

v(t)
T PR e 0]

@ Which criterion should be minimized to minimize the infinity norm of
the tracking error when v(t) = 0 and r(t) = sinwot.

S

(s + wg)

S

™|

(B) ISGwo)|  (C) ]

2 0o

e What about if r(t) =sinwt and w; <w < wy?
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Consider the following closed-loop system :

u(t)

@ Which criterion should be minimized to minimize the two norm of the
output when r(t) = 0 and v(t) is a bounded two-norm signal.
1/s
B
® |

el

() H1+1GK 2 ©) H1+1GKHOO(D) HHGK

@ What about if the energy of v(t) is concentrated between wy and wy ?
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Nominal Performance

Performance Specification :

Many performance specifications can be represented by minimization of a
weighted closed-loop transfer function. Typically, the following criterion is
considered in this course :

min | W43

@ W,(s) is called the performance filter and typically is a low-pass filter.

@ If the external signal (i. e. r(t) or v(t)) is known (e.g. step, ramp, sinusoid,
etc), the 2-norm is minimized. In this case, a good choice for W(s) is the
Laplace transform of the external signal.

@ If the external signal belongs to the set of bounded 2-norm signals, the
oo-norm is minimized. In this case, a good choice for Wi(s) is an upper
bound on the spectrum of the signals in the set.

@ Depending on the application, other sensitivity functions can also be
considered.
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Nominal Performance

In many applications, the nominal performance can be defined as a constraint :

ISGw)| < W (jw)| Yw = [W(jw)S(jw)| <1 Yu = |[|[WiS]le <1

where W;(s) is typically a low-pass filter.

Graphical interpretation :

,,,,,,,,,, ) |Wi (jw)] glm

| L(jw)

Wi (jw) . .
T+ L(jw) <l Yw & |[Wi(jw)| <1+ L(jw)] Yw

The open-loop transfer function L(jw) should not intersect the performance disk.
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Model Uncertainty

Model Uncertainty : Physical systems cannot be exactly modelled. They

belong to an uncertainty model set, which can be structured or
unstructured.

Structured model set

Parametric uncertainty :

K
G = {Ts+1 Tmin < T < Tmax, Kmin < KgKmax}

Multimodel uncertainty : G ={Go, G1, G2, G3}

Unstructured model set

Norm bounded uncertainty : G={G+A: |Alx <7}
Frequency-domain uncertainty :

G = {GUw)l[S10w)| < [6(w)| <[S2(w)[}

Stability, Performance and Robustness Advanced Control Systems
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Model Uncertainty

Example (Norm bounded uncertainty)
Consider a plant model with unmodelled dynamics :
- 12 1
G =
)= i ot t1

where G(s) is the true model. The objective is to find a norm bounded
uncertainty set for this model as

Ge{G+A: |Alo<7}

Solution : Let's write G(s) as :

E(s)— 15 12/07  15/7 _ 2143541071 157
C(s+2) (s+3) s+10 _ s2+4+55+6 s+ 10
s ——

G(s) A

It is clear that 7 = ||A||cc = 15/70 = 0.214
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Model Uncertainty

Example (Norm bounded uncertainty)

The uncertainty model set can be presented in the Nyquist diagram :

Ge{G+A: [Allo<n}

@ Blue : Nominal Model G

@ Green : True model G
@ Red : Uncertainty set G + A

Can we reduce the size of the uncertainty set ?
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Model Uncertainty

Example (Norm bounded uncertainty)

G(s) = 12 1 —2143s+10.71  15/7
~ (s+2)(s+3)01s+1  s2+55+6 s+ 10
—~ ——

G(s) Wh A

@ Blue : Nominal Model G
o Green : True model G
@ Red : Uncertainty set G + WL A

15/7
Wa(s) = 110 [Alle <1

The radius of the uncertainty disk at each frequency is |W,(jw)],
which presents the size of uncertainty.

o
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Model Uncertainty

Unstructured uncertainty
Additive uncertainty :

C=G+AW, |Als<1

< A — W
Multiplicative uncertainty : u(t) ¢ + y(t)

G=G1+AW,) Al <1
A — Wo
u(o) [~ F Jym

N\

G : true model G : nominal model
A : norm-bounded uncertainty W5 : Stable weighting filter

Remark : It is assumed that G and G have the same number of unstable poles. ‘

Multiplicative uncertainty can be converted to additive uncertainty by
changing the weighting filter : W34 = gun!
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Model Uncertainty

Unstructured uncertainty

Feedback uncertainty :

Wo = A W A
(O] ‘g “ y(t) u(t) ;{- G y(t)

G

~ G -

G=—"— Al <1 G=—" Al <1
14+ AW, 1Alloo = 14+ AW,LG 1Al

G : true model G : nominal model

A : norm-bounded uncertainty W, : Stable weighting filter

Remark : It is assumed that G and G have the same number of unstable poles. ‘

All unstructured uncertainty models are equivalent from a theoretical point
of view, however, one may be preferred for some applications because the
computation of the weighting filter becomes simpler.
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Model Uncertainty

Remarks :

@ There are specific methods for analysis and control synthesis of
systems with structured (multimodel or parametric) uncertainty
and unstructured (frequency-domain) uncertainty.

e Structured uncertainty can be converted to unstructured
uncertainty.

o If we can analyze and synthesize closed-loop systems with
unstructured uncertainty, we can find a solution to many robust
control problems.

e Controller design for a model set greater than the real model set
leads to a conservative design.
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Model Uncertainty

Converting structured to unstructured uncertainty

Multimodel to multiplicative uncertainty

Problem : A multimodel uncertainty set G = { Gy, Gy, ..., Gy} is given.
Find the uncertainty filter W5(s) in the multiplicative uncertainty set
G=G(1+AW,).

@ Choose one of the models as the nominal model G. Then we have :

@:G(1+AW2):>%—1:AW2 fori=1,....m

. i(Jjw) )
Al <1 —1| < |W, fori=1,...,
@ Since [|A|le < = ‘ () |Wa(jw) or | m
Gi(jw)

@ Compute W5 (jw) such that |Wh(jw = max
Wa(jw) [Wa(jw)| o)

@ Design Wh(s) such that [Wh(jw)| > |Wa(jw)| Vw.

1’ Yw
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Model Uncertainty

Example (Multimodel to multiplicative uncertainty)

Suppose that G = { Gy, G1, Gy, G3, G4} is given. Compute a 3rd order
uncertainty filter for the multiplicative uncertainty set.

Bode Diagram

Magnitude (d8)
Magnitude (d8)

10! 10!
Frequency (rads) Frequency (radis)

Magnitude (dB)
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Model Uncertainty

Example (Parametric to multiplicative uncertainty)

Given G(s) = {% :01<k< 10} compute the uncertainty filter Wh(s).
s p—

k
@ First we choose a nominal model : G(s) = 02 with kp = 5.05

@ Then we compute :
Gliw) _,
G(jw)

< [Wa(jw)| =

max
0.1<k<10 | 5.05

k .
——1‘ < (o)

@ By inspection we obtain W;(s) = 4.95/5.05 = 0.98.

@ Similar solution could be obtained by sampling k in the interval

0.1 < k <10 and converting the multimodel to multiplicative uncertainty.

@ What is the uncertainty filter for additive uncertainty set ?

0.98(s — 2) 4.95 4.95 0.98

(A)—505 C) (C’m ()=
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Model Uncertainty

Example (Parametric to feedback uncertainty)
P 1

Given G(s) = {m :04<a< 0.8} compute the uncertainty

filter Wh(s) in a feedback uncertainty set.

1

524065+ 1
@ Represent the uncertain parameter as a function of A :

@ Choose the nominal model as G(s)

a=06+02A, -1<A<1

@ The uncertainty set is given by :

1
&(s) = 1 __ 406s41  _ G(s)
s2+0.6s+02As+1 1+ - Jor-g.éssﬂ 14+ AWs(s)G(s)

e This gives W5(s) = 0.2s.
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Model Uncertainty

Example (Time-delay to multiplicative uncertainty)

~ 1
Given G(s) = e”"*— where 0 < 7 < 0.1, compute W>(s) in a multiplicative
s

. . . 1
uncertainty set with the nominal model as G(s) = =

s2’
@ For multiplicative uncertainty we should have :
CU9) 1| < | wy(ju)] = e — 1] < |Wa(jw)] Vi,
G(jw) B
@ The worst case happens for 7 = 0.1. ‘ /\\/‘\“\
. e \ A
@ The Bode diagram of |e7 %Y« — 1] is given. - o ‘
g ///
@ Using the Bode diagram we can find
0.21s
Wor(s) = ————.
(%)= o151

vvvvvvvvvvvvvv
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Model Uncertainty

Stochastic uncertainty

@ Different models in an uncertainty model set may have different
probabilities.

@ Large deterministic uncertainties lead to robust controllers with low
performance.

@ Stochastic uncertainty model sets may reduce the conservatism and
lead to high performance controllers.

@ ldentification methods lead to nonparametric and parametric models
with stochastic uncertainty (because of measurement noise).

@ For stochastic uncertainty model sets we cannot guarantee the
closed-loop stability in a deterministic sense.
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Stochastic Uncertainty

Nonparametric uncertainty : The frequency-domain model of a system can be
estimated by the Fourier transform method :
V(w) - V(w
2\ G(ev) +
U@~ T )

~
~—

6= 3ic)

@ The variance of G is ®,(w)/®,(w).

@ The estimates R.{G(e/“)} and I,,{G(e/)} are asymptotically uncorrelated
and normally distributed with a variance of ®,(w)/2®,(w). Im

@ Therefore, |G|2 has a chi-squared distribution
(or |G| has a Rayleigh distribution).

Knowing the distribution of |G|, the 0.95%
confidence interval in the Nyquist diagram can
be computed.

G =G+ Ws(w)A Ws = /200
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Stochastic Uncertainty

Parametric uncertainty : The parametric model of a system can be estimated

using the prediction error method. The covariance of the parameters can also be
estimated based on the data.

@ If § is a random variable with Gaussian distribution A/ (6o, P), then £(f)
converge in distribution to a normal distribution :

(o0 (35) 7 (5) )

o Therefore, if we take £(0) = [Re{G(0, jw)} In{G(0,jw)}],
we can compute the covariance of f and

Re
the uncertainty in the Nyquist diagram. (
Since P is not diagonal, the frequency-domain
uncertainty will be an ellipse. &
So Wj is the radius of the smallest disk that
. W3
covers the ellipse.

Stability, Performance and Robustness
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Stochastic Uncertainty

Input/output data of an electromechanical system

Uncertainty from nonparametric identification Uncertainty from parametric identification
.
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Robust Stability

Robustness : A controller is robust with respect to a closed-loop
characteristic, if this characteristic holds for every plant in G.

Robust Stability : A controller is robust in stability if it provides internal
stability for every plant in G.

Definition

Stability margin : For a given model set with an associate size, it can be
defined as the largest model set stabilized by a controller.

Definition

Stability margin for an uncertainty model : Given G = G(1+ AW,)
with ||A|lc < B, the stability margin for a controller C is the least upper
bound of .
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Robust Stability

Definition

Modulus margin : The shortest distance from -1 to the open-loop
Nyquist curve.

1 -1
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Robust Stability

Theorem (Small Gain)

Suppose H is stable and has bounded Als)
infinity norm and let v > 0. The following
feedback loop is internally stable for all

stable A(s) with H(s)

|Allo < 1/y ifand only if [H]w <7

—-K
1+ GK

G=G+AW, = H=W,

Closed-loop system is internally
stable for all || Al < 1 iff

IWaKS|loo < 1
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Robust Stability

Robust stability condition for plants with multiplicative uncertainty :

- —GK

G = Glraws) > H = gy )

r(t + t
Closed-loop system is internally
stable for all ||Allee < 1 iff

[WoT |loo < 1.

.

Proof : Assume that ||[W2T ||o < 1. We show that the winding number of
1+ GK around zero is equal to that of 1 + GK.

14+GK = 14+ GK(1+AW,) = 14 GK+GK AW, = 1+ GK+(1+GK)T AW,

14+ GK = (1+ GK)(1 4+ AWAT)

sowno { (14 GK)} = wno{(1 + GK)} +wno{(1 + AWAT)}.
But wno {(1+ AWLT)} = 0 because ||[AWLT |00 < 1.
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Robust Stability

Robust stability condition for plants with feedback uncertainty (1) :

; G 1
G=— " S H=W
11 AW, 1+ GK

Closed-loop system is internally
stable for all ||Alle < 1 iff

i} G _G
[ B TR VYA
1+ AWLG 211 GK

Closed-loop system is internally
stable for all ||Alle < 1 iff
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Robust Stability

Robust Stability Condition :

The robust stability condition for systems with multiplicative uncertainty is

defined as | || WaT ||s < 1|where Wh(s) is typically a high-pass filter. It

guarantees small |7 (jw)| at high frequencies, where unmodelled dynamics
are large.

Graphical interpretation :

The robust stability condition in the frequency-domain is given by :
A

Im
(Wa(jw)T (jw)] <1 Vw
Wa(jw) L(jw) < Re
11w | <1 v,

- )

IWs(jw)L(jw)| < |1 + L(jw)|, Yw
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Robust Performance

@ Nominal performance condition :
[W1S]loe <1

@ Robust stability condition for multiplicative uncertainty :
[WaT |l <1

@ Robust performance for multiplicative uncertainty :

IWaTllo <1 and  [[WiS]le < 1

where :
1 1 B 1 B S
1+ GK 1+GK(1+AW,) (14 GK)(1+AWLT) 1+ AWLT

SNZ
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Robust Performance

A necessary and sufficient condition for robust performance of a plant
model with multiplicative uncertainty is

| IWAS| + [WaT | || < 1

Proof : (Sufficiency) The above robust performance condition is
equivalent to :

7%
[WaT oo <1 and H 15 H

1— |WLT]

On the other hand : 1 = |1 + AWLT — AWLT| < |1+ AWLT| + [WoT|
and therefore 1 — [WLT| < |1+ AWLT|. This implies that

wis WwiS wis <1
1—|W2T‘ 1+AW2T 1+ AWLT o
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Robust Performance

Graphical interpretation :

The robust performance condition for systems with multiplicative
uncertainty is given by :

HWAS] + [WaT oo <1

W) | | | Walis)L(w) " R
1 +1L(jw)’ * 12+ L(jw) ’ <1 i l -

NG
=
| WA (jw) |+ Wa (jw) L(jw)| < [1+L(jw)], Vw ‘Wm@
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Limit of Performance

Algebraic Constraints :
o = ererore .

=1

ISGw)| = T (w)l| < [S(w) + T(w)| < [ISGw)l + |T )|

So |S(jw)| and |T (jw)| cannot both be less than 1/2 at the same frequency.
@ A necessary condition for robust performance is that :
min{|WA(jw)), Wa(ie)l} < 1, Ve
To illustrate this, assume that |W;| < |W,| at a given frequency. Therefore :
|Wh| = |IWA[S + T]| < IWAS| + [WAT| < [WAS| + [WLT| <1

The same conclusions can be obtained when |W| < |W]|. So at every
frequency either |W;| or |W5| must be less than 1. Typically |W;| is
monotonically decreasing and |W| is monotonically increasing, thus their
intersection should be always below the zero dB axis.
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Limit of Performance

Preliminaries

@ If pis a pole and z a zero of L = GK both in Re s > 0 then :

S(p)=0 S(z)=1 T(p)=1 T(2)=0

1
because L(p) = oo and L(z) = 0 and therefore : S(p) = 1+ L(p) =0

@ Define M as the set of stable transfer functions with bounded infinity
norm.
o F(s) e Mis all-pass if |F(jw)| =1 VYw
o G(s) € M is minimum-phase if it has no zeros in Re s > 0.
o Every transfer function G € M can be presented as G = G,,Gpp

G(s) = (s+1)(s—2) s—2(s+2)(s+1)
N N s+3)(s+4)
—_—

(s+3)(s+4) s+2(
Gap(s) Gmp(5)
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Limit of Performance

Theorem (Maximum Modulus Theorem)

Suppose that S is a region (nonempty, open, connected set) in the
complex plane and F is a function that is analytic in Q. Suppose that F is
not equal to a constant. Then |F| does not attain its maximum value at
an interior point of 2.

A simple application of this theorem, with Q equal to the open right
half-plane, shows that for F in M

[Flloo = sup [F(s)]
Re s>0
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Limit of Performance

Analytic Constraints :

@ Zeros of L = GK in RHP limit the nominal performance :

[WiSlleo = sup [WA(s)S(s)| = [WA(2)S(2)| = [WA(2)]
Res>0

o If |Wi(z)| > 1, nominal performance cannot be achieved.

o Since Wj(s) is typically a low-pass filter, a low frequency unstable zero
limits the performance more than a high frequency unstable zero.

o In industry, it is usually said “the closed-loop bandwidth is limited to
the frequency of unstable zeros of the plant model .

@ Unstable poles of L = GK limit the robust stability :
IWoT oo = sup [Wa(s)T(s)| = [Wa(p)T(p)| = |Wa(p)

€s>0

o if |Wa(p)| > 1, robust stability cannot be achieved.
o Since Wh(s) is typically a high-pass filter, a high-frequency unstable
pole limits the robust stability more than a low frequency unstable pole.
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Analytic Constraints

Analytic Constraints :
@ Zeros and poles of L = GK in RHP limit the nominal performance
significantly. We have :

'Sap S""P
——
. s—p _s—p S+p
2 (s—=p)+tLlis—2) s+tp(s—p)+Ls—2)

[y

On the other hand S(z) = Sap(2)Smp(z) = 1 = Smp(2) = 5;,;1(2)-
Then :

IWsSTloe = |WaSmplloe = [WA(2)Sumpl2)] = 1W1(z

z—i—p‘

e Unstable pole and zero close to each other limits significantly the

achievable performance.
o The worst situation is when they are both in low frequencies (because

Wi (s) is a low pass filter).
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Analytic Constraints

Analytic Constraints :

@ Zeros and poles of L = GK in RHP limit the robust stability
significantly. We have :
7—ap Tmp
> B L(s - 2) s—z s+z
= 1+Z§:; S (s=p)+L(s—z) s+tz(s—p)+L(s—2)

On the other hand T(p) = Tap(p) Tmp(P) = 1 = Tmp(p) = 7;;1(13)-
Then :

+ z
IWaT oo = 1WaTrmplloo > [Wa(p) Tenp(p)] = ’Wz ()22

e Unstable pole and zero close to each other limits significantly the
robust stability.

o The worst situation is when they are both in high frequencies (because
Ws(s) is a high-pass filter).
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Analytic Constraints

Example (Balancing a stick by hand)

If we want to balance a stick on our hand :

@ We choose

(A) A long stick (B) A short stick
@ We add a mass on the top of the stick
(A) No way (B) Off course
@ We look at
(A) Our hand (B) the top of the stick
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Analytic Constraints

Example
Consider the inverse pendulum problem.

y m
(M + m)% 4+ ml(fcos@ — 6?sinf) = u "X_"i
m(xcosf + 16 — gsinf) = d E
.
M

Linearized model :

2 _ )
A 1 Isc—g Is y
0)  s2[Mis?2 — (M + m)g] _2  Mim2 d
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Analytic Constraints

Measuring x : (looking at the hand)

o /52—g
T S2[Mis2 — (M + m)g]
M
RHP poles and zeros : z = \/?/’ p=0,0, (7\r/”’77)g

From a robust stability perspective :

o It is a very difficult problem when m/M is small (unstable pole and

zero are too close).

@ By increasing m/M (for a fixed /) the situation improves (Z—Z is

decreased) but there is a trade-off because W5 (p) will increase as well.

@ The best scenario is to increase / and m/M.
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Analytic Constraints

Measuring y : (looking at the top)

Tuy = £
Y s2[Mis? — (M + m)g]

From a robust stability perspective :
@ Since there is no RHP zero the system is much easier to stabilize.
o A larger | gives a smaller p so the system can be better controlled.

@ The choice of the place of sensors changes the zeros of the system
can affects significantly the limit of performance.
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Analytic Constraints

Theorem (The Waterbed Effect)
Suppose that G has a zero at z with Re z > 0 and :

M= max [S(jw)|  M2:= ]S

w1 <w<wy

Then there exist positive constants c¢; and ¢, depending only on wi,w»
and z, such that :

1 log M1 + ¢ log My > log \S‘.,_Pl(z)] >0

o Note that ]Sa_pl(z)| = 1if L has no unstable pole. In this case
log \S;pl(z)| =0.

@ If L has one unstable pole then log |Sa_pl(z)| > 0.

@ To obtain better performance M; should be reduced. The theorem
shows this necessarily leads to an increase of My = ||S||oc (waterbed
effect) and reduces the modulus margin.
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Analytic Constraints

Theorem (The Area Formula)

Assume that the relative degree of L is at least 2. Then if the closed-loop
system is stable :

/ log |S(jw)|dw = 7(log €) Z Re pi
0 i

where {p;} denotes the set of poles of L in Re s > 0.

@ For a stable L, the right hand side is equal to zero. So the area of
disturbance attenuation is equal to the area of disturbance
amplification.

@ For unstable L, it is more difficult to improve the performance.

@ In contrast with the waterbed effect (which concerns only
non-minimum phase systems), improving the performance in some
frequency (decreasing M) will not necessarily increase My = ||S||oo-
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