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PREFACE

These course notes have been prepared for a graduate course on Advanced Control Systems
for students of Ecole Polytechnique Fédérale de Lausanne (EPFL). The course covers
theoretical and practical aspects of robust and adaptive control for students involved in
control system design.

The first chapter provides a summary of the first six chapters of Feedback Control
Theory by Doyle, Francis, and Tannenbaum published in 1992 by Maxwell Macmillan
(available online), with the addition of a section on stochastic uncertainty modeling.
The chapter covers stability and performance of control systems, the concept of model
uncertainty, robust stability, and robust performance in the Hy/H., framework.

The second chapter presents the essentials of controller design in the Hy and H.o
framework using convex optimization algorithms and linear matrix inequalities. After a
brief introduction to convex optimization, the chapter covers Hs and H,, state feedback
controller design using Linear Matrix Inequalities (LMIs), introduces the concept of an
augmented plant using linear fractional transformation, and discusses Hs/Ho output
feedback controller design. The chapter concludes with a new method for robust controller
design developed in the Automatic Control Laboratory of EPFL (thanks to Christoph
Kammer, Philippe Schuchert and Vaibhav Gupta), which uses frequency-domain data
and convex optimization algorithms to design fixed structure controllers for uncertain
systems.

The third chapter introduces the concept of robust adaptive control and reviews digital
controller design methods using two-degree of freedom polynomial controllers. It then cov-
ers the robust pole placement technique using Q-parameterization and provides a detailed
overview of parameter adaptation algorithms. The chapter concludes by discussing direct,
indirect, and switching adaptive control. This chapter is a concise version of Chapters
1-3, 7-8, 10-13 of Adaptive Control, Algorithms, Analysis and Applications by Landau,
Lozano, M’Saad and Karimi published in 2011 by Springer.

Lausanne, Spring 2025
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Chapter 1

STABILITY, PERFORMANCE AND
ROBUSTNESS

1.1 Introduction

The process of designing a control system generally involves many steps. A typical scenario
is as follows [2]:

1. Study the system to be controlled and decide what types of sensors and actuators
will be used and where they will be placed.

Model the resulting system to be controlled.

Simplify the model if necessary so that it is tractable.
Analyze the resulting model; determine its properties.
Decide on performance specifications.

Decide on the type of controller to be used.

N Gt W

Design a controller to meet the specs, if possible; if not, modify the specs or gener-
alize the type of controller sought.

8. Simulate the resulting controlled system, either on a computer or in a pilot plant.
9. Repeat from step 1 if necessary.
10. Choose hardware and software and implement the controller.

11. Tune the controller on-line if necessary.

It must be kept in mind that a control engineer’s role is not merely one of designing
control systems for fixed plants, of simply “wrapping a little feedback” around an already
fixed physical system. It also involves assisting in the choice and configuration of hardware
by taking a system-wide view of performance. For this reason it is important that a theory
of feedback not only lead to good designs when these are possible, but also indicate directly
and unambiguously when the performance objectives cannot be met.
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It is also important to realize at the outset that practical problems have uncertain,
non-minimum-phase plants (non-minimum-phase means the existence of right half-plane
zeros, so the inverse is unstable); that there are inevitably unmodeled dynamics that
produce substantial uncertainty, usually at high frequency; and that sensor noise and
input signal level constraints limit the achievable benefits of feedback. A theory that
excludes some of these practical issues can still be useful in limited application domains.
For example, many process control problems are so dominated by plant uncertainty and
right half-plane zeros that sensor noise and input signal level constraints can be neglected.
Some spacecraft problems, on the other hand, are so dominated by tradeoffs between sen-
sor noise, disturbance rejection, and input signal level (e.g., fuel consumption) that plant
uncertainty and non-minimum-phase effects are negligible. Nevertheless, any general the-
ory should be able to treat all these issues explicitly and give quantitative and qualitative
results about their impact on system performance.

Now we continue with a discussion of the issues in general.

Control objectives: Generally speaking, the objective in a control system is to make
some output, say y, behave in a desired way by manipulating some input, say u. The
simplest objective might be to keep y small (or close to some equilibrium point), a requlator
problem, or to keep y — r small for r, a reference or command signal, in some set, a
servomechanism or servo problem. Examples:

e On a commercial airplane, the vertical acceleration should be less than a certain
value for passenger comfort.

e In an audio amplifier, the power of noise signals at the output must be sufficiently
small for high fidelity.

e In paper making, the moisture content must be kept between prescribed values.

There might be the side constraint of keeping w itself small as well, because it might be
constrained (e.g., the flow rate from a valve has a maximum value, determined when the
valve is fully open) or it might be too expensive to use a large input. But what is small for
a signal? It is natural to introduce norms for signals; then “y small” means “||y|| small”.
Which norm is appropriate depends on the particular application.

In summary, performance objectives of a control system naturally lead to the intro-
duction of norms; then the specs are given as norm bounds on certain key signals of
interest.

Models: Before discussing the issue of modeling a physical system it is important to
distinguish among four different objects:

1. Real physical system: the one “out there”.

2. Ideal physical model: obtained by schematically decomposing the real physical sys-
tem into ideal building blocks; composed of resistors, masses, beams, kilns, isotropic
media, Newtonian fluids, electrons, and so on.
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3. Ideal mathematical model: obtained by applying natural laws to the ideal physical
model; composed of nonlinear partial differential equations, and so on.

4. Reduced mathematical model: obtained from the ideal mathematical model by lin-
earization, lumping, and so on; usually a rational transfer function.

Sometimes language makes a fuzzy distinction between the real physical system and the
ideal physical model. For example, the word resistor applies to both the actual piece of
ceramic and metal and the ideal object satisfying Ohm’s law. Of course, the adjectives
real and ideal could be used to disambiguate.

No mathematical system can precisely model a real physical system; there is always
uncertainty. Uncertainty means that we cannot predict exactly what the output of a real
physical system will be even if we know the input, so we are uncertain about the system.
Uncertainty arises from two sources: unknown or unpredictable inputs (disturbance, noise,
etc.) and unpredictable dynamics.

What should a model provide? It should predict the input-output response in such a
way that we can use it to design a control system, and then be confident that the resulting
design will work on the real physical system. Of course, this is not possible. A “leap of
faith” will always be required on the part of the engineer. This cannot be eliminated, but
it can be made more manageable with the use of effective modeling, analysis, and design
techniques.

Mathematical models: The models in this chapter are finite-dimensional, linear, and
time-invariant. The main reason for this is that they are the simplest models for treating
the fundamental issues in control system design. The resulting design techniques work
remarkably well for a large class of engineering problems, partly because most systems are
built to be as close to linear time-invariant as possible so that they are more easily con-
trolled. Also, a good controller will keep the system in its linear regime. The uncertainty
description is as simple as possible as well.

The basic form of the plant model is
y=(G+Au+n.

Here y is the output, u the input, and GG the nominal plant transfer function. The model
uncertainty comes in two forms:

n: unknown noise or disturbance;
A: unknown plant perturbation.

Both n and A will be assumed to belong to sets, that is, some a prior: information is
assumed about n and A. Then every input u is capable of producing a set of outputs,
namely, the set of all outputs (G + A)u + n as n and A range over their sets. Models
capable of producing sets of outputs for a single input are said to be nondeterministic.
There are two main ways of obtaining models, as described next.
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Models from science: The usual way of getting a model is by applying the laws of
physics, chemistry, and so on. Consider an electromechanical system. One can write down
differential equations based on physical principles (e.g., Newton’s or Kirchhoff’s laws)
and making idealizing assumptions (e.g., the mechanical parts are rigid or the resistors
have no capacitive or inductive effect). The coefficients in the differential equations will
depend on physical constants, such as masses and physical dimensions. These can be
measured. This method of applying physical laws and taking measurements is most
successful in electromechanical systems, such as aerospace vehicles and robots. Some
systems are difficult to model in this way, either because they are too complex or because
their governing laws are unknown.

Models from experimental data: The second way of getting a model is by doing ex-
periments on the physical system. Let’s start with a simple thought experiment, one that
captures many essential aspects of the relationships between physical systems and their
models and the issues in obtaining models from experimental data. Consider a real phys-
ical system, the plant to be controlled, with one input, u, and one output, y. To design a
control system for this plant, we must understand how u affects y.

The experiment runs like this. Suppose that the real physical system is in a rest state
before an input w is applied (i.e., v = y = 0). Now apply some input signal u, resulting
in some output signal y. Observe the pair (u,y). Repeat this experiment several times.
Pretend that these data pairs are all we know about the real physical system. (This is
the black box scenario. Usually, we know something about the internal workings of the
system.)

After doing this experiment we will notice several things. First, the same input signal
at different times produces different output signals. Second, if we hold u = 0, y will
fluctuate in an unpredictable manner. Thus the real physical system produces just one
output for any given input, so it itself is deterministic. However, we observers are uncertain
because we cannot predict what that output will be.

Ideally, the model should cover the data in the sense that it should be capable of
producing every experimentally observed input-output pair. (Of course, it would be better
to cover not just the data observed in a finite number of experiments, but anything that can
be produced by the real physical system. Obviously, this is impossible.) If nondeterminism
that reasonably covers the range of expected data is not built into the model, we will not
trust that designs based on such models will work on the real system.

In summary, for a useful theory of control design, plant models must be nondetermin-
istic, having uncertainty built in explicitly.

Synthesis problem: A synthesis problem is a theoretical problem, precise and unambigu-
ous. Its purpose is primarily pedagogical: It gives us something clear to focus on for the
purpose of study. The hope is that the principles learned from studying a formal synthesis
problem will be useful when it comes to designing a real control system.The most general
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Figure 1.1: Most general control system.

block diagram of a control system is shown in Figure 1.1. The generalized plant consists
of everything that is fixed at the start of the control design exercise: the plant, actuators
that generate inputs to the plant, sensors measuring certain signals, analog-to-digital and
digital-to-analog converters, and so on. The controller consists of the designable part: it
may be an electric circuit, a programmable logic controller, a general-purpose computer,
or some other such device.

The signals w, z,y, and u are, in general, vector-valued functions of time. The com-
ponents of w are all the exogenous inputs: references, disturbances, sensor noises, and so
on. The components of z are all the signals we wish to control: tracking errors between
reference signals and plant outputs, actuator signals whose values must be kept between
certain limits, and so on. The vector y contains the outputs of all sensors. Finally, u
contains all controlled inputs to the generalized plant. (Even open-loop control fits in;
the generalized plant would be so defined that y is always constant.)

Very rarely is the exogenous input w a fixed, known signal. One of these rare instances
is where a robot manipulator is required to trace out a definite path, as in welding.
Usually, w is not fixed but belongs to a set that can be characterized to some degree.
Some examples:

e In a thermostat-controlled temperature regulator for a house, the reference signal is
always piecewise constant: at certain times during the day the thermostat is set to
a new value. The temperature of the outside air is not piecewise constant but varies
slowly within bounds.

e In a vehicle such as an airplane or ship the pilot’s commands on the steering wheel,
throttle,pedals, and so on come from a predictable set, and the gusts and wave
motions have amplitudes and frequencies that can be bounded with some degree of
confidence.
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Figure 1.2: Basic feedback loop

e The load power drawn on an electric power system has predictable characteristics.

Sometimes the designer does not attempt to model the exogenous inputs. Instead, she or
he designs for a suitable response to a test input, such as a step, a sinusoid, or white noise.
The designer may know from past experience how this correlates with actual performance
in the field. Desired properties of z generally relate to how large it is according to various
measures, as discussed above.

1.2 Stability

1.2.1 Basic Feedback Loop

The most elementary feedback control system has three components: a plant (the object
to be controlled, no matter what it is, is always called the plant), a sensor to measure the
output of the plant, and a controller to generate the plant’s input. Usually, actuators are
lumped in with the plant. We begin with the block diagram in Figure 1.2. The signals in
this figure have the following interpretations:

r: reference or command input
sensor output
actuating signal, plant input
external disturbance
plant output and measured signal
n: Sensor noise

The three signals coming from outside, r, d and n, are called exogenous inputs.

In what follows we shall consider a variety of performance objectives, but they can
be summarized by saying that y should approximate some prespecified function of r, and
it should do so in the presence of the disturbance d, sensor noise n, with uncertainty in
the plant. We may also want to limit the size of u. Frequently, it makes more sense to
describe the performance objective in terms of the measurement v rather than y, since
often the only knowledge of y is obtained from wv.

This section ends with the notion of properness and well-posedness.
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Definition 1.1. (Properness) A transfer function G(s) said to be proper if G(joo) is finite
(degree of denominator > degree of numerator), strictly proper if G(joo) = 0 (degree of
denominator > degree of numerator), and biproper if G(s) and G~1(s) are both proper
(degree of denominator = degree of numerator).

Definition 1.2. (Well-posedness) [t means that in Figure 1.2 all closed-loop transfer func-
tions exist, that is, all transfer functions from the three exogenous inputs to all internal
signals, namely, u,y,v, and the outputs of the summing junctions.

The analysis to follow is done in the frequency domain. For well-posedness it suffices to
look at the nine transfer functions from r,d, n to x1, z2, x3. (The other transfer functions
are obtainable from these.) Write the equations at the summing junctions:

wi(s) = r(s) = F(s)ws(s)
xo(s) = d(s)+ K(s)x1(s)
z3(s) = n(s)+ G(s)xa(s)

In matrix form these are

1 0 F| |z T
0 -G 1 T3 n

Thus, the system is well-posed if and only if the above 3 x 3 matrix is nonsingular, that
is, the determinant 1 + GKF is not identically equal to zero. [For instance, the system
with G(s) = 1, K(s) = 1, F(s) = —1 is not well-posed.] Then the nine transfer functions
are obtained from the equation

-1

Ty 1 0 F r
xTs3 0 -G 1 n
that is
1 1 1 —-GF -F r
To| = ——— | K 1 —KF| |d (1.1)
T3 1+GKF GK @G 1 n

A stronger notion of well-posedness that makes sense when G, K, and F are proper
is that the nine transfer functions above are proper. A necessary and sufficient condition
for this is that 1 + GKF not be strictly proper [i.e., GK F(0c0) # —1].

One might argue that the transfer functions of all physical systems are strictly proper:
If a sinusoid of ever-increasing frequency is applied to a (linear, time-invariant) system,
the amplitude of the output will go to zero. This is somewhat misleading because a real
system will cease to behave linearly as the frequency of the input increases. Furthermore,
our transfer functions will be used to parametrize an uncertainty set, and as we shall see,
it may be convenient to allow some of them to be only proper.
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Notice that the feedback system is automatically well-posed, in the stronger sense,
if G, K, and I are proper and one is strictly proper. In the sequel, we shall make the
following standing assumption, under which all closed-loop transfer functions are proper:
G is strictly proper, K and F' are proper.

1.2.2 Internal Stability

Consider a system with input u, output y, and transfer function G, assumed stable and
proper. We can write G = Gy + G where Gy is constant and G, is strictly proper.

Example: G(s) = sj—l =1- lerl
In the time domain the output equation is:
y(t) = Gou(t) + /_00 g1(t — T)u(r)dr
if |u(t)| < ¢ for all ¢, then
(0] < [Gole+ [ cla(rldr

The right-hand side is finite. Thus the output is bounded whenever the input is bounded.

If the nine transfer functions in (1.1) are stable, then the feedback system is said to be
internally stable. As a consequence, if the exogenous inputs are bounded in magnitude,
so too are all output signals. So internal stability guarantees bounded internal signals for
all bounded exogenous signals.The idea behind this definition of internal stability is that
it is not enough to look only at input-output transfer functions, such as from r to y, for
example. This transfer function could be stable, so that y is bounded when r is, and yet
an internal signal could be unbounded, probably causing internal damage to the physical
system.

Example 1.1. Take

s—1 1

K(S):s+1’ G(s) = 5— F(s)=1.

Check that the transfer function from r to y is stable, but that from d to y is not. The
feedback system is therefore not internally stable. As we will see later, this offense is
caused by the cancellation of the controller zero and the plant pole at the point s = 1.

We shall develop a test for internal stability which is easier than examining nine
transfer functions. For the remainder of this chapter, for simplicity we specialize to the
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unity-feedback case, F' = 1. Write G and K as ratios of coprime polynomials (i.e.,
polynomials with no common factors):
=y

G _M_K

K

The characteristic polynomial of the feedback system is the one formed by taking the
product of the two numerators plus the product of the two denominators:

NoNg + MMy
The closed-loop poles are the zeros of the characteristic polynomial.

Theorem 1.1. The feedback system is internally stable if and only if there are no closed-
loop poles in Re s > 0.

Proof. From (1.1) we have

T 1 1 -G -1 r
Ty | = ——— | K 1 —-K d
T3 1+GK GK G 1 n

Substitute in the ratios and clear fractions to get

T 1 MgMK —NgMK —MgMK r
T2 = MgNK MgMK —MgNK d (12)
vy | NN+ MM NN NoMe  MoMg | | n

Note that the characteristic polynomial equals Ng N+ MqgMp . Sufficiency is now evident;
the feedback system is internally stable if the characteristic polynomial has no zeros in
Re s > 0.

Necessity involves a subtle point. Suppose that the feedback system is internally
stable. Then all nine transfer functions in (1.2) are stable, that is, they have no poles in
Re s > 0. But we cannot immediately conclude that the polynomial NgNg + MgMg
has no zeros in Re s > 0 because this polynomial may conceivably have a right half-plane
zero which is also a zero of all nine numerators in (1.2), and hence is canceled to form
nine stable transfer functions. However, the characteristic polynomial has no zero which
is also a zero of all nine numerators, Ng N, MMy, and so on. Proof of this statement
is left as an exercise. (It follows from the fact that we took coprime factors to start with,
that is, Ng and Mg are coprime, as are the other numerator-denominator pairs.) O]

By Theorem 1.1 internal stability can be determined simply by checking the zeros of
a polynomial. There is another test that provides additional insight.

Theorem 1.2. The feedback system is internally stable if and only if the following two
conditions hold:
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(a) The transfer function 1 + GK has no zeros in Re s > 0.

(b) There is no pole-zero cancellation in Re s > 0 when the product GK is formed.

Proof. Recall that the feedback system is internally stable if and only if all nine transfer
functions

1 1 -G -1
K 1 —-K
1+GK CK @ 1

are stable.

(=) Assume that the feedback system is internally stable. Then in particular (1 +
GK)™! is stable (i.e., it has no poles in Re s > 0). Hence (1 + GK) has no zeros there.
This proves (a).

To prove (b), write G and K as ratios of coprime polynomials:

=

G _M_K

K

By Theorem 1.1 the characteristic polynomial NgNg 4+ Mg My has no zeros in Re s > 0.
Thus the pair (Ng, M) have no common zero in Re s > 0, and similarly for the other
numerator-denominator pairs.

(<) Assume (a) and (b). Factor G, K as above, and let sy be a zero of the characteristic
polynomial, that is,

NeNg + MMy = 0.

We must show that Re sy < 0; this will prove internal stability by Theorem 1.1. Suppose
to the contrary that Re so > 0. If (McMg)(so) = 0, then (NgNk)(sp) = 0. But this
violates (b). Thus (MgMk)(so) # 0, so we can divide by it above to get

NeNg
1 —0
+ MGMK(SO) ’

that is, 1 + (GK)(so) = 0, which violates (a). O

Finally, let us recall for later use the Nyquist stability criterion. It can be derived from
Theorem 1.2 and the principle of the argument. Begin with the curve D in the complex
plane: It starts at the origin, goes up the imaginary axis, turns into the right half-plane
following a semicircle of infinite radius, and comes up the negative imaginary axis to the
origin again.

As a point s makes one circuit around this curve, the point G(s)K(s) traces out a
curve called the Nyquist plot of GK. If GK has a pole on the imaginary axis, then D
must have a small indentation to avoid it.
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Nyquist criterion: Construct the Nyquist plot of GK, indenting to the left around poles
on the imaginary axis. Let n denote the total number of poles of G and K in Re s > 0.
Then the feedback system is internally stable if and only if the Nyquist plot does not pass
through the point -1 and encircles it exactly n times counterclockwise.

1.3 Performance

One way to describe the performance of a control system is in terms of the size of certain
signals of interest. For example, the performance of a tracking system could be measured
by the size of the error signal. This section looks at several ways of defining a signal’s size
(i.e., at several norms for signals). Which norm is appropriate depends on the situation
at hand. Also introduced are norms for a system’s transfer function. Then two very
useful tables are developed summarizing input-output norm relationships. The asymptotic
tracking is recalled and the nominal closed-loop performance is defined in terms of a norm
of the weighted sensitivity function.

1.3.1 Norms for Signals

We consider signals mapping (—oo, c0) to R. They are assumed to be piecewise continu-
ous. Of course, a signal may be zero for ¢ < 0 (i.e., it may start at time ¢ = 0).

We are going to introduce several different norms for such signals. First, recall that a
norm must have the following four properties:

- |lu|l = 0 (positivity)

. Nau|| = |a] ||u||, Va € R (homogeneity)
Null=0<=u(t) =0 WVt

w4+ o] < lul| + ||v|| (triangle inequality)

= W N

1-Norm: The l-norm of a signal u(t) is the integral of its absolute value:

Jull = [ " ()

o0

2-Norm: The 2-norm of u(t) is

fulle= ([~ atoyir) "

For example, suppose that u is the current through a 1 €2 resistor. Then the instan-
taneous power equals u?(t) and the total energy equals the integral of this, namely, ||u||3.
We shall generalize this interpretation: The instantaneous power of a signal u(t) is defined
to be u?(t) and its energy is defined to be the square of its 2-norm.
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oo-Norm: The co-norm of a signal is the least upper bound of its absolute value:
ltlloc = sup Ju(t)]

For example, the oo-norm of (1 — e *)1(¢) equals 1. Here, 1(¢) denotes the unit step
function.

1.3.2 Norms for Systems

We consider systems that are linear, time-invariant, causal, and (usually) finite-
dimensional. In the time domain an input-output model for such a system has the form
of a convolution equation,

Y= g *u, that is y(t) = / g(t — T)u(r)dr.

Causality means that g(¢) = 0 for ¢t < 0. Let G(s) denote the transfer function, the Laplace
transform of ¢g(t). Then G(s) is rational (by finite-dimensionality) with real coefficients.

We say that G(s) is stable if it is analytic in the closed right half-plane (Re s > 0). We
introduce two norms for the transfer function G.

I
2-Norm: |Gll2 = (% /_OO |G (jw)] dw) .
oo-Norm: |Gl = sup |G(jw)|.

Note that if G(s) is stable, then by Parseval’s theorem

= (g | otrac) = (o)

The oo-norm of G equals the distance in the complex plane from the origin to the
farthest point on the Nyquist plot of G. It also appears as the peak value on the Bode
magnitude plot of G. An important property of the co-norm is that it is submultiplicative:

IGH loo < 1Gloo [1H]]oc

It is easy to tell when these two norms are finite.

Lemma 1.1. The 2-norm of G 1is finite if and only if G s strictly proper and has no poles
on the imaginary azis; the co-norm is finite if and only if is proper and has no poles on
the imaginary axis.
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Proof. Assume that G is strictly proper, with no poles on the imaginary axis. Then
the Bode magnitude plot rolls off at high frequency. It is not hard to see that the plot
of ¢/(7s + 1) dominates that of G for sufficiently large positive ¢ and sufficiently small
positive 7, that is,

> |G(y Vw.
|26 w
But ¢/(7s+ 1) has finite 2-norm; its 2-norm equals ¢/v/27 (how to do this computation is
shown below). Hence G has finite 2-norm. The rest of the proof follows similar lines. [

How to compute the 2-Norm: Suppose that G is strictly proper and has no poles on
the imaginary axis (so its 2-norm is finite). We have

I 1[I 1

Gl3 = — G(jw)fdw = — G(—s)G(s)ds = — ¢ G(—s)G(s)ds
1613 =5 [ 16G)Pe = o [ Gs)Giens = o  Gat)

The last integral is a contour integral up the imaginary axis, then around an infinite
semicircle in the left half-plane; the contribution to the integral from this semicircle equals
zero because G is strictly proper. By the residue theorem, ||G||3 equals the sum of the

residues of G(—s)G(s) at its poles in the left half-plane.

Example 1.2. Take G(s) = 1/(7s+1),7 > 0. The left half-plane pole of G(—s)G(s) is at
s = —1/7. The residue at this pole equals

. n 1 1 1 1
im s+ — = —.

s——1/7 T) —1s+17s+1 271
Hence |G|l = 1/v/27.

How to compute the co-Norm: This requires a search. Set up a fine grid of frequency

points {wy,...,wn}, then an estimate for ||G|lo is: maxi<x<y |G(jwy)|. Alternatively,
one could find where |G(jw)| is maximum by solving the equation
AGGE
dw

This derivative can be computed in closed form because G is rational. It then remains to
compute the roots of a polynomial.

Example 1.3. Consider

as+1
Gls) = bs+1

with a,b > 0. Look at the Bode magnitude plot: For a > b it is increasing (high-pass);
else, it is decreasing (low-pass). Thus

[ a/b, a>Db
el =1 7" 020
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Norm of multivariable systems:

Given G(s) a multi-input multi-output system, we can define:

2-Norm:

€1k = (% / ) tface[G*(jw)G(jw)]dw> v

e}

where G*(jw) is the complex conjugate transpose of G(jw).

oo-Norm:
|Glloe = sup ||G(jw)|| = sup 7[G(jw)]

where o[G(jw)] is the maximum singular value of G(jw) defined as:

71G(jw)] = V Amax[G* (jw) G (jw)]

where Ap.x is the maximum eigenvalue. The two and infinity norm of strictly proper
stable systems are called respectively Hs and H., norm.

Computing the norms by state-space methods: Consider a state-space model for a
stable strictly proper system of the form:

2-Norm: The H; norm can be computed using the following lemma.

Lemma 1.2. The Ha norm of G is given by: ||G|la = \/trace]CLCT], where L = LT = 0!
18 a symmetric positive definite solution to the following equation:

AL+ LA" + BB" =0
Proof. The impulse response of the system is given by:

g(t) = Ce' B, t>0
Calling on Parseval we get:

IGIE = [l9]12 = trace / o()g" (t)dt

= trace/ Ce*BBT e CTdt = trace|CLCT)
0

I'We use > instead of > to emphasize the positive definiteness of a matrix.
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where

oo
L= / BB A dt
0
Now, integrate both sides of the equation:

ietABBTetAT _ AetABBTetAT + etABBTetAT AT

dt
from 0 to oo, noting that e'4 converges to zero because the real part of eigenvalues of A
are negative (the system supposed to be stable), to get —BBT = AL + LAT. O

oo-Norm: The H., norm of G can be computed using the bounded real lemma.

Lemma 1.3. Consider a strictly proper stable LTI system. Then ||G|ls <y (with vy >0),
if and only if the Hamiltonian matriz H has no eigenvalue on the imaginary axis.

B A v 2BBT
" _[—CTC AT ]

Proof. The proof of this theorem is a bit involved, so only sufficiency is considered. The
full proof for proper systems (D # 0) can be found in [9].
We start with showing that

I+[0 ~'BT ] (sI—H)™" { 753} = d71(s) (1.3)

where ®(s) = [[ — v 2GT(—5)G(s)]. Using the matrix inversion lemma (see Lemma 3.1)
the inverse of the term in the left hand side is:

—I—[0 4'B" ] {<S[_H)+[7‘013] [0 leT}}l{V‘OlB}

- -1
I-A 0 -1
—r- [0 ]’ {7 B}
| CTC ST+ AT 0
—1 _
:]_[O 7_1BT] (SI—A) 0 |:le:|
—(sI + AT)ICTC (s — A)~t (sI + AT)! 0

=1+~ BT (sI + AT)*'CTC(sI — A) ' By
=1—~2G"(—5)G(s)

It is clear that |G|l < v if and only if ®(jw) > 0 for all w € R. Since G(s) is strictly
proper ®(joo) = I > 0 and since ®(jw) is a continuous function of w, ®(jw) > 0 for
all w € R if and only if ®(jw) is nonsingular. That is ®(s) has no imaginary axis zero
or ®~1(s) has no imaginary axis pole. However, Equation (1.3) shows that the poles of
®~1(s) are contained in the eigenvalues of H. Therefore, if H has no eigenvalues on the
imaginary axis, then |G|/ < 7. O
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The lemma suggests an iterative way to compute the infinity norm: Select a positive
number ~; test if ||G||c < 7 by calculating the eigenvalues of H or the existence of a
positive solution to the matrix inequality; increase or decrease v accordingly; repeat. A
quiet efficient search method is the bisection algorithm.

Bisection algorithm:

1. Select an upper bound =, and a lower bound 4; such that v, < [|Gl|ce < V-

2. If (yu —v1) /7 < specified level, stop; ||G|loc = (74 +71)/2. Otherwise go to the next
step.

3. Set v = (yu +m)/2;
4. Test if ||G|o < 7 by calculating the eigenvalues of H for the given ~.

5. If H has an eigenvalue on the imaginary axis, set 7, = -, otherwise set v, = v and
go back to step 2.

Input-Output Relationships

The question of interest in this section is: If we know how big the input is, how big is the
output going to be? Consider a linear system with input wu(t), output y(t), and transfer
function G(s), assumed stable and strictly proper. The results are summarized in two
tables below. Suppose that u(t) is the unit impulse, §(¢). Then the 2-norm of y equals the
2-norm of g, which by Parseval’s theorem equals the 2-norm of GG; this gives entry (1,1) in
Table 1.1. The second row is for the co-norm, and the second column is for a sinusoidal
input. The oo in the (1,2) entry is true as long as G(jw) # 0.

Table 1.1: Output Norms for Two Inputs

u(t) =0(t) wu(t) = sin(wt)
19l 1612
[Yllee llglloo G(jw)]

Proofs for Table 1.1:

Entry (1,1): If u(t) = 0(¢) then y(t) = g(t), so ||y|l2 = ||g||2- But by Parseval’s theorem,
lgll2 = IG]l2-

Entry (2,1): Again, since y(t) = g(1).
Entry (1,2): With the input u(t) = sin(wt), the output is

y(t) = |G(jw)| sin|wt + arg G(jw)]. (1.4)
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The 2-norm of this signal is infinite as long as G(jw) # 0, that is, the system’s
transfer function does not have a zero at the frequency of excitation.

Entry (2,2): The amplitude of the sinusoid (1.4) equals |G (jw)|.

Now suppose that u(t) is not a fixed signal but that it can be any signal of 2-norm
< 1. It turns out that the least upper bound on the 2-norm of the output, that is,
sup{|lyll2 : |lv|l2 < 1}, which we can call the 2-norm/2-norm system gain, equals the oo-
norm of G this provides entry (1,1) in Table 1.2. The other entries are the other system
gains. The oo in the (1,2) is true as long as G = 0, that is, as long as there is some w for
which G(jw) = 0.

Table 1.2: System Gains

lullz Jlulloo
[ylla (|Gl 00
[Ylloo NG12 llglh

Proofs for Table 1.2: In this paragraph we denote Y (s) = L[y(t)] and U(s) = L[u(t)].

Entry (1,1): First we see that |G|l is an upper bound on the 2-norm/2-norm system
gain:

I . . I .
ol = IVIE = 52 [ 16U GPd < 161y [ 0GP

27 J_o
= [1GI%Hul3

To show that |G| is the least upper bound, first choose a frequency w, where
|G(jw)| is maximum, that is,

|G (jwo)| = (|Gl
Now choose the input u so that

o J e it Jw—w| <eor|wtwy| <€
UGw)l = { 0, otherwise,

where € is a small positive number and c¢ is chosen so that v has unit 2-norm (i.e.,
¢ = +/m/2¢). Then

1 . . :
Y115 ~ o [|G(=jwo) 7 + |G (jwo) 7] = |G (jwo) P = G 1%-
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Entry (2,1): According to the Cauchy-Schwartz inequality

< ( | - ﬂm) " ( | u%)df) "

= llgllzllulls = G ll2llull

(1) = \ [ ste=mutriar

Hence
[Ylloo < Gll2/|u]l2

To show that [|G||z is the least upper bound, apply the input
u(t) = g(=1)/[|G|l2-
Then [lul[z =1 and [y(0)| = [[g[2, so [[yllc = [|g][2-

Entry (1,2): Apply a sinusoidal input of unit amplitude and frequency w such that jw is
not a zero of G. Then ||ul|=1, but ||y||s = co.

Entry (2,2): First, ||g||; is an upper bound on the oco-norm/oo-norm system gain:

vl = \ st =i < [ lotryute — miar

< Julle / g()ldr = llgl oo

That ||g||; is the least upper bound can be seen as follows. Fix ¢t and set

u(t —7) :=sgn(g(7)), V.

Then ||uljo = 1 and

y(t) = / " g(rult - 7)dr = / " lg@ldr = lglh.

S0 [[yllee = llgllr-

A typical application of these tables is as follows. Suppose that our control analysis or
design problem involves, among other things, a requirement of disturbance attenuation:
The controlled system has a disturbance input, say u, whose effect on the plant output,
say ¥y, should be small. Let ¢(t) denote the impulse response from u to y. The controlled
system will be required to be stable, so the transfer function G(s) will be stable. Typically,
it will be strictly proper, too (or at least proper). The tables tell us how much u affects
y according to various measures. For example, if u is known to be a sinusoid of fixed
frequency (maybe u comes from a power source at 60 Hz), then the second column of
Table 1.1 gives the relative size of y according to the two measures. More commonly, the
disturbance signal will not be known a priori, so Table 1.2 will be more relevant.
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Figure 1.3: Unity-feedback loop
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Example 1.4. A system with transfer function 1/(10s + 1) has a disturbance input d(¢)
known to have the energy bound ||d||s < 0.4. Suppose that we want to find the best
estimate of the co-norm of the output y(t). Table 1.2 says that the 2-norm/oo-norm gain
equals the 2-norm of the transfer function, which equals 1/ v/20. Thus

0.4
0 S N
Iyl < =

1.3.3 Asymptotic Tracking

In this section we look at a typical performance specification, perfect asymptotic tracking
of a reference signal. Consider the block diagram as in Figure 1.3. Here e is the tracking
error; with n = d = 0, e equals the reference input (ideal response), r, minus the plant
output (actual response), y.

We wish to study this system’s capability of tracking certain test inputs asymptotically
as time tends to infinity. The two test inputs are the step

¢, ift>0
r(t)—{o, ift <0

and the ramp

ct, ift>0
T(t)_{ 0, ift<0

(¢ is a nonzero real number). As an application of the former think of the temperature-
control thermostat in a room; when you change the setting on the thermostat (step input),
you would like the room temperature eventually to change to the new setting (of course,
you would like the change to occur within a reasonable time). A situation with a ramp
input is a radar dish designed to track orbiting satellites. A satellite moving in a circular
orbit at constant angular velocity sweeps out an angle that is approximately a linear
function of time (i.e., a ramp). Define the loop transfer function L(s) := G(s)K(s). The
transfer function from reference input r to tracking error e is

1
S(s) == TL(S)
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called the sensitivity function. The ability of the system to track steps and ramps asymp-
totically depends on the number of zeros of S(s) at s = 0.

Theorem 1.3. Assume that the feedback system is internally stable and n = d = 0.

(a) if r(t) is a step, then e(t) — 0 as t — oo if and only if S has at least one zero at the
origin.

(b) if r(t) is a ramp, then e(t) — 0 as t — oo if and only if S has at least two zeros at
the origin.

Proof. The proof is an application of the final-value theorem: If Y(s) = L[y(t)] is a
rational Laplace transform that has no poles in Re s > 0 except possibly a simple pole at
s = 0, then lim;_,, y(¢) exists and it equals lim,_,o sY ().

(a) The Laplace transform of the foregoing step is L[r(t)] = ¢/s. The transfer function

from r to e equals S, so
c

Lle(t)] = S(s);.

Since the feedback system is internally stable, S(s) is a stable transfer function. It
follows from the final-value theorem that e(¢) does indeed converge as ¢t — oo, and
its limit is the residue of the function L[e(t)] at the pole s = 0:

e(o0) = S(0)e.
The right-hand side equals zero if and only if S(0) = 0.
(b) Similarly with L[r(t)] = ¢/s*.
[

Note that S(s) has a zero at s = 0 if and only if L(s) has a pole there. Thus, from the
theorem we see that if the feedback system is internally stable and either G(s) or K (s) has
a pole at the origin (i.e., an inherent integrator), then the output y(¢) will asymptotically
track any step input ().

Example 1.5. To see how this works, take the simplest possible example,

Then the transfer function from r to e equals

1 S

:1+5_1—3+1

S(s)

So the open-loop pole at s = 0 becomes a closed-loop zero of the error transfer function;
then this zero cancels the pole of L[r(t)], resulting in no unstable poles in L[e(¢)]. Similar
remarks apply for a ramp input.
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Theorem 1.3 is a special case of an elementary principle: For perfect asymptotic track-
ing, the loop transfer function L(s) must contain an internal model of the unstable poles
of L]r(t)].

A similar analysis can be done for the situation where r = n = 0 and d is a sinusoid,
say d(t) = sin(wt)1(t) (1 is the unit step). You can show this: If the feedback system is
internally stable, then y(t) — 0 as t — oo if and only if either G(s) has a zero at s = jw
or K(s) has a pole at s = jw.

1.3.4 Nominal Performance

In this section we again look at tracking a reference signal, but whereas in the preceding
section we considered perfect asymptotic tracking of a single signal, we will now consider a
set of reference signals and a bound on the steady-state error. This performance objective
will be quantified in terms of a weighted norm bound.

In the analysis to follow, it will always be assumed that the feedback system is in-
ternally stable, so S(s) is a stable, proper transfer function. Observe that since L(s) is
strictly proper (since G(s) is), S(joo) = 1.

The name sensitivity function comes from the following idea. Let 7 (s) denote the
transfer function from r to y:

_ Gs)K(s)
1+ G(s)K(s)
One way to quantify how sensitive 7T is to variations in G is to take the limiting ratio of
a relative perturbation in 7 (i.e., AT /T) to a relative perturbation in G (i.e., AG/G).
Thinking of G as a variable and T as a function of it, we get

lim 2T/T _dTG

AG—0 AG/G dGT
The right-hand side is easily evaluated to be §. In this way, S is the sensitivity of the
closed-loop transfer function 7 to an infinitesimal perturbation in G.

T(s)

Now we have to decide on a performance specification, a measure of goodness of
tracking. This decision depends on two things: what we know about r(¢) and what
measure we choose to assign to the tracking error. Usually, r(¢) is not known in advance,
few control systems are designed for one and only one input. Rather, a set of possible
r(t)s will be known or at least postulated for the purpose of design.

Let us first consider sinusoidal inputs. Suppose that r(¢) can be any sinusoid of am-
plitude < 1 and we want e(t) to have amplitude < e¢. Then the performance specification
can be expressed succinctly as

[Sloe < €.

Here we used Table 1.1: the maximum amplitude of e(t) equals the oo-norm of the
transfer function. Or if we define the (trivial, in this case) weighting function Wi (s) = 1/,
then the performance specification is |W1S||e < 1.
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Figure 1.4: Performance specification graphically

The situation becomes more realistic and more interesting with a frequency-dependent
weighting function. Assume that W;(s) is real-rational; you will see below that only the
magnitude of W;(jw) is relevant, so any poles or zeros in Re s > 0 can be reflected into
the left half-plane without changing the magnitude. Let us consider two scenarios giving
rise to an oo-norm bound on W;S. The first one requires Wi(s) to be stable.

1. Suppose that the family of reference inputs is all signals of the form W;(s)R,s(s) ,
where R,¢(s) is the Laplace transform of a pre-filtered sinusoid input of amplitude
< 1. Thus the set of (¢)s consists of sinusoids with frequency-dependent amplitudes.
Then the maximum amplitude of e(t) equals [|[W1S|| -

2. In several applications, for example aircraft flight-control design, designers have
acquired through experience desired shapes for the Bode magnitude plot of S. In
particular, suppose that good performance is known to be achieved if the plot of
|S(jw)| lies under some curve. We could rewrite this as

[SGw)l < W(w)™,  Vw,
or in another words, |[W1S]ls < 1.

There is a nice graphical interpretation of the norm bound ||[W;S|| < 1. Note that

Wi (jw)

WiSl|leo <1 & | ——=—~—
WS 1+ L(jw)

<l Vw, & [MQw)|<[1+LGw), Vw

The last inequality says that at every frequency, the point L(jw) on the Nyquist plot lies
outside the disk of center -1, radius |W;(jw)|(Figure 1.4).

Other performance problems could be posed by focusing on the response to the other
two exogenous inputs, d and n. Note that the transfer functions from d,n to e are given
by —G(s)S(s) and —S(s), respectively. In the same way, the transfer functions from d, n
to u are =T (s) and —K(s)S(s), where

G(s)K(s)

T(s):=1-8(s) = 1T GO
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called the complementary sensitivity function.

Various performance specifications could be made using weighted versions of the trans-
fer functions above. Note that a performance spec with weight W on GGS is equivalent to
the weight WG on S. Similarly, a weight W on KS = 7 /G is equivalent to the weight
W/G on T. Thus performance specs that involve e result in weights on S and perfor-
mance specs on u result in weights on 7 . Essentially all problems in this book boil down
to weighting & or 7 or some combination, and the tradeoff between making S small and
making 7 small is the main issue in design.

1.4 Robustness

No mathematical system can exactly model a physical system. For this reason, we must
be aware of how modeling errors might adversely affect the performance of a control
system. This section begins with a treatment of various models of plant uncertainty.
Then robust stability, stability in the face of plant uncertainty, is studied using the small-
gain theorem. The final topic is robust performance, guaranteed tracking in the presence
of plant uncertainty.

1.4.1 Model Uncertainty

The basic technique is to model the plant as belonging to a set G. Such a set can be
either structured or unstructured. For an example of a structured set consider the plant

model
1

G(s) = ———
() s24+as+1

This is a standard second-order transfer function with natural frequency 1 rad/s and
damping ratio a/2. It could represent, for example, a mass-spring-damper setup or an
R-L-C circuit. Suppose that the constant a is known only to the extent that it lies in

some interval [min, @max|- Then the plant belongs to the structured set

1
G = :aminéaéamax
s2+as+1

Thus one type of structured set is parametrized by a finite number of scalar parameters
(one parameter, a, in this example). Another type of structured uncertainty is a discrete
set of plants, not necessarily parametrized explicitly.

G = {G1(5),Ga(s),...,Gn(s)}

Unstructured sets are also important, for two reasons. First, we believe that all models
used in feedback design should include some unstructured uncertainty to cover unmodeled
dynamics, particularly at high frequency. Other types of uncertainty, though important,
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may or may not arise naturally in a given problem. Second, for a specific type of unstruc-
tured uncertainty, disk uncertainty, we can develop simple, general analysis methods.
Thus the basic starting point for an unstructured set is that of disk-like uncertainty. In
what follows, multiplicative disk uncertainty is chosen for detailed study. This is only one
type of unstructured perturbation. The important point is that we use disk uncertainty
instead of a more complicated description. We do this because it greatly simplifies our
analysis and lets us say some fairly precise things. The price we pay is conservativeness.

Multiplicative Uncertainty

Suppose that the nominal plant transfer function is G(s) and consider perturbed plant
transfer functions of the form

G(s) = [1 4+ A(s)Wa(s)]G(s).

Here W5(s), the weight, is a fixed stable transfer function and A(s) is a variable stable
transfer function satisfying ||Al|o. < 1. Furthermore, it is assumed that no unstable poles
of G(s) are canceled in forming G(s). Thus, G(s) and G(s) have the same unstable poles.
Such a perturbation A(s) is said to be allowable.

The idea behind this uncertainty model is that A(s)Ws(s) is the normalized plant
perturbation away from 1:

G(s) 1 _ a(shm
Gl 1 = A(s)Ws(s).
Hence if ||Al|s < 1, then
G(jw) .
1| < W
G(]OJ) = | 2(]w)|7 Vw,

so |Wa(jw)| provides the uncertainty profile. This inequality describes a disk in the
complex plane: At each frequency the point G(jw)/G(jw) lies in the disk with center 1,
radius |Ws(jw)|. Typically, |Ws(jw)]| is a (roughly) increasing function of w: Uncertainty
increases with increasing frequency. The main purpose of A is to account for phase
uncertainty and to act as a scaling factor on the magnitude of the perturbation (i.e., |A|
varies between 0 and 1). Thus, this uncertainty model is characterized by a nominal plant
G/(s) together with a weighting function Ws(s). How does one get the weighting function
Wy (s) in practice? This is illustrated by a few examples.

Example 1.6. Suppose that the plant is stable and its transfer function is arrived at
by means of frequency-response experiments: Magnitude and phase are measured at a
number of frequencies, w;,7 = 1,...,m, and this experiment is repeated several, say n,
times. Let the magnitude-phase measurement for frequency w; and experiment k be
denoted (M, ¢ir). Based on these data select nominal magnitude-phase pairs (M;, ¢;)
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for each frequency w;, and fit a nominal transfer function G(s) to these data. Then fit a
weighting function Ws(s) so that

M, .ei%ix

i€

Example 1.7. Assume that the nominal plant transfer function is a double integrator:

For example, a dc motor with negligible viscous damping could have such a transfer
function. You can think of other physical systems with only inertia, no damping. Suppose
that a more detailed model has a time delay, yielding the transfer function

~ —Ts 1
G(S) =€ ?7

and suppose that the time delay is known only to the extent that it lies in the interval 0 <
7 < 0.1. This time-delay factor exp(—7s) can be treated as a multiplicative perturbation
of the nominal plant by embedding G in the family

{1+ AWL)G : ||Alloo < 1}

To do this, the weight W5 should be chosen so that the normalized perturbation satisfies

G(jw) .
— — 1| < |Wh(jw), Yw, T,
Gl Y <)
that is, .
e — 1] < [Wa(jw)], Ve,
A little time with Bode magnitude plots shows that a suitable first-order weight is
0.21s
W = —.
2(5) = 1511

Figure 1.5 is the Bode magnitude plot of this W5 and exp(—7s) — 1 for 7 = 0.1, the worst
value.

To get a feeling for how conservative this is, compare at a few frequencies w the actual
uncertainty set

G(jw) -
— —1:0<7<01; =4 -1:0<7<0.1
{GOw) } { }

with the covering disk
{s:[s =1 < W2(jw)l}.
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Figure 1.5: Bode plots of W5 (dash) and exp(—0.17s) — 1 (solid)

Example 1.8. Suppose that the plant transfer function is

where the gain k is uncertain but is known to lie in the interval [0.1,10]. This plant too
can be embedded in a family consisting of multiplicative perturbations of a nominal plant

k
G(s) = 3—02'

The weight W5 must satisfy

G(jw) |
-l =W Ve, k
G(]w) _| 2(]0&))’, W, r,
that is,
k
0.126210 ko 1‘ < [Wa(jw)l, Vw.

The left-hand side is minimized by ko = 5.05, for which the left-hand side equals 4.95/5.05.
In this way we get the nominal plant

505

G(s) )

and constant weight Ws(s) = 4.95/5.05.
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The multiplicative perturbation model is not suitable for every application because
the disk covering the uncertainty set is sometimes too coarse an approximation. In this
case a controller designed for the multiplicative uncertainty model would probably be too
conservative for the original uncertainty model.

The discussion above illustrates an important point. In modeling a plant we may
arrive at a certain plant set. This set may be too awkward to cope with mathematically,
so we may embed it in a larger set that is easier to handle. Conceivably, the achievable
performance for the larger set may not be as good as the achievable performance for the
smaller; that is, there may exist, even though we cannot find it, a controller that is better
for the smaller set than the controller we design for the larger set. In this sense the latter
controller is conservative for the smaller set.

In this book we stick with plant uncertainty that is disk-like. It will be conservative
for some problems, but the payoff is that we obtain some very nice theoretical results.
The resulting theory is remarkably practical as well.

Other Perturbations

Other uncertainty models are possible besides multiplicative perturbations, as illustrated
by the following example.

Example 1.9. As at the start of this section, consider the family of plant transfer functions

~ 1
Gls) s2+as+1 sas08

Thus a = 0.6 + 0.24A, —1 < A <1, so the family can be expressed as
G(s)

-1 <A<1
14+ AWs(s)G(s)’ - 7
where .
L S — =10.2
Gls) s24+0.6s+1’ Wa(s) 1= 0.2s

Note that G is the nominal plant transfer function for the value a = 0.6, the midpoint of
the interval. The block diagram corresponding to this representation of the plant is shown
in Figure 1.6. Thus the original plant has been represented as a feedback uncertainty
around a nominal plant.

The following list summarizes the common uncertainty models:
(1+AWL)GE, G+ AWy, G/(14+ AWLG), G/(1+ AW;)

Appropriate assumptions would be made on A and W5 in each case. Typically, we can
relax the assumption that A be stable; but then the theorems to follow would be harder
to prove.
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Wa(s) A(s)

Figure 1.6: Feedback uncertainty

1.4.2 Stochastic Uncertainty

When the model of the system is identified using some noisy data, the identified model will
have some stochastic uncertainty. Since these models are usually in discrete-time, in this
part of the course-notes, we use G(¢~1) and G(e™7%), respectively for time- and frequency-
domain models. The stochastic uncertainty can be computed for nonparametric as well as
parametric models. Then, they can be transformed to unstructured multiplicative or ad-
ditive uncertainty. The stochastic uncertainty sets are usually smaller than deterministic
ones and so have less conservatism and leads to higher performance controllers. However,
the robust stability conditions presented in 1.4.3 do not guarantee the closed-loop stability
in a deterministic sense.

Nonparametric Uncertainty

Consider the input signal u(t) and the output signal y(¢) of a discrete-time system G(¢ ')
are available for a finite number of t = 1,..., N, where ¢! is backward shift operator.
Assume that the data are noise-free and the initial and final conditions for v and y are
zero, i.e u(t) = y(t) =0 for t <0 and ¢ > N. Then

Ge™¥) = ——= (1.5)

where U(w) and Y (w) are defined by :

N

Ulw) = \/Lﬁ Z u(t)e 7t Y (w) = \/_1N Z y(t)e it

t=1

The model in (1.5) has no uncertainty (i.e., Wa(jw) = 0). For noisy data (1.5) gives
a spectral model which is asymptotically unbiased. The estimates Re{G(e/*)} and
Im{@(ej“)} are asymptotically uncorrelated and normally distributed with a variance
of ®,(w)/2|U(w)|?, where ®,(w) is the spectrum of the disturbance v(¢) at the output of
the plant. Since v(t) is not measurable, it can be estimated using the unbiased estimate
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of the plant model, i.e., 9(t) = y(t) — G(g~")u(t). So its spectrum is given by:
(1.6)

where, ®,(w) and ®,(w) are the output and input spectra respectively. The cross spectral
density between y and u is denoted by ®,,,(w). In order to see the shape of this uncertainty
in the complex plan, we can define a multivariate random variable vector G.(w) as

Grec(w) = [Re{G(e™*)} Im{G(e77*)}]" (1.7)

As a result, the additive uncertainty Agqq(w) = G’vec(w) — Gec(w) is a zero-mean random
variable and has a joint normal distribution with a diagonal covariance matrix (because
of the uncorrelation of real and imaginary parts of the estimates):

Co(w) = cov (Cueelw)) = E{Auua(w) AT, (w)} = 2[}2}7(—% { (1) (1) } (1.8)

It represents a disk in the complex plane. The radius of the additive uncertainty disk
depends on the distribution of the radius (as a random variable), its standard deviation o
and the probability level for which the true plant model belongs to the disk. For example,
if the distribution of the radius was Gaussian, the uncertainty disk would have a radius of
20 for a probability level of 0.95. Now, we should find the distribution of the magnitude
of the additive uncertainty A,qq(w). We know from the probability theory, that |Aqq(w)]
has a Rayleigh distribution? with the standard deviation

. ql[,((,d)
o(w) = ST (1.9)

Therefore, the true plant model G (e77%) belongs with 0.95 probability to a disk centered
at G(e™) with a radius of |[W3(jw)| = 2.450(w).

Example 1.10. The input/output data of an electromechanical laboratory setup are given
in Fig. 1.7. The input signal is a Pseudo Random Binary Sequence (PRBS) and the
sampling period is Ty = 40 ms. A spectral model and its covariance matrix can be
computed using the spectral analysis method of Identification Toolbox of Matlab. For
wo = 4 rad/s we obtain:

G(e™90) = 0.9527 — j0.4884 CG(wO):{O'OW? 0 }

0 0.0277

2R ~ Rayleigh(o) is Rayleigh distributed if R = v/ X2 + Y2, where X ~ N(0,02) and Y ~ N(0,0?)
are independent normal random variables. The distribution of R? is chi-squared X3 with two degree of
freedom. For Rayleigh(o) distribution, a realization is less than 2.45¢, 2.650 and 3.050 with a probability
of 0.95, 0.97 and 0.99, respectively.
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y1

Time

ut

Time

Figure 1.7: Input/output data of an electromechanical system

The covariance matrix shows that the estimates of the real and imaginary part are un-
correlated and have the same variance (02 = 0.0277). In the Nyquist diagram, this
uncertainty can be presented with a disk of radius W5(jwy) = 2.45v/0.0277 = 0.4077
centered at 0.9527 — 70.4884 for a probability level of 0.95 . Figure 1.8 shows the Nyquist
diagram of the identified nonparametric model together with the uncertainty disks at
some frequencies (use nyquist (G, 'sd',2.45) )

Parametric Uncertainty

In many practical applications a model of the system is available, but its parameters
are not exactly known. In most cases, the parameters can be considered as random
variables with known mean, variance and distribution. This is the case for parametric
models obtained by system identification from a set of noisy data. In physical modelling
of the systems, the parameters are measured by an instrument that has some accuracy.
Therefore, the measured value can be considered as a random variable whose mean and
variance can be estimated by repeating measurements. Even in the deterministic case
when each parameter belongs to an interval, a stochastic approach can be used to represent
the uncertainty.

Example 1.11. Suppose that 0 € [, Omax]- Then, assuming that 6 is a uniformly
distributed random variable, compute its mean and variance.

Solution: The probability density function p(6) of the uniform distribution
U(Omin, Omax) has a pulse shape with amplitude (0jax — Omin) ' (to have the integral equal
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maginary Axis
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Figure 1.8: The Nyquist diagram of the spectral model together with the uncertainty
disks

to one!) and is drawn in Fig. 1.9.

1

Omax _omin

L.
>

9min 90 gmax

Figure 1.9: The probability density function of the uniform distribution U (0pmin, Omax)

The mean value is given by:

o emax .
6o — E{0} — / Op(6)d6 — / ﬁd@ - m

amin

and the variance by:

00 Omax o 2
var(f) = E{(0 — 6y)*} = / (0 — 0,)*p(0)do = / e(e—ewdQ

max ~ emzn
emax
o <0max - emin)2

a 12

emin

(0 — 6p)3
3(0max - emin)

emin
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Example 1.12. In the previous example, the parametric interval uncertainty can also be
approximated with a normally distributed random variable such that it belongs to the
interval with a probability of 0.95. Compute the mean and variance of the parameter.

Solution: In this case the mean value is again 6. For a probability of 0.95 with a Gaussian
distribution, we have 0., — 0y = 20 or 0.« — Omin = 40, therefore:

(emax - 0min>2
16
In order to convert stochastic parametric uncertainty to additive or multiplicative

uncertainty in frequency domain, we recall first the principle of the transformation of the
estimators.

var(f) = o =

Principle of the transformation of the estimators: Assume that 0 is an efficient es-
timator of the system parameters obtained for example from a parametric identification
method. Consider a nonlinear function of the parameters f(#). This function maybe
the frequency response of the system, the poles, the step response or any other nonlinear
function of the parameters. The principle of the transformation of the parameters in
estimation theory says that an efficient estimator of f(0) is f(6).

If § is a scalar unbiased estimator of § with variance 0 and f(6) = af + b is an affine
function of @, then f(6) = af + b. Therefore, it is clear that f(f) is an unbiased estimator

of f(8) with
var (f(é)) - (%) 0% = a%0”

In general, when 6 is an n-dimensional vector and f(6) is an affine m-dimensional vector,
f(6) is unbiased with the following covariance matrix:

; AN A
cov ( f(@)) - (—f> cov(d) ( ff) (1.10)
00 00
where 0f/90 is an n x m matrix. If f (A) is a nonlinear function, the above relation is
true only approximately because f(6) can always be linearized around its mean value.
The approximation is better when the covariance of 6 is smaller. In parametric system

identification, the covariance of the estimates is proportional to 1/N when N is the number
of data. Therefore, (1.10) is asymptotically correct (when N — o).

Shape of uncertainty: The additive uncertainty in the frequency domain can be ob-
tained by estimating the covariance of Gvec(w) in (1.7) from the covariance of its parame-
ters using a linear approximation. In this case, we compute the covariance matrix of real
and imaginary part of G using the principle of the transformation of the estimators:

Co(w) = (%B;g)(w)) cov(f) (ana;g(W)> (1.11)
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(aém(w)> _[oRe{Gy  om{G}
90 90 90
nXx2

This covariance is computed in the identification Toolbox of Matlab and can be used to
compute an uncertainty model set for robust controller design. Note that the covariance
matrix in this case is not diagonal, contrarily to that of (1.8), because cov(f) is not in
general diagonal. In the Nyquist diagram, this uncertainty is represented by an ellipse
instead of a disk in the case of nonparametric uncertainty (use nyquist (G, 'sd',2.45)
to plot the Nyquist diagram with 2.450 bounds). The distribution of the magnitude of
the additive uncertainty, however, is no longer a Rayleigh distribution because of the
correlation between the real and imaginary part®. If the correlation is small, we can
approximately consider a Rayleigh distribution for computing the confidence region for a
given probability (e.g. 2.450 for 0.95 probability).

Example 1.13. If we identify a parametric model for the electromechanical system in
Example 1.11, the covariance of the model parameters are also computed. Then using
(1.11), the covariance of [Re{G(e=)} Im{G(e7*)}]” can be computed at each desired
frequency. For example, for wy = 4 rad/s we have

0.0067  —0.0012

Ge ) = 1.6405 — j0.6662  Cg(wo) = C0.0012 0.0065

Figure 1.10 shows the Nyquist diagram of the identified 4-th order parametric model of the
plant together with uncertainty ellipses in some frequencies (computed for a probability
of 0.95 based on Rayleigh distribution, i.e. 2.45¢). In this case, the spectral model
cannot be represented directly by a disk multiplicative or additive uncertainty model. A
conservative solution is to consider the smallest disk that covers an ellipse. The magnitude
of the uncertainty filter W5 will be equal to the semi-major axis of the ellipse.

A less conservative alternative is to represent the stochastic parametric uncertainty
with multimodel uncertainty. This approach is useful for the methods that can solve
efficiently robust control problems for systems with multimodel uncertainty. Let’s con-
sider an ng-side polygon of minimum area that circumscribes each ellipse. Therefore,
the uncertainty set, e.g. for a probability of 0.95 based on Rayleigh distribution, can
be approximated by the convex combination of the vertices (that represent a multimodel
uncertainty) of the polygon.

= i AGle(e ™) - (1.12)

where
~ . cos(2mk/ng)
Grle™) = Gle ™) +[1 1245V Ca(w) | siabm (1.13)
“cos (m/nq)

3In case of correlation between two Gaussian variables X and Y, v/ X2 + Y2 has a Hoyt distribution.
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Figure 1.10: The Nyquist diagram of the parametric model together with the uncertainty
ellipses

The last vector in (1.13) gives the coordinates of a vertex of a polygon circumscribing
the unit circle and 2.45/C¢ is a 2 x 2 matrix that defines the size and direction of the
uncertainty (for 0.95 probability). In fact 2.45\/Cg projects the unit circle to an ellipse
with the size of uncertainty and consequently it projects the polygon circumscribed the
unit circle to a polygon circumscribed about the ellipse. For the preceding example, we
can compute four models (n, = 4) that circumscribe the uncertainty ellipse at wy = 4
rad/s. These models are given by:

Gi(e70) = 1.6405 — j0.6662 — 0.0264 + j0.2770 = 1.6141 — j0.3891
Go(e 70) = 1.6405 — j0.6662 — 0.2815 + j0.0264 = 1.3590 — 50.6397
G3(e™70) = 1.6405 — j0.6662 + 0.0264 — j0.2770 = 1.6670 — 50.9432
Gy(e™70) = 1.6405 — j0.6662 + 0.2815 — j0.0264 = 1.9220 — 50.6926

and are plotted in Fig. 1.11 together with the uncertainty ellipse. The quality of this
approximation can be improved by increasing n, to 8, which is shown in the same figure.

1.4.3 Robust Stability

The notion of robustness can be described as follows. Suppose that the plant transfer
function G belongs to a set G, as in the preceding section. Consider some characteristic
of the feedback system, for example, that it is internally stable. A controller K is robust
with respect to this characteristic if this characteristic holds for every plant in G. The
notion of robustness therefore requires a controller, a set of plants, and some characteristic
of the system. For us, the two most important variations of this notion are robust stability,
treated in this section, and robust performance, treated in the next.
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Figure 1.11: Approximation of the uncertainty ellipses with n,-side polygons

A controller K provides robust stability if it provides internal stability for every plant
in G. We might like to have a test for robust stability, a test involving K and G. Or if
G has an associated size, the maximum size such that K stabilizes all of G might be a
useful notion of stability margin.

The Nyquist plot gives information about stability margin (see Figure 1.12). Note
that the distance from the critical point -1 to the nearest point on the Nyquist plot of L,
called modulus margin, equals 1/||S||oo:

modulus margin M,, = inf|—1— L(jw)|=inf |1+ L(jw)]

1 -1
| ISk

Thus if ||S]|s > 1, the Nyquist plot comes close to the critical point, and the feedback
system is nearly unstable. However, as a measure of stability margin this distance is not
entirely adequate because it contains no frequency information. More precisely, if the
nominal plant G is perturbed to G, having the same number of unstable poles as has G
and satisfying the inequality

G(jw) K (jw) = GUw) K (jw)| < [SII< Y,

then internal stability is preserved (the number of encirclements of the critical point by the
Nyquist plot does not change). But this is usually very conservative; for instance, larger
perturbations could be allowed at frequencies where G(jw)K (jw) is far from the critical
point. Better stability margins are obtained by taking explicit frequency-dependent per-
turbation models: for example, the multiplicative perturbation model, G = (14 AW,)G.
Fix a positive number S and consider the family of plants

{G : Ais stable and || Al < 5}
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Figure 1.12: Modulus margin M,

Now a controller K that achieves internal stability for the nominal plant G will stabilize
this entire family if 5 is small enough. Denote by [, the least upper bound on 3 such
that K achieves internal stability for the entire family. Then Sy, is a stability margin
(with respect to this uncertainty model). Analogous stability margins could be defined
for the other uncertainty models.

We turn now to two classical measures of stability margin, gain and phase margin.
Assume that the feedback system is internally stable with plant G and controller K. Now
perturb the plant to kG, with k a positive real number. The upper gain margin, denoted
kmax, is the first value of k greater than 1 when the feedback system is not internally stable;
that is, kpax is the maximum number such that internal stability holds for 1 < k < kyax.
If there is no such number, then set k.. := co. Similarly, the lower gain margin, Ky, is
the least nonnegative number such that internal stability holds for ky;, < k < 1. These
two numbers can be read off the Nyquist plot of L; for example, —1/kpyax is the point
where the Nyquist plot intersects the segment (-1, 0) of the real axis, the closest point to
-1 if there are several points of intersection.

Now perturb the plant to e 7?G, with ¢ a positive real number. The phase margin,
®max, 18 the maximum number (usually expressed in degrees) such that internal stability
holds for 0 < ¢ < ¢uax. You can see that ¢p.y is the angle through which the Nyquist
plot must be rotated until it passes through the critical point, -1; or, in radians, @y
equals the arc length along the unit circle from the Nyquist plot to the critical point.

Thus gain and phase margins measure the distance from the critical point to the
Nyquist plot in certain specific directions. Gain and phase margins have traditionally
been important measures of stability robustness: if either is small, the system is close to
instability. Notice, however, that the gain and phase margins can be relatively large and
yet the Nyquist plot of L can pass close to the critical point; that is, simultaneous small
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changes in gain and phase could cause internal instability. We return to these margins in
Chapters 2 and 3.

Now we look at a typical robust stability test, one for the multiplicative perturbation
model. Assume that the nominal feedback system (i.e., with A = 0) is internally stable
for controller K. Bring in again the complementary sensitivity function

L GK
7_1_8_1+L_1+GK'

Theorem 1.4. For multiplicative uncertainty model, K provides robust stability if and only
if ||WaoT ||oo < 1.

Proof. (<) Assume that ||[W57 ||oc < 1. Construct the Nyquist plot of L, indenting D,
the Nyquist contour, to the left around poles on the imaginary axis. Since the nominal
feedback system is internally stable, we know this from the Nyquist criterion: The Nyquist
plot of L does not pass through -1 and its number of counterclockwise encirclements equals
the number of poles of G in Re s > 0 plus the number of poles of K in Re s > 0.

Fix an allowable A. Construct the Nyquist plot of GK = (14+ AW,)L. No additional
indentations are required since AW5 introduces no additional imaginary axis poles. We
have to show that the Nyquist plot of (1+AW5)L does not pass through -1 and its number
of counterclockwise encirclements equals the number of poles of (1 + AW5)G in Re s > 0
plus the number of poles of K in Re s > 0; equivalently, the Nyquist plot of (1 4+ AW3)L
does not pass through -1 and encircles it exactly as many times as does the Nyquist plot
of L. We must show, in other words, that the perturbation does not change the number
of encirclements. The key equation is

14+ (14+AWL)L = (1+ L)(1 + AWLT). (1.14)

Since

AW, T oo < [WaT oo < 1,

the point 1 + AW,T always lies in some closed disk with center 1, radius < 1, for all
points s on D. Thus from (1.14), as s goes once around D, the net change in the angle of
1+ (14+ AW,)L equals the net change in the angle of 1+ L. This gives the desired result.

(=) Suppose that ||WoT || > 1. We will construct an allowable A that destabilizes
the feedback system. Since 7T is strictly proper, at some frequency w,

(W2 (jw) T (jw)| = 1. (1.15)

Suppose that w = 0. Then W5(0)7(0) is a real number, either +1 or -1. If A = W5(0)7(0),
then A is allowable and 1+ AW5(0)7(0) = 0. From (1.14) the Nyquist plot of (1+AW;)L
passes through the critical point, so the perturbed feedback system is not internally stable.

If w > 0, constructing an admissible A takes a little more work; the details are
omitted. O
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The theorem can be used effectively to find the stability margin Sy, defined previously.
The simple scaling technique

{G=01+AM)G: Al <5} = {G=(1+FABW)G: |87l < 1}

{G=(1+A1W2)G: |Ar]l <1}
together with the theorem shows that
Bsup = sup{ 3 [|BWaT |l <1} = 1/[[W2T |0

The condition |27 ]|s < 1 also has a nice graphical interpretation. Note that

Wa(jw)L(jw)
1 _— 1
IWoT |lee < T+ LUw) <1, Vw
& [Wh(jw)L(jw)| < 1+ L(jw)|,  Vw.

The last inequality says that at every frequency, the critical point, -1, lies outside the
disk of center L(jw), radius |Wa(jw)L(jw)| (Figure 1.13).

dIm

Re

warLl (N )

Figure 1.13: Robust stability graphically

There is a simple way to see the relevance of the condition ||[Ws7 || < 1. First, draw
the block diagram of the perturbed feedback system, but ignoring inputs (Figure 1.14).
The transfer function from the output of A around to the input of A equals —W5T, so
the block diagram collapses to the configuration shown in Figure 1.15. The maximum
loop gain in Figure 1.15 equals || — AW57T ||, which is < 1 for all allowable As if and
only if the small-gain condition ||[W57 || < 1 holds.

The foregoing discussion is related to the small-gain theorem, a special case of which
is this: If L is stable and || L||o < 1, then (14 L)™' is stable too. An easy proof uses the
Nyquist criterion.
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Figure 1.14: Perturbed feedback system

A(s)

-WoT

Figure 1.15: Collapsed block diagram

Summary of robust stability tests:  Table 1.3 summarizes the robust stability tests
for the other uncertainty models.

Note that we get the same four transfer functions, 7, KS,GS, S, as we did in Section
1.3.4. This should not be too surprising since (up to sign) these are the only closed-loop
transfer functions for a unity feedback SISO system.

1.4.4 Robust Performance

Now we look into performance of the perturbed plant. Suppose that the plant transfer
function belongs to a set G. The general notion of robust performance is that internal
stability and performance, of a specified type, should hold for all plants in G. Again we
focus on multiplicative perturbations.

Recall that when the nominal feedback system is internally stable, the nominal per-
formance condition is ||[IW1S]|s~ < 1 and the robust stability condition is ||W57T ||s < 1. If
G is perturbed to (1 + AW3)G, S is perturbed to

1 S
1+ (1+AWL)L 14+ AWLT

Clearly, the robust performance condition should therefore be

wis

SRS 1 A.
1+AW2THOO< ’ v

HWQTHOO <1 and H
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Table 1.3: Robust stability conditions for different model perturbations

Perturbation Condition

(1+AWL)G | |[WaT |l <1
G/(1+ AWLG) | [[WeGS||le < 1
G/(1+ AWs) |[WaS|loo < 1

Here A must be allowable. The next theorem gives a test for robust performance in terms
of the function

s = [Wi(s)S(s)| + [Wa(s)T (s)]
which is denoted |W S|+ |[WoT.

Theorem 1.5. A necessary and sufficient condition for robust performance is
||IWAS] + [WaT || < 1. (1.16)

Proof. (<) Assume (1.16), or equivalently,

|[WoT|lo <1 and (1.17)

=] <

Fix A. In what follows, functions are evaluated at an arbitrary point jw, but this is
suppressed to simplify notation. We have

1= |1 + AWLT — AWQT’ < |1 + AWQTl + ‘WQT’
and therefore
1 —|WaT| < |14+ AWLT].
This implies that

=l = .

This and (1.17) yield
WSy
L+ AWLT |

(=) Assume that

IWoT e <1 and VA. (1.18)

H 1+ AW2TH
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Figure 1.16: Robust performance graphically

Pick a frequency w where
[WAS|

1 — |WoT]
is maximum. Now pick A so that

1—|WLT| =1+ AWLT]

The idea here is that A(jw) should rotate Ws(jw)T (jw) so that A(jw)Wa(jw)T (jw) is
negative real. The details of how to construct such an allowable A are omitted. Now we
have

__msp S|
1— |W2T| 1= |WoT| 14+ AW,T
< |0
- H 1+ AWQTH
So from this and (1.18) there follows (1.17). O

Test (1.16) also has a nice graphical interpretation. For each frequency w, construct
two closed disks: one with center -1, radius |W;(jw)|; the other with center L(jw), radius
|Wa(jw)L(jw)|. Then (1.16) holds if and only if for each w these two disks are disjoint
(Figure 1.16).

1.5 Limit of Performance

Before we see how to design control systems for the robust performance specification, it
is useful to determine the basic limitations on achievable performance. In this chapter we
study design constraints arising from two sources: from algebraic relationships that must
hold among various transfer functions; from the fact that closed-loop transfer functions
must be stable (i.e., analytic in the right half-plane). It is assumed throughout this section
that the feedback system is internally stable.
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1.5.1 Algebraic Constraints

There are three items in this section.

1. The identity S + 7 = 1 always holds. This is an immediate consequence of the
definitions of S and 7. So in particular, |S(jw)| and |7 (jw)| cannot both be less
than 1/2 at the same frequency w.

2. A necessary condition for robust performance is that the weighting functions satisfy

min{|W; (jw)|, [Wa(jw)|} < 1, Ve.

Proof. Fix w and assume that |[W;| < [W,| (the argument jw is suppressed). Then

< |WAS| + |[WAT

< [WAS| + |[WLT.
So robust performance (see Theorem 1.5), that is, |||W1S] + |[WaT ||| < 1, implies
that |W;| < 1, and hence min{|W;|, [W5|} < 1. The same conclusion can be drawn
when |Ws| < |[Wq]. O

So at every frequency either |W;| or |W,| must be less than 1. Typically, |W;(jw)| is
monotonically decreasing, for good tracking of low-frequency signals, and |Ws(jw)]
is monotonically increasing (uncertainty increases with increasing frequency).

3. If pis a pole of L in Re s > 0 and z is a zero of L in the same half-plane, then

Sp)=0, S(z) =1, (1.19)
Tp)=1, T(z)=0. (1.20)
These interpolation constraints are immediate from the definitions of S and 7. For
example,
1 1
Sp)=—+—=—=0.
9 1+ L(p) oo

1.5.2 Analytic Constraints

In this section we derive some constraints concerning achievable performance obtained
from analytic function theory. The first subsection presents some mathematical prelimi-
naries.
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Preliminaries

Introduce the symbol M for the family of all stable, proper, real-rational functions. Notice
that M is closed under addition and multiplication: If F,G € M, then F + G, FG € M
. Also, 1 € M . (Thus M is a commutative ring with identity.)

Theorem 1.6. (Maximum Modulus Theorem) Suppose that ) is a region (nonempty,
open, connected set) in the complex plane and F is a function that is analytic in .
Suppose that F is not equal to a constant. Then |F| does not attain its mazimum value
at an interior point of §2.

A simple application of this theorem, with €2 equal to the open right half-plane, shows
that for F' in M
[Fllc = sup |F(s)]

Re s>0

Theorem 1.7. (Cauchy’s Theorem) Suppose that Q is a bounded open set with con-
nected complement and D is a non-self-intersecting closed contour in 2. If F' is analytic

in ), then
% F(s)ds =0
D

Cauchy’s integral formula: Suppose that F' is analytic on a non-self-intersecting closed
contour D and in its interior 2. Let sy be a point in 2. Then

Flso) = — fDF(S) ds.

?j S — 8o

We shall also need the Poisson integral formula, which says that the value of a bounded
analytic function at a point in the right half-plane is completely determined by the coor-
dinates of the point together with the values of the function on the imaginary axis.

Lemma 1.4. Let F' be analytic and of bounded magnitude in Re s > 0 and let sg = oo+ jwo
be a point in the complex plane with oo > 0. Then

F(sg) = %/00 F(jw)—= % dw.

oo 5 + (W = wo)?

Proof. Construct the Nyquist contour D in the complex plane taking the radius, r, large
enough so that the point sy is encircled by D. Cauchy’s integral formula gives

mw::léﬁﬁu&

ﬁj S — 8o

Also, since —3§; is not encircled by D, Cauchy’s theorem gives

1 F
e,
21y Jp s+ So
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Subtract these two equations to get

_L s S0 + So s
Flo) = 55 § PO e o™

Thus F(sg) = I + I, where

]. T . o)) ]_ /r . o))
L = — F(jw dw = — F(jw dw
! T /_T Y )(50 — jw) (80 + jw) T ), Y )Ug + (W — wp)?
1 /2 ) o0 )
I, = — F(re’?)— : e’?d6
2 L I (re )(7“630 — so)(re’? + Eo)rje
Asr — oo

0o

dw

1 o0
I — — F(j
1 77/—00 (]W)Q

05 + (w — wp)?
So it remains to show that Iy — 0 as r — 0co. We have

w/2 1

o) 1
I < —||F||leo— . : de.
2 > T || || r /ﬁ/2 |ej9 _ So?"leejg _|_§07~71|

The integral

/2 1
. . do
/,T/Q €19 — sqr=1||e? + sor—1

converges as r — oo. Thus Iy < constant/r, which gives the desired result. O

All-pass transfer functions: A function in M is all-pass if its magnitude equals 1 at all
points on the imaginary axis. The terminology comes from the fact that a filter with an
all-pass transfer function passes without attenuation input sinusoids of all frequencies. It
is not difficult to show that such a function has pole-zero symmetry about the imaginary
axis in the sense that a point sy is a zero if and only if its reflection, —3g, is a pole.
Consequently, the function being stable, all its zeros lie in the right half-plane. Thus an
all-pass function is, up to sign, the product of factors of the form

s— s
_07 Re s > 0.
S+ So

Examples of all-pass functions are

s—1 s2—s5+42
s+1 s24s5+2

Y
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Minimum-phase transfer functions: A function in M is minimum-phase if it has no ze-
ros in Re s > 0. This terminology can be explained as follows. Let G be a minimum-phase
transfer function. There are many other transfer functions having the same magnitude
as G, for example F'G where F' is all-pass. But all these other transfer functions have
greater phase. Thus, of all the transfer functions having G's magnitude, the one with the
minimum phase is G. Examples of minimum-phase functions are

1 S s+ 2
s+1" s+1 s24s+1

9

It is a useful fact that every function in M can be written as the product of two such

factors: for example
4(s—2) [(s—2 4(s+2)
24+s+1 \s+2)\s2+s+1)"

Lemma 1.5. For each function G in M there exist an all-pass function G, and a
minimum-phase function G, such that G = Ga,Gpyp. The factors are unique up to
S1gn.

Proof. Let G, be the product of all factors of the form

S — 8o
S+ Sp

where sy ranges over all zeros of G in Re s > 0, counting multiplicities, and then define
Gmp = G/Ggp. The proof of uniqueness is left as an exercise. O

To proceed, it is useful to include the following lemma which will be used subsequently.

Lemma 1.6. For every point sg = oo + jwy with og > 0,

o0

1 .
g |Suls0) =+ [ log|S(w)

. o8 + (w — wp)?

0o

dw.

Proof. Set F(s) :=InS,,,(s). Then F is analytic and of bounded magnitude in Re s > 0.
(This follows from the properties S, S;nl, € M; the idea is that since S,,, has no poles
or zeros in the right half-plane, InS,,, is well-behaved there.) Apply Lemma 1.4 to get

F(sg) = %/00 F(jw)— % dw.

oo p + (W = wo)?

Now take real parts of both sides:

Re F(so) = ~ /Oo Re F(jw)—— 2 dw. (1.21)

T ) 05 + (W — wp)?
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But S,y = ef' = efe Fedm I 50 |S,,,| = e ¥ that is, In|S,,,| = Re F. Thus from (1.21)

1 [ . o
0 S50 = 7 [ 10180 g
or since |S| = |S,,,| on the imaginary axis,
1 [ . 00
In [Spp(S0)| = <) In |S(Jw)|0§ T (w— wo)de.

Finally, since logx = logelnx, the result follows upon multiplying the last equation by
loge. [

Bounds on W; and W,

Suppose that the loop transfer function L has a zero z in Re s > 0. Then
[W1Slloe > [W1(2)] (1.22)
This is a direct consequence of the maximum modulus theorem and (1.19):

(W1(2)] = [W1(2)S(2)| < sup [Wi(s)S(s)] = [W1S]|ee

Re s>0

So a necessary condition that the performance criterion |[W1S||oc < 1 be achievable is
that the weight satisfy |W;(2)| < 1. In words, the magnitude of the weight at a right
half-plane zero of G or K must be less than 1. Similarly, suppose that L has a pole p in
Re s > 0. Then

[WT e > Wa(p)| (1.23)

so a necessary condition for the robust stability criterion |W57 ||« < 1 is that the weight
Wy satisfy |Wa(p)| < 1.

For technical reasons we assume for the remainder of this section that L has no poles
on the imaginary axis. Factor the sensitivity function as & = S,,S,,,. Then S, has no
zeros on the imaginary axis (such zeros would be poles of L) and S,,,, is not strictly proper
(since § is not). Thus S;L; € M. As a simple example of the use of all-pass functions,
suppose that GG has a zero at z with z > 0, a pole at p with p > 0; also, suppose that K
has neither poles nor zeros in the closed right half-plane. Then

s—p s—z

Sa: s a = .
P s+ p Tap(s) s+ 2

It follows from the preceding section that S(z) = 1, and hence

_ zZ+p
Smp(2) =S} (2) = —
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Figure 1.17: Cart-pendulum example

Similarly,
_ 1y _PTZ2
Tmp<p) - JTap (p) - p— Z.
Then
+
”WISHOO = ||W18mpHoo > |W1(Z>Smp(z)| - 'Wl(g)z —i‘
and

p+z
p—z
Thus, if there are a pole and zero close to each other in the right half-plane, they can
greatly amplify the effect that either would have alone.

(1.24)

IWaT o > \m(p)

Example 1.14. An interesting stabilization problem is afforded by the cart-pendulum
example, a common toy control system. The setup is shown in Figure 1.17. The system
consists of a cart of mass M that slides in one dimension = on a horizontal surface, with
a ball of mass m at the end of a rigid massless pendulum of length [. The cart and ball
are treated as point masses, with the pivot at the center of the cart. There is assumed to
be no friction and no air resistance. Let G,(s) be the linearized transfer function u-to-x
for the up position of the pendulum, that is,

Is2—g
[Mis? — (M +m)g]

G.(s) = =

Define the ratio r := m/M of pendulum mass to cart mass. The zero and pole of G, in
Re s > 0 are

z:\/%, p=2zV1+r.
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Note that for r fixed, a larger value of [ means a smaller value of p, and this in turn means
that the system is easier to stabilize (the time constant is slower). The foregoing two
inequalities on [|[W1S]| and ||[W5T ||« apply. Since the cart-pendulum is a stabilization
task, let us focus on (1.24). The robust stabilization problem becomes harder the larger
the value of the right-hand side of (1.24). The scaling factor in this inequality is

ptz Vr+l1+1
p—2z vVi+r—1

This quantity is always greater than 1, and it approaches 1 only when r approaches oo,
that is, only when the pendulum mass is much larger than the cart mass. There is a
tradeoff, however, in that a large value of r means a large value of p, the unstable pole; for
a typical Wy (high-pass) this in turn means a relatively large value of |W5(p)| in (1.24).
So at least for small uncertainty, the worst-case scenario is a short pendulum with a small
mass m relative to the cart mass M.

(1.25)

In contrast, the u-to-y linearized transfer function

Y
Gy(s) = s2[Mls? — (M + m)g]

has no zeros, so the constraint there is simply [|[WWo7 ||c > |[Wa(p)|. If robust stabilization
were the only objective, we could achieve equality by careful selection of the controller.
Note that for this case there is no apparent tradeoff in making m/M large. The difference
between the two cases, measuring x and measuring y, again highlights the important fact
that sensor location can have a significant effect on the difficulty of controlling a system
or on the ultimate achievable performance.

Some simple experiments can be done to illustrate the points made in this example.
Obtain several sticks of various lengths and try to balance them in the palm of your hand.
You will notice that it is easier to balance longer sticks, because the dynamics are slower
and p above is smaller. It is also easier to balance the sticks if you look at the top of the
stick (measuring y) rather than at the bottom (measuring ). In fact, even for a stick
that is easily balanced when looking at the top, it will be impossible to balance it while
looking only at the bottom. There is also feedback from the forces that your hand feels,
but this is similar to measuring z.

The Waterbed Effect

Consider a tracking problem where the reference signals have their energy spectra con-
centrated in a known frequency range, say [wy,ws]. This is the idealized situation where
Wi is a bandpass filter. Let M; denote the maximum magnitude of S on this frequency
band,

M, == max |S(jw)l,

w1 <w<ws2
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and let M, denote the maximum magnitude over all frequencies, that is, ||S||c. Then
good tracking capability is characterized by the inequality M; << 1. On the other hand,
we cannot permit Ms to be too large: Remember that 1/Ms equals the distance from
the critical point to the Nyquist plot of L, so large M means small stability margin (a
typical upper bound for M is 2). Notice that M, must be at least 1 because this is the
value of § at infinite frequency. So the question arises: Can we have M; very small and
Mj not too large? Or does it happen that very small M; necessarily means very large
Ms;? The latter situation might be compared to a waterbed: As |S| is pushed down on
one frequency range, it pops up somewhere else. It turns out that non-minimum-phase
plants exhibit the waterbed effect.

Theorem 1.8. Suppose that G has a zero at z with Re z > 0. Then there exist positive
constants ¢; and ¢y, depending only on wi,ws, and z, such that

c1 log My + ¢o log My > log |Sa_pl(z)| > 0.

Proof. Since z is a zero of G, it follows that S(z) = 1, and hence S,,,,(2) = S,,' (2). Apply
Lemma 1.6 with sy = 2 = 09 + jwp to get

o0

1 :
log |5, ()| = = [ logS(iv)

—o0 O-g + (w - W0)2

00

dw.

Thus log ]8@1(2)\ < ¢q log M + ¢colog Msy, where ¢ is defined to be the integral of

1 (o)

T o2 + (W — wp)?

over the set [—wq, —wq] |J [w1,ws] and ¢y equals the same integral but over the comple-
mentary set. It remains to observe that |S,,(z)| < 1 by the maximum modulus theorem,

so log |S,.' ()] > 0. O
Example 1.15. As an illustration of the theorem consider the plant transfer function
s—1
G(s)= —————,
A R [

where p > 0,p # 1. It has been shown that S must interpolate zero at the unstable poles
of G(s) to have internal stability, so S(p) = 0. Thus the all-pass factor of S must contain
the factor (s — p)/(s + p), that is.

s—p

Sap(s) = s+p

P(s)

for some all-pass function P. Since |P(1)| < 1 (maximum modulus theorem), there follows

l-p
Sap(1)| < |——1.
S0 < 12
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So the theorem gives

c1 log My + co log Ms > log

I1+p

Note that the right-hand side is very large if p is close to 1. This example illustrates
again a general fact: The waterbed effect is amplified if the plant has a pole and a zero
close together in the right half-plane. We would expect such a plant to be very difficult to
control. It is emphasized that the waterbed effect applies to non-minimum-phase plants
only. In fact, the following can be proved: If G has no zeros in Re s > 0 nor on the
imaginary axis in the frequency range [wy,ws|, then for every e > 0 and § > 1 there exists
a controller K so that the feedback system is internally stable, M; < e, and My < §. As
a very easy example, take

1_p’.

1
G<S):s+1

The controller K (s) = k is internally stabilizing for all £ > 0, and then

s+1

S6) =T

So ||S]|e = 1 and for every € > 0 and ws. if k is large enough, then [S(jw)| <€, Vw < ws.

The Area Formula

Herein is derived a formula for the area bounded by the graph of |S(jw)| (log scale) plotted
as a function of w (linear scale). The formula is valid when the relative degree of L is
large enough. Relative degree equals degree of denominator minus degree of numerator.
Let {p;} denote the set of poles of L in Re s > 0.

Theorem 1.9. Assume that the relative degree of L is at least 2. Then
/ log |S(jw)|dw = 7(log e)(Re sz)
0 i

Proof. In Lemma 1.6 take wy = 0 to get

oo

1 :
log |Snls0) =+ [ logS(iw)

o o8 +w

0,

2

or equivalently,

0o » T
| xSt T = G108 1Sl
Multiply by oy:

2

00 ' T
/ log |S(jw)| dw = 500 log |Spnp(00)]-
0

o5 + w?



1.5 Limit of Performance 51

It can be shown that the left-hand side converges to

/ log |5 (ju)|dw
0

as 09 — 00. [The idea is that for very large o the function 02 /(02 + w?) equals nearly 1
up to large values of w. On the other hand, log|S(jw)| tends to zero as w tends to co.]
So it remains to show that

lim % 1og|S(0)| = (loge) (Re Y1), (1.26)

We can write S = S,,S,,p, Where

S+ p;

Sap(s) = H i _Zji.

It is claimed that lim,_,o InS(0) = 0. To see this, note that since L has relative degree
at least 2 we can write L(c) ~ c¢/o" as 0 — oo for some k > 2. Thus as ¢ — oo

clnS(o) = —ocln[l + L(o)] = —oln (1 + ﬁ) :

Now use the Maclaurin’s series In(1 + z) =z — 2%/2 + - -+ to get
c
olnS(o) = —0 <; —>

The right-hand side converges to zero as ¢ tends to oo. This proves the claim. In view of
the claim, to prove (1.26) it remains to show that

Jh_}r{.lo ln| o) = Re sz (1.27)
Now + "
o+ Di o+ pi
In( =1 In
R L EErp B

so to prove (1.27) it suffices to prove
o+ Di
0 —Di

Let p; = x 4+ jy and use the Maclaurin’s series again as follows:

lim —1In
o—00

= Re p;. (1.28)

o+ P o |1+o7'pi| o, (1+x0c7')2+ (yo=t)?
o —pi 2 |1—o1p| 4 (1—z0 )2+ (yo!)?
g _ _ _ _
= 7 {In[(1+207") + (yo")*) = In[(1 —zo™")* + (yo )]}
4 o o

Letting o — oo gives (1.28). O
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Example 1.16. Take the plant and controller

1

G-DE12) K(s) = 10.

G(s) =
The feedback system is internally stable and L has relative degree 2. Consider the plot
of |S(jw)l, log scale, versus w, linear scale. The area below the line |S| = 1 is nega-
tive, the area above, positive. The theorem says that the net area is positive, equaling
m(loge)(Re ) . pi). So the negative area, required for good tracking over some frequency
range, must unavoidably be accompanied by some positive area.

The waterbed effect applies to non-minimum-phase systems, whereas the area formula
applies in general (except for the relative degree assumption). In particular, the area
formula does not itself imply a peaking phenomenon, only an area conservation. However,
one can infer a type of peaking phenomenon from the area formula when another constraint
is imposed, namely, controller bandwidth, or more precisely, the bandwidth of the loop
transfer function GK. For example, suppose that the constraint is

1
|GK| < 5 Yw Z w1,
w

where w; > 1. This is one way of saying that the loop bandwidth is constrained to be
< wji. Then for w > wy

2
Sl —bt ot e
=GR “T=w? w21

Hence

00 00 w?
/log|8(jw)\dw§/ log dw.

2 _
) w1 w 1

The latter integral, denote it by I, is finite. This is proved by the following computation:
1 o 1 1 o

I = — | 1 dw=——— [ In(l-w2)d
mi0 ), Moo ® T Ty, e
I , wt W
- 2% % 4y
1n10wl(“’+2+3+)w
! ‘1+wf3+w;5+ <
In1o \"* 2 3

Hence the possible positive area over the interval [wy, 00) is limited. Thus if |S| is made
smaller and smaller over some subinterval of [0,w;], incurring a larger and larger debt
of negative area, then |S| must necessarily become larger and larger somewhere else in
[0,wq]. Roughly speaking, with a loop bandwidth constraint the waterbed effect applies
even to minimum-phase plants.



53

Chapter 2
ROBUST CONTROLLER DESIGN

2.1 Introduction

In the previous chapter, we showed that the nominal performance, robust stability and
robust performance can be represented by some constraints on the 2- or infinity-norm
of weighted closed-loop sensitivity functions. We also showed how the weighting filters
can be computed to obtain desired performance or to convert real uncertainties to un-
structured frequency-domain additive or multiplicative uncertainty. It turned out that a
robust control design problem can be converted to an optimization problem under con-
straints. This optimization problem is, in general, nonlinear with respect to the controller
parameters.

Although there are some numerical solutions to nonlinear optimization problems, their
complexity usually increase polynomially or even exponentially with the number of op-
timization variables. Moreover, the convergence of the algorithms to a global optimal
solution of the problem cannot be guaranteed. The global optimization techniques can
be used with the cost of increasing the computation time, if the number of optimization
variables is small. However, a control design problem is by nature an iterative procedure
in which the desired performance and the practical constraints are revealed gradually in
an iterative procedure by designing and implementing of the controllers. Therefore, it
is reasonable that the controller design step be carried out with a convex optimization
approach that can produce an optimal and efficient solution.

Depending on the controller structure (state-feedback, output feedback, fixed struc-
ture), the desired performance (loop shaping, two-norm or infinity-norm optimization)
and the model representation (continuous-time, discrete-time, frequency-domain models)
different sorts of control problems can be defined. In this chapter, we try to solve some
of the standard problems using convex optimization techniques.

This chapter will start with a brief introduction to convex optimization problems.
Then, Hy and H, control problems are defined in a model-based design framework. An
overview of state feedback and output feedback optimal controller design will be given. It
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will be shown that how these methods can be implemented in Matlab using a simulation
example. Finally, a new data-driven method for controller design is introduced. This
method needs only the frequency response of the system and can be used for fixed structure
controller design with loop shaping, Hy and H., performance. The development of the
method together with stability conditions are detailed. The effectiveness of the method
is illustrated by application to two experimental setups.

2.2 Introduction to Convex Optimization

The robust control design methods presented in this course-notes are based on convex
optimization methods using linear matrix inequalities (LMIs) taken mostly from [8]. The
objective of this section is to provide a brief introduction to convex sets and convex
optimization problems with applications to control theory.

2.2.1 Convex Sets and Convex Functions
Convex sets: A set S in a vector space is convex if
1,82 €S=Ar1+ (1 =N €S VA e [0, 1]

In geometric terms, it means that the line segment between any two points of a convex
set lies inside the set (see Fig. 2.1). In general, the empty set is considered to be convex.

Convex set Non-convex set

Figure 2.1: Convex and non-convex sets

The point Az; + (1 — A)z; for a given A € [0, 1] is called a convex combination of the two
points x1 and x,. More generally, convex combinations are defined as follows.

Convex combinations: Let S be a subset of a vector space and let z,...,x, € S. Then

i=1

i=1

is called a convex combination of x1,...,z,.
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Convex hull: For any set S in a vector space, the convex hull consists of all convex
combinations of the elements of S and is a convex set.

Properties of convex sets: Let S; and Sy be two convex sets. Then

e The set aS; = {z|r = acy, c; € S1} is convex for any scalar .
e The set S; + Sy = {x|r = ¢1 + 2, ¢1 €Sy, c2 € Sy} is convex.

e The intersection S1 NSy = {z|z € S; and x € Sy} is convex.

Convex functions: A function f: S — R is convex if

1. S is a convex set and
2. for all 1,29 € S and A € [0, 1] there holds that

FAzy + (1= Nzo) < Af(z1) + (1= A) f(ao)

Note that the domain of a convex function is by definition a convex set. In geometric
terms, the function f(x) is always below the segment of a line that connects any two
points on the curve of f(x) (see Fig. 2.2). f(z) is called strictly convex if the above
inequality is strict for x; # ws.

“y

D1 + (1= N)zo]
Af(@1) + (1= N)f (22)

1
1
1
1
I
I
1

a Azy+ (1 =Nz, T2 b

Figure 2.2: A convex function

Example 2.1. Show that f(x) = z* on R is a convex function.
Solution: Let’s take z1, x5 € R, then we should show that

N2 4 (1 — N)222 + 201 — Nayae < A2 + (1 — )23
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If we bring everything to the left side, we have:
Na? + 23 + N2k — 2025 + 21129 — 20 iy — Al — 25 4+ Ax3 < 0
(A2 =Nz — 20\ = Nzyze + (W = N3 <0
(A2 = N)(z1 —12)* <0
which is always true because (A — \) <0 for all A € [0, 1].

In fact any twice differentiable function is convex if its domain is convex and its second
derivative is non-negative. Using this rule for the above example, we have f”(z) =2 >0
that results in the convexity of f(x). In the same way f(z) = —2? is not a convex function.

Example 2.2. Let x belong to a vector space, then show any norm of x is a convex function.
Solution: We should show that f(z) = ||z|| is a convex function, i.e.

Ay + (1 = Aaaf| < Allza]] + (1 = A)|22| (2.1)
Every norm function by definition follows the triangle inequality:

Ay + (1 = Maaf| < [[Aza]] + [[(1 = A)az|

On the other hand, because of the homogeneity property of norms and the non-negativity
of A and 1 — X the inequality in (2.1) results.

Properties of convex functions:

1. Linear and affine functions are convex because their second derivative is zero (non-
negative).
2. If f(y) is convex and y = g(z) is linear, then fog = f(g(x)) is convex.

3. If fi,..., f. are convex functions, then their convex combination
i=1 i=1

is also convex.
4. If f(x) is a convex function, then D = {z | f(z) <0} is a convex set.

5. If f(x) is a linear function on R then f(z) < 0, f(z) > 0 and f(z) = 0 define the
convex sets.

6. Let fi,..., fn be convex functions then D = {z | fi(x) <0 fori=1,...,n} is the
intersection of convex sets and defines a convex set.

7. If f(z) is a nonlinear convex function, neither f(z) > 0 nor —f(z) < 0 defines a
convex set.
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2.2.2 Linear Matrix Inequalities

A linear matrix inequality is an expression of the form:

F(x):FO+inE>‘O

i=1

where x = [11,...,2,,] is a vector of m decision variables and F; = F € R™", for
1 =0,...,m. The special inequality > 0, means positive definite i.e. F' > 0 if and only if
ul'Fu > 0 for all w € R™ and u # 0.

The matrix F' = FT is positive definite if and only if all eigenvalues of F' are positive.
This is equivalent to requiring that all its leading principal minors (i.e., the determinants
of its leading principal submatrices) are positive. In this course, we consider the positive
definiteness of symmetric matrices unless stated otherwise.

Properties of positive matrices: If ' > 0 then

All diagonals of F' are positive.

The determinant of F' is positive.

Eigenvalues and singular values of F' are equal.

F is invertible and the inverse is also positive definite F~1 > 0.
If A > 0 is a real number, then AF" > 0.

If G > 0then FF+G > 0 and GFG > 0 and FGF > 0 and tr(FG) > 0. The
product F'G is also positive definite if F'G = GF'.

7. Let M be a nonsingular full rank matrix, then £ = 0 if and only if MTFM = 0. In
the same way, F' < 0 if and only if MTFM < 0.

8. There is § > 0 such that F' = §I (it means that F'— 61 = 0).

AR A

Geometry of LMIs:
The LMIs F(z) > 0 and F(x) < 0 define convex sets on z i.e.:

F()\$1 + (1 — /\)%2) = )\F(l’l) + (1 — )\)F(l'g) =0

This can be shown easily using the properties 5 and 6. For example take x = [z x3],
then F(x) = x9 — 21 > 0 is an LMI (of dimension 1!) with [y, =0, F} = —1 and F; = 1.
If we plot the set corresponding to o — 27 > 0 in the space of x; and x5 a half plane is
obtained that is a convex set (see Fig. 2.3 a) [1].

The following two dimensional LMI [1]:
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a) Ty > Iy b) zo > a7 c) i+ a5 <1
Figure 2.3: Geometry of LMIs

(which is equivalent to this nonlinear constraint zy —x? > 0) represents also a second-order
cone and is a convex set (see Fig. 2.3 b).
Finally, the following LMI [1]:

1 Tr1 T2
Fz)= |2 1 0]=0 (2.2)
i) 0 1

represents a disk (27 + z2 < 1) and is a convex set shown in Fig. 2.3 c.

Remarks:

1. Any matrix inequality as F'(x) > 0 can be represented as an LMI if its elements are
affine with respect to z. For example the inequality in (2.2) can be written in the
standard form of an LMI as:

1 00 010 0 0 1
Fl@)=|0 1 0|42 |10 0 |+22]0 0 0
0 01 0 00 1 00

Fy E l}g

2. Any matrix inequality which is affine w.r.t F(z) and symmetric, e.g. ATF(z) +
F(z)A > 0, is also an LML

3. An LMI can be seen as the intersection of some sets related to the nonlinear con-
straints associated to the positivity of its leading principal minors. Each nonlinear
constraint is a polynomial function of z.

Example 2.3. Consider the following LMI: [1]

1—1’1 Ty + X9 I
Flx)=| z1+22 2—14 0 -0
T 0 1—|—LL‘2
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mp >0 me > 0 mg >0

Figure 2.4: LMI as the intersection of nonlinear polynomial constraints related to the
positiveness of the determinants of principal minors.

If we write the conditions on the positivity of its leading principal minors, we obtain:

m1>0: 1—$1>0
my>0: (1—21)(2—21) — (21 +22)? >0
m3>0: 23 (xe —2)+ (1+22)[(1 —21)(2 — x2) — (¥1 + 72)? >0

The sets related to these inequalities are depicted in Fig. 2.4. The intersection of the three
sets is the convex set around the origin in the third plot (m3 > 0), which corresponds to
the LMI F(z) > 0.

Schur Lemma

Some nonlinear matrix inequalities can be converted to an LMI using the so called Schur
Lemma.

Lemma 2.1. Let F(z) > 0 be an LMI and F(z) can be partitioned as:
Fo = | g o]
where A = AT, C = CT and B are affine with respect to x and have appropriate dimen-
sions. Then F(z) > 0 if and only if
A=0 and C—-B"A7'B+>0
Proof. Let a nonsingular full rank matrix M be defined as:

I —-A"'B
v=lo
We know from property (7) that MTEFM > 0. Then it can be verified easily that:

A 0
0 C—BTA™'B

that leads to A = 0 and C — BTA™'B 0. O

MTFM:[ }>0
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There are some other variants of the Schur lemma that can be proved in the same way:.
More specifically, it can be shown that:
F(z) =0<= C =0, and A— BC'B" =0
F(r) <0<= A<0, and C — BTA™'B <0
F(r) <0<= C <0, and A— BC'B" <0

It should be mentioned that A—BC~*BT and C— BT A1 B are called Schur complements.

LMIls in Control

Many control problems can be formulated using linear matrix inequalities. Two simple
examples are given here to show the importance of LMIs in control.

Stability analysis: Consider the asymptotic stability analysis of a continuous-time au-
tonomous linear system #(t) = Ax(t), where A € R"*". The asymptotic stability means
that lim; . z(t) = 0 for all (0) # 0. It is well known that the system is asymptotically
stable if and only if the real parts of all eigenvalues of A are negative. An alternative is
the Lyapunov stability theorem. It states that the system is stable if and only if there
exists a function V() > 0 and V(x) < 0 for all t > 0. If we take V(z) = 27 (¢) Pz(t) with
P >0, then

V(z) = a7 (t)Pz(t) + 27 (t)Pi(t) = 2T (t)[AT P + PAJx(t)

The necessary and sufficient condition for V(z) < 0 is AP + PA < 0. This condition
together with P > 0 can be put to one LMI as:

P 0

0 —(ATP+pA) | !

Therefore, the system is asymptotically stable if and only if there exists a symmetric
matrix P that satisfies the above LMI.

Stabilization with state feedback: Consider the following linear time-invariant system:
x(t) = Ax(t) + Bu(t)

The objective is to find a stabilizing state feedback law u(t) = —Kxz(t). Replacing u(t)
in the above equation, we find an autonomous system #(t) = (A — BK)x(t). This system
is stable if and only if there exists a symmetric matrix P > 0 such that:

(A—BK)'P+ P(A—BK) <0

Since both P and K are unknown, the above inequality is not an LMI on P and K.
However, if we introduce new variables we may obtain an LMI on new variables. Let’s
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multiply the above inequality from left and right by L = P~! (we use the properties 4
and 7 of the positive matrices):

L(A— BK)"+(A—BK)L <0

Then we define a new variable Y = KL that makes the above matrix inequality an LMI
as:

LA" —Y"B" + AL — BY <0
Therefore, if the intersection of L = 0 and LA” — Y7BT + AL — BY < 0 is not empty,
the system can be stabilized by the state feedback controller K = Y L~!.

2.2.3 Convex Optimization

One of the main problems in numerical optimization is the existence of local minima and
local maxima. The main interest of convex functions is related to the absence of local
minima.

Local and global minima: A function f(x) has a local minimum at zo € S if there
exists a neighbourhood N C S of zy such that f(zq) < f(z) for all points z € N. It is a
global minimum if f(xy) < f(x) for all z € S. According to this definition every global
minimum is a local minimum as well.

Lemma 2.2. Suppose that f(x) : S — R is convex. If f(x) has a local minimum at xy € S,
then f(xg) is also a global minimum of f(x). If f(x) is strictly convex, then o is moreover
unique.

Proof. Let f(x) has a local minimum at xy € S. Then for all z € S and some sufficiently
small A € [0, 1], we have:

fzo) < flxo+ Mz —20)) = f(Az+ (1 — N)xo) (2.3)

Since f(x) is convex

FOr+ (1= Nwo) S Af(2) + (1= A)f(wo) = fwo) + A(f(2) — f(z0))  (2.4)
Using (2.3) and (2.4), we obtain:

f(xo) < flzo) + A(f(2) = flzo)) = 0<A(f(x) — f(w0))

This implies that f(zg) < f(z) for all z € S. So f(zg) is a global minimum. If f(z) is
strictly convex, then the inequalities in (2.4) becomes strict for all x € §. Hence, zq is
unique. ]

It should be emphasised that this lemma does not make any statement about existence
of point x5 € S. It only says that all local minima of f(x) are also global minima. As a
result, it suffices to compute a local minimum of a convex function to actually determine
its global minimum.
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Convex problems: In all optimization problems, an objective function should be mini-
mized (or maximized) over a decision space represented by some constraints. If no objec-
tive function is defined the problem is called a feasibility problem. The aim of a feasibility
problem is to see if the decision space is empty (problem infeasible) or not (problem
feasible). In general, we can write an optimization problem as:

min fo(z)
subject to:
filx) <0 i=1,...,n
gj(x) =0 j=1,....,m

If fi(z) for i = 0,...,n are convex functions and g¢;(z) for j = 1,...,m are affine, the
problem is commonly referred to as a convex program. This is probably the only tractable
optimization problem in the area of nonlinear optimization theory. The numerical algo-
rithms to solve this problem is not the subject of this course and will not be studied here.
We just mention some particular convex problems and the way that they can be solved
using the available softwares.

LP: If f;(x) for ¢ = 0,...,n are affine, the problem is called Linear Programming (LP).
This is the simplest constrained optimization problem and can be solved very effi-
ciently even for more than hundred thousands of constraints and variables.

QP: If fy(r) is a quadratic function and f;(x) for ¢ = 1,...,n are affine, the problem is
called Quadratic Programming (QP). This problem also can be solved very efficiently
and is in the second place after LP in terms of reliability and numerical efficiency.
The least squares (LS) problem is the simplest optimization problem in this category
where there is no constraint (n = m = 0).

SDP: If fy(z) is affine and the constraints are replaced with LMIs F;(z) < 0 or Fi(z) =
0 for ¢ = 1,...,n then the problem is called Semi-Definite Programming (SDP).
Since many control problems can be reformulated by a system of linear matrix
inequalities, SDP has many interests in control theory. The SDP problems can be
solved efficiently using the ellipsoid algorithm and interior point methods. There is
a Toolbox for Matlab and a few open source softwares for solving the SDP problems.

SIP: If in an SDP problem the constraints are defined for a parameter 6 and should
be satisfied for all # € © (the number of constraints is infinity but the number of
decision variable is finite), the problem is called Semi-Infinite Programming (SIP).
This problem is referred to robust optimization as well and is the most complicated
convex problem. A practical solution to this problem is to choose a finite set O C ©
and convert the problem to SDP. In the randomized approaches the set ©y is chosen
randomly and the probability of the violation of the constraints by any § € ©\0y
is computed.
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SDP in Control

Here we introduce two simple examples for the use of SDP in control problems.

Computing H ., norm: In Section 1.3.1 we studied different methods for computing the
infinity norm of an LTT system. One of the methods is based on the bounded real lemma
and the bisection optimization algorithm. Here, we present the bounded real lemma in
which the condition on the Hamiltonian matrix is changed with an equivalent condition
on the existence of a solution to a matrix inequality. Then, we reformulate it as an SDP
problem and show how it can be solved.

oo~ [442]

ATP 4+ PA+CTC PB+C'D]
BTP+DTC  DTD —~2I

Lemma 2.3. Let v > 0 and

then ||Glleo < 7y if and only if
(2.5)

Proof. We prove only the sufficient condition. If u(t) is the input and y(¢) the output of
G then the infinity norm can be defined as the supremum of the system’s two-norm gain:

Gl = sup L2

w [l

The state space representation of G is given by:

t(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t) z(0)=0

The LMI in (2.5) can be rewritten as:

{ATP+PA PB }+{CT

[ DT}[C D]<0

This implies:

T 2[5 re o1 [ ] <o

O [ 2 [ ] + ety s putyticato + Dt <o

y(t)
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2T (t)(ATP + PA)x(t) + 27 (t)PBu + u” (t) BT Px(t) — v*u” (t)u(t) + y* (t)y(t) < 0
[Az(t) + Bu(t)]" Px(t) + 2" (t) P[Az(t) + Bu(t)] — v*u’ ()u(t) + y" (t)y(t) <0
—_—— ——
(t)
Taking a Lyapunov function V(z) = 27 (t)Pz(t), we have
V(z) = &(t)T Px(t) + 2T (t) Pi(t)
that leads to:
V(z) =~ (thu(t) + y" (t)y(t) <0
Taking the integral of the above inequality, we obtain:
/ V(@)dt — 42 / o (yu(t)dt + / yT (Dy(B)dt < 0
0 0 0
Using the definition of the two norm of the signals, we obtain:
V(z(00)) = V(2(0)) = 7*llullz + lyll3 < 0

Since ATP + PA < 0 from the LMI in (2.5), G is stable and z(co) = 0 that results in
V(z(o0)) = 0. On the other hand, x(0) = 0 gives V' (z(0)) = 0. Therefore:

2
HyHg < 72 - sup HyHQ <~ = ”G”oo <~
[[ull3 w [lull2

O

As a result, computing the infinity norm of G can be reformulated as an optimization
problem:

2
g
subject to:

ATP+ PA+CTC PB+C'D
BTP+DTC  DTD —~%]
P>=0

This SDP problem can be solved using the following Yalmip! code:

'Free code developed by J. Lofberg accessible at http://control.ee.ethz.ch/$\sim$joloef/
yalmip.php. Yalmip is an interface that translates an optimization problem to the language of a solver.
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gamma2=sdpvar (1,1);

P=sdpvar (n,n, 'symmetric');

Imi=[A'+«P+PxA+C'+«C PxB+C'*D; B'xP+D'xC D'*D-gamma2]<0;
Imi=[1lmi, P>07];
options=sdpsettings('solver', 'Imilab');
optimize (1mi, gammaz2, options) ;

gamma2=value (gammaZz) ;

HinfNorm=sqgrt (gamma?2)

Note that +? is replaced with a new variable gamma2 to make the objective function and
the elements of the LMI constraint linear in variable. This, of course, will not change the
outcome of the optimization; we should only take the square root of gamma2 to find the
infinity norm at the end. In this code, sdpvar is used to define the decision variables. In
this problem we have a scalar v, which is an upper bound on the square of the infinity
norm, and a symmetric matrix P whose dimension is equal to the order (number of
states) of G. Then, the LMIs are defined straightforwardly using Matlab notation. Using
sdpsettings the optimization options are defined. Among the options, we can choose
an SDP solver. In this example, we use 1milab from LMI Toolbox of Matlab. Next, the
command optimize, take the lmi constraints (1mi) and the objective function (gamma)
to be minimized. Finally the optimal solution is converted from an SDP variable to a
double variable of Matlab.

Computing Hs norm: In Section 1.3.1, we saw that the Hs norm of a system is equal to
the square root of the trace of CLC?, where L > 0 is a solution to the following equation:

AL+ LA" + BBT =0 (2.6)
This problem is reformulated as an SDP problem in the following lemma.

Lemma 2.4. Let G(s) be a strictly proper stable transfer function given by:

oo- (442

then ||G||5 = trace[C L°CT] where L° is the optimal solution to the following SDP problem:

mLin trace|C LO™]

AL+ LAT + BBT <0 L=0 (2.7)

Proof. Let L* = 0 be the unique solution to the Riccati equation (2.6). Since L* sat-
isfies the equality, it also satisfies the inequality in (2.7). Therefore, trace(CL°CT) <
trace(C'L*CT), which implies trace(C(L° — L*)CT) < 0 and hence L° — L* < 0. On the
other hand, subtracting (2.6) from (2.7) yeilds A(L° — L*)+ (L°— L*) AT < 0. By stability
of A, this implies L° — L* = 0 . Combining both inequalities, we conclude L° — L* = 0,
i.e. L° = L* which complete the proof. O
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This can be coded using Yalmip as follows:

L=sdpvar (n,n, 'symmetric');
Imi=A+xL+L*A'+B+xB' < 0;

Imi=[1lmi, L>0];
options=sdpsettings('solver', "Imilab');
optimize (1lmi, trace (CxLxC'),options);
L=value (L) ;

H2Norm=sqrt (trace (CxL*xC"'))

2.3 Model-Based H, and H ., Design

When the parametric model of a system is available, there are several methods to design a
controller for the system with performance specifications in terms of the minimization of
the 2- or infinity-norm of some transfer functions. The optimization problems are different
for continuous-time models and discrete-time models, although the approaches are similar.
In this section, we present everything for continuous-time models. The control methods
can be divided into two categories depending on the controller structure or the desired
performance.

Controller structure: Before starting to optimize the controller parameters, we should
choose the controller structure among the following choices:

State Feedback: The control law is a linear combination of the states, i.e. u(t) = —Kuz(t),
where K € R™*P (m is the number of inputs and p is the number of states). The
controller is very simple and can be computed using convex optimization programs.
However, it can be applied to systems where all states are measurable. Otherwise,
it can be combined with a state estimator. In this case, the overall performance
may be deteriorated depending on the quality of the estimator.

Output Feedback: When all states are not measured, a simple solution is a static output
feedback controller where u(t) = —Ky(t) with K € R™ " (n is the number of
outputs). A more general solution is to design a dynamic output feedback controller,
where the controller has its dynamic and is represented by a state-space model.
This problem has a solution with a convex program when the number of states
of the controller is equal to that of the model (called full order controller). Tt
should be mentioned that the decision variables are not the controller parameters
but some intermediate variables. The final controller parameters are functions of
the intermediate variables.

Fixed Structure: In many applications, a low order controller with a fixed structure is
desired. For example the well-known PID controller has a fixed structure (a second
order controller with one integrator). The closed-loop performance are optimized
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usually by a non-convex optimization algorithm in which the controller parameters
are the decision variables. The fixed structure controller is more interesting in mul-
tivariable large scale systems when we seek decentralized or distributed controllers.

Performance specification: After choosing the controller structure, we should choose
which type of performance and robustness we want to consider for the closed-loop system
among the following choices:

Loop shaping: The closed-loop performance can be specified by a desired open-loop trans-
fer function Ly;. The objective is to compute a stabilizing controller such that
|\WL(GK — Lg)|| (in 2 or infinity norm) is minimized, where W}, is a frequency
weighing function.

H o performance: The objective is to design a stabilizing controller that minimizes a
performance criterion in terms of the infinity-norm of a weighted closed-loop transfer
function subject to constraints on the infinity-norm of some other weighted closed-
loop transfer functions.

H, performance: The objective is to design a stabilizing controller that minimizes a
performance criterion in terms of the 2-norm of a weighted closed-loop transfer
function subject to constraints on the 2-norm of some other weighted closed-loop
transfer functions.

Mixed Ha/Hoo: The performance may be represented as a mix of constraints on the 2-
and infinity-norm of some weighted closed-loop transfer function while the objective
is minimizing the 2- or infinity-norm of a weighted closed-loop transfer function.
It is clear that the controller should be stabilizing. In this approach some con-
straints on the places of the closed-loop poles can be considered as well (regional
pole placement).

There are a few Matlab commands in the robust control toolbox that can be used to
design such controllers. Namely, hinfstruc can be used to compute fixed structure con-
trollers with H ., performance using non-smooth optimization techniques. The commands
h2syn and hinfsyn are used to design H, and H., optimal output feedback controllers, re-
spectively. They use convex optimization methods to compute full-order controllers. Loop
shaping performance in the infinity-norm sense can be achieved using loopsyn command
by convex optimization. The sum of two Hs and H., performance criteria is minimized
under some constraints on the place of closed-loop poles using hinfmix command.

It is clear that we cannot study all of these methods in this section. We will give
just an overview of some of the methods without entering into the details in the following
subsections. The main principles of controller design using SDP is illustrated by state
feedback controller design for H., and Hs performance. The linear fractional transfor-
mation (LFT) is introduced that presents a general framework for H., and H, optimal
output feedback controller design.
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2.3.1 State Feedback Control
‘H., State Feedback

The objective is to design a stabilizing state feedback controller u(t) = —Kuxz(t) such
that the infinity-norm of a closed-loop transfer function is minimized. To design such a
controller, follow these steps:

1. First, write the state-space equations of the plant model.

2. Augment the equations by adding external inputs to the closed-loop system (such
as reference signals, disturbance inputs, or measurement noise) that are relevant to
the control objectives.

3. Substitute u(t) = —Kxz(t) into the system and derive the state-space representation
of the resulting closed-loop system.

4. Apply the bounded-real lemma for the closed-loop system to formulate an optimiza-
tion problem involving matrix inequalities.

5. Transform the optimization problem to a convex problem by changing the variables.

Input disturbance rejection: Consider a controllable state-space representation of a
strictly proper LTT system as:

(2.8)

Suppose that the objective is to design a stabilizing state-feedback controller K such that
the infinity-norm of the transfer function between the input disturbance v(t) and the
output is minimized.

The control law plus the input disturbance is given by u(t) = —Kz(t)+v(t). Replacing
u(t) in (2.8), leads to the following closed-loop state space model:

2(t) = (A — BK)z(t) + Bo(t)

y(t) = Cx(t) (2.9)

Now, we should apply Lemma 2.3 (bounded-real lemma) to the above system and minimize
the infinity norm:

: 2
L
subject to:
(A— BK)"P+ P(A- BK)+C"C+ PB(y*)B"P <0
P=0
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It is clear that the first inequality is not an LMI. However, we can convert it to an LMI
using a change of variable. Let’s multiply the inequality from left and right by X = 2P~}
to obtain:

X(A - BEK)"™y*4++*(A—- BK)X + XCTCX + By*BT <0

Then, we define a new variable K X =Y and replace it in the above inequality and divide
the inequality by 2

XAT —vTBT + AX — BY + XCT+2CX + BBT <0
Now, using the Schur Lemma (2.1), we obtain the following LMIs:

T T RT T T
XA +AX—YC§ — BY + BB )_(7(]2] <0 . X0
The obtained convex problem can be solved to find the optimal values for X and Y. The
state feedback controller is given by K = Y X 1.

Remark: It should be noted that since there is no constraint in other sensitivity function,
minimizing one of them will lead to very large norm for the other sensitivity functions. In
a good controller design we should always consider some limits for the norm of the control
signal to avoid very large values.

State disturbance rejection: Consider again a controllable state-space model of a sys-
tem with an additional disturbance on the state equation as:

.
—~
~
SN—
Il

Ax(t) + Biu(t) + Baw(t)

The objective is to design a stabilizing state feedback controller that minimizes the infinity-
norm of the transfer function between w(t) and y(t) as well as between w(t) and wu(t).

We replace u(t) = —Kz(t) in the above equation to find the closed-loop state-space

model as:

B(t) = (A By K)x(t) + Byw(t)
y(t) = Cx(t)
u(t) = —Ka(t)
Now we define a new output variable z(t) = [y(¢); u(t)] that regroups the plant output
y(t) and the control signal u(t) in one performance output variable. So the objective will

be minimizing the infinity-norm of the transfer function between w(t) and z(t). The state
space model of the closed-loop system will be:

t(t) = (A — B1K)z(t) + Bow(t)
C
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If we apply bounded real lemma to this state-space model we obtain:

: 2
gl
subject to:
(A—= BK)"'P+P(A—BK)+C'C+ K"K + PBy(v?)BfP <0
P =0

Since the first inequality is not an LMI, we multiply the inequality from left and right by
X =~%2P~!, we define a new variable Y = KX and we divide the whole inequality by 72
to obtain:

XAT —YTBT + AX — B)Y + XCT"y2CX +Y"y72Y 4+ B,BY <0
which can be rewritten as:
XAT + AX —Y'BT — B)Y + By,B]

-2 0

T T
_[XC Y }|: 0 _72]

—1
} xet vy <o

Then applying Schur Lemma the following LMIs are obtained:

XAT + AX —YTBT — B,Y + B,BI XxC7T yT7
CX I 0 <0 , X=0
Y 0 -~

The final state feedback controller that achieve this performance is K = Y X 1.

Ho, State Feedback

The objective is to design a stabilizing state feedback controller that minimizes the 2-
norm of a closed-loop transfer function. The method to design such a controller is very
similar to that of H., state feedback controller design. The only difference is that instead
of bounded real lemma (Lemma 2.3) the 2-norm lemma (Lemma 2.4) is used.

Input disturbance rejection: Consider the state-space model in (2.8). Design a stabiliz-
ing state feedback controller that minimizes the 2 norm of the transfer function between
a disturbance added to the control signal and the output of the system.

Similar to the H,, case, we replace u(t) = —Kz(t)+v(t) in (2.8) to obtain (2.9). Then
we use the 2-norm lemma and derive the following optimization problem:
min tr(CLCT)
(A— BK)L + L(A— BK)' + BBT <0
L>0
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It is clear that the first inequality is not an LMI but can be transformed to an LMI with
a change of variable as KL =Y. This leads to the following LMI:

AL+ LAT — BY —YTB+ BBT <0

The final controller is X = Y L~!. This controller, however is not implementable on a real
system because when minimizing the norm of one transfer function the norms of other
closed-loop transfer functions become too large. A good controller can be designed if, in
addition, the two-norm of the control signal is also minimized.

2.3.2 Linear Fractional Transformation

We saw in the previous subsections that we can design state feedback controllers in H,
and H, sense by convex optimization programs. However, the norm of only one transfer
function from an external signal to a performance output is minimized. We saw that if
we have more than one performance output, we can regroup them in a new variable and
reformulate the problem. This technique can be generalized to define a new framework
for representation of control problems named linear fractional transformation (LFT).

Definition 2.1. [9] Let M be a complex matriz partitioned as:

|: Mll M12 :|
M21 M22

and let A be another complex matriz. Then we can define an LFT with respect to A
denoted Fi(M,A) as:

Fy(M,A) := My + MisA(I — Moy A) ™" My
provided that the inverse (I — MyyA)™ exists.

The motivation for this definition can be seen from the block diagram in Fig. 2.5.
This diagram represents the following set of equations:

z | Py Py w . uw=K
) Py P U ’ Y
It is easy to verify that the LFT is in fact the transfer matrix from w to z. Let replace
u = Ky in the equations:
2z = Phw+ P Ky
Yy = Paw+ PpuKy
From the second equation we can find y = (I — Py K) ™! Pyyw and replace it into the first

equation:
2z =[Py + PoK(I — PuK) ' Pylw = F(P,K)w
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w z
P
u Y

K

Figure 2.5: The block diagram of an LF'T

In a control problem we can define w as a vector containing all external inputs of
interest to the closed-loop system. So this vector may include the reference signal, the
input disturbance, the output disturbance and the measurement noise. The signal u is the
control signal, which is an internal signal in a closed-loop system and connected directly
to the actuators. The control signal u is generated by the controller and is its output.
The signal z is the collection of all performance indicating signals, that usually we want
to minimize, like the tracking error, some of the states, the outputs or the control signal.
Note that z may contain the other signals like v and y. Finally, the signal y is the input of
the controller (that comes generally from the sensors). Note that the notation is different
from a classical closed-loop scheme with unity feedback in which y is the output of the
plant and the input of the controller is the tracking error.

For a given P, the objective of a control problem is to design a controller K that
minimizes a norm of the transfer function between w and z denoted by T, or Fj(P, K).
It can be shown that many interesting control problems can be reformulated as an LFT.
For this purpose, P which is called the augmented plant model should be defined. The
augmented plant has two inputs v and w and two outputs z and w (note that all signals
are vectors) and includes the plant model and the performance and robustness filters.

Nominal performance: In order to make it clear, let’s consider the minimization of
|W1S]| as the control performance and try to find the associated augmented plant to this
control objective. Figure 2.6 shows a classical closed-loop block diagram in which a filter
Wi is added such that the transfer function between w and z becomes W;S. Note that
all signals in the closed-loop system are denoted such that they are compatible with the
notation of a standard LFT. Especially, note that in this scheme y is the input of the
controller and not the output of the plant.

In the first step, we should write the equation of the system that relates v and w to
z and y. Note that all signals and transfer functions have the argument s for Laplace
transform or z for z-transform, which has been dropped out in the following equations.

z = Wi(w — Gu) : y=w—Gu
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|‘ Wl N
w = ) u
7N K G

L)

Figure 2.6: Closed-loop block diagram for nominal performance

Therefore we obtain the augmented plant as:

P

A

z . [ W1 —WlG w
y| | 1 -G u
It is easy to verify that the LET Fj(P, K) = W,S:

F(P,K)= P+ PpK( — Py K) ' Py
=W+ (-WG)K(1+GK)™1

GK W,
=W (1_1+GK) “iror - ®

Robust performance: Consider the robust performance problem for multiplicative un-
certainty. It was shown that |||W1S| + |W5T |||« < 1 should be satisfied. Let’s build the
block diagram of Fig. 2.7 with one external input w and two performance output z; and
25. We want to investigate which criterion is minimized if we minimize |||~ in an LFT
framework. In the first step we write the equations for the outputs, i.e. 21, 29,y of the

LFT representation:
z1 = Wi(w — Gu) , 29 = WoGu , y=w— Gu

In the next step we find the augmented plant as:

P

A

21 T W1 —WlG | w
z9 = 0 WQG |: :|
Y 1 -G

In the last step we compute T, = F;(P, K) as:

Fy(P,K) = Py + PK(I — PyK) ™' Py

:|:M(;1:|+|:_VE:1GG}(K<1+GK)11: [32‘79_]
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21

Figure 2.7: Closed-loop block diagram for robust performance
If we minimize |7,/ the following frequency domain function is minimized:

il = || i || = e | Weint) |

= sup /Wi (je)S () + W (juo) T (jw)P?

Note that the optimal infinity-norm should be less than 1/4/2 in order to guarantee that
the robust performance criterion sup,, |W7(jw)S(jw)| + |[Wa(jw)T (jw)| < 1 is satisfied.

Mixed sensitivity problem: Suppose that in addition to the robust performance prob-
lem we are interested to have some constraint on the magnitude of the input sensitivity
function Y. In other words, we are interested in minimizing W3l as well. This can be
done by adding a third filter W35 to Fig. 2.7 such that its input is v and its output is z3. If
we follow the same procedure we will find (P, K) = [W1S WoT WsU]T. Since usually
we are interested in the mixed sensitivity problem, there exists a Matlab command to
construct the augmented plant for this problem as P=augw (G, W1, W3, W2). Note that the
first filter concerns S, the second one U and the third one 7. The same command can be
used for nominal performance problem with P=augw (G, W1) and for robust performance
problem with pP=augw (G, W1, []1,W2).

2.3.3 H,, Optimal Control

Given an LFT representation for a system, the optimal H., control problem is to find
all admissible controllers K such that ||7.,]||c is minimized. It should be noted that
the optimal H., controllers are generally not unique for MIMO systems. Furthermore,
computing an optimal H., controller is often theoretically and numerically complicated.
Moreover, in practice we are not really interested in designing an optimal H,, controller
while we can easily obtain a suboptimal controller which is very close to the optimal one.
In a suboptimal H,, control, the objective is to find all admissible controllers, if there are
any, such that |7, |l < v, where v > 0 is given.
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Note that in the previous subsection we show that how P(s), which is a matrix of
transfer functions, can be computed from the desired performance and robustness re-
quirements. The design of suboptimal H., controller in an LFT framework needs the
augmented plant in state-space form. Assume that a realization of P(s) is given by [9]:

i(t) = Az(t) + Byw(t) + Bau(t)
Z(t) = C’lx(t) + Dlgu(t) (210)
y(t) = Coz(t) + Doyyw(t)

The following assumptions are made:
(A1) (A, By, C)) is controllable and observable. (A, Bs, Cs) is stabilizable and detectable.
(A2) Dss has full column rank and Ds; has full row rank.

(A3) [ A _C]w[ 52 } has full column rank Vw.
1 12

(A4) [ C Dy, } has full row rank Vw.

Assumption A1l is a standard assumption for controller design in LFT framework. The
system with (A, By, Cy) which relates the external input w to the performance output z
should be controllable and observable. However, for the system (A, By, Cy) that relates
the control signal to the measured output should only be stabilizable and detectable. Note
that stabilizable and detectable are weaker conditions than controllable and observable. In
fact, if the uncontrollable states are stable the system is stabilizable and if the unobservable
states are stable the system is detectable.

Assumption A2 is related to the rank of D15 and Dy;. If Dis has not full column rank,
it means that some control inputs have no effect on the performance outputs because
z(t) = Chx(t) + D1au(t). This will lead to some singularity in solution and can be avoided
by adding some weighting filters on these control inputs (even a very small gain to avoid
the singularity in the computations). On the other hand, if Dy; has not full row rank, it
means that one of the measured outputs y(t) = Cox(t) + Dajw(t) is not affected by any of
external inputs (the feedback from this output says nothing about the variation in input
variables). This makes the problem singular and cannot be solved. The solution is to add
some external inputs (noise or disturbance) on all measured output (with a very small
gain).

Assumptions A3 and A4 are related to the non existence of poles of the plant model
and the weighting filters on the imaginary axis. If there are such poles in the system,
they can be perturbed to make these assumptions satisfied. The small perturbation can
be done by replacing the term s in the denominator of the model or filters with (s + €),
where € > 0 is a very small value.
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Two additional assumptions that are implicit in the assumed realization for P(s) are
that Dy; = 0 and D9y = 0. In fact, Doy is usually equal to zero because the plant model is
strictly proper. However, it may be non zero when we transform a discrete-time system to
a continuous-time system. In this case, we can remove Dy from the plant model and re-
inject it into the controller afterward. It means that we can solve the problem for Dy = 0
and compute the controller K and then the final controller is: K = Ky(I + Doy Kp) ™.
The assumption on Dy; = 0 is just for simplicity of the solution formulas and can be
relaxed.

A suboptimal H.,, can be computed for the augmented plant in (2.10) under the
following extra assumption just for simplifying the solution:

Doy I

Theorem 2.1. [9] Under Assumptions A1 to A5 for the augmented plant in (2.10), there
exists a suboptimal controller such that ||T.y|leo < 7 if and only if there exist Y > 0 and
X = 0 such that:

(A5) D, [ Cy D1z ] =[0 I] and [Bl }D;:[Ol

XA+ ATX + X(v2BBl — BoBI)X +CFCy <0
AY + Y AT + Y (v 2CTC, — CTCy)Y + BiBY <0
p(XY) <~”

where p(+) = |Amax(+)| s the spectral radius of a matriz. Moreover, when these conditions
hold, the parameters of the state space representation of such controller are:

Ag = A+~ BB X — BoBI X — (I —v?YX)'YCl o,
Bx = —~y2YX)'YCY
Cx =-B] X
Dig =0
The proof of this theorem can be found in [9]. This problem can be solved using the

Matlab command K=hinfsyn (P). In the sequel, it is illustrated how a robust controller
can be designed for a system with multimodel uncertainty using the H., control theory.

Example 2.4. Consider an unstable system G, (s) = 532 as the nominal model with the
following multimodel uncertainty:

Extra lag: Gi(s) = (o.omfm

Time delay: Ga(s) = 2?;3;))2 :

High frequency resonance: Gs(s) = ﬁ%

High frequency resonance: Giu(s) = -2 & HZ;QS(&QOO)

Pole/gain migration: Gs(s) = (53';2)

Pole/gain migration: Ge(s) = (Si.lﬁ.g)
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A stabilizing controller should be designed to achieve a closed-loop bandwidth of w, =10
rad/s and a modulus margin of at least 0.5 for all plant models.

Solution: We start with designing the performance filter to achieve a bandwidth of 10
rad/s and a modulus margin of at least m = 0.5. Note that the closed-loop bandwidth
is usually higher than the attenuation band w,, that is the maximum frequency at which
the magnitude of |S(jw)| <-3dB for all 0 < w < w,. For a modulus margin of at least
m, we should guarantee that max, |S(jw)| < 1/m. These two conditions are met, if we
choose W~1(s) as:

s 2s

Wi l(s) = =
v () m(s+wy) s+ 10

and guarantee that |18 < 1.

In order to satisfy these conditions for all plant model, we should transform the mul-
timodel uncertainty to multiplicative uncertainty and compute the filter Ws(s). Then if
|[WoT ||l < 1 is satisfied we obtain robust stability. For robust performance the mixed
sensitivity ||[W1S  WaT]|le < 1/v/2 should be satisfied.

In order to compute the uncertainty filter Ws(s), we use the following Matlab code:

s=tf('s');
Gn = 2/ (s-2);

Gl = Gn/(0.06%s+1);

G2 = Gnx (50-s8)/ (s+50);

G3 = Gn*5072/ (s"2+2x.1%50%xs+50"2);
G4 = Gn*7072/ (s"2+2x.2x70%xs+70"2) ;
G5 = 2.4/ (s-2.2);

G6 = 1.6/ (s-1.8);

nominal model

o\

o\°

extra lag

o\°

time delay (Pade approximation)

o\

high frequency resonance
high frequency resonance
pole/gain migration
pole/gain migration

o° o

o

[

% command to gather the plant models Gl through G6 into one array.
G = stack(1,G1,G2,G3,G4,G5,Go6) ;

% Try a 4th-order filter W2 for Multiplicative uncertainty:

orderW2 = 4;
Gf = frd(G, logspace(-1,3,60));
[Gu, Info] = ucover (Gf,Gn,orderW2, 'InputMult');

W2 = Info.Wl;
bodemag ( (Gn-Gf) /Gn, "b—=",W2, 'r'); grid

Note that for Ga(s), the time delay is approximated by a first order Padé function. The
Bode plot of the uncertainty filter is given in Fig. 2.8. The following code is used to solve
the mixed sensitivity problem:

Wl=(s+10)/2/(s+0.000001);
K=mixsyn(Gn,Wl, [],W2);
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Relative Gaps vs. Magnitude of W2

Magnitude (dB)

107 10° 10’ 10° 10°
Frequency (rad/s)

Figure 2.8: The magnitude Bode diagram of the uncertainty filter

Note that since W;(s) has an integrator, the pole at zero is slightly moved to satisfy
Assumptions A3 and A4. The performance of the final controller is illustrated by the step
response of the closed-loop system and the control signal in Fig. 2.9. The magnitude Bode
plot of the sensitivity function & is shown in the same figure together with that of the
inverse of Wi (s) to show that the robust performance is achieved. It can be seen, however,
that the control signal is too large and therefore the controller cannot be implemented in
a real experiment. We observe also that, in the same figure, the magnitude of the input
sensitivity function U is too large in high frequency. This will amplify the high frequency
measurement noise at the input of the plant. These problems can be fixed by adding
|W3 U||s to the mixed sensitivity problem. For example, the results can be improved if
we choose Wi(s) = 1/15 and the following code:

Wl=(s+10)/2/(s+0.000001) ;
W3=1/15;
K=mixsyn(Gn,Wl,W3,W2);

The improved results are shown in Fig. 2.10. It can be seen that the control signal has
been significantly reduced and the maximum of the magnitude of ¢/ is much less than that
of the initial design.

2.3.4 “H, Optimal Control

The Hs control problem and its solution are given in the following theorem [9]:

Theorem 2.2. Given the augmented plant model in (2.10) together with Assumptions Al
to A4, the controller K stabilizes P internally and minimizes the Ho norm of the transfer
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Figure 2.9: Step response, control signal, the sensitivity functions & and S for the initial
design

matrix T, from w to z, if and only if there exist X = 0 and Y > 0 such that
XA+ ATX — XByR{'BI X + CI(I — Dy R{'DI,)C1 < 0

Y AT + AY —YCIRy'CoY + Bi(I — DI, Ry Dyy)B] <0

where

Ay = A— ByR;'DL,Cy
Ay = A— BDLR;'Cy
Rl = D,{QD12 9 RZ = DQID;

Moreover, the parameters of the state space model of such controller are:

Ag = A— BoR7Y(BI X + DL,CY) — (YOF + BiDI)R;'C,
Bx = (YCI + B.DL)R;*
Cx =—R{YBIX +DLC) , Dg=0

The proof of this theorem can be found in [9].
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Figure 2.10: Step response, control signal, the sensitivity functions U and S for the
improved design

2.4 Data-Driven Control

Most controller design methods are based on plant parametric models. A parametric
model can be obtained either by first principles modelling or by parameter estimation
techniques using measured data. However, it is usually too difficult or time consuming to
obtain a parametric model based on physical laws. On the other hand, identification of
parametric models is based on several a priori information and user choices like sampling
period, time-delay, number of parameters in numerator and denominator of plant and
noise model, optimal excitation etc. For these reasons, some data-based methods (in
time-domain or in frequency-domain) for controller design have been developed.

Frequency-domain data or spectral models can be easily obtained from input/output
data using Fourier or spectral analysis. In this type of models the information is not
condensed into a small set of parameters thus avoiding errors of unmodelled dynamics
that appear in parametric models. Moreover, an estimate of the uncertainty due to noise
can be readily computed.

Although spectral models are largely used in practice, controller design methods based
on this type of models are rather limited. These approaches are very intuitive and work
well for simple systems that can be approximated by a low-order model with relatively
small delay. For unstable and nonminimum-phase systems and systems with parametric
and frequency-domain uncertainty, more advanced methods should be used.
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Recent developments in the fields of numerical optimization, computer technology,
and sensor technology have significantly reduced the computational time of optimization
algorithms and increased the availability of large amounts of measured data during a
system’s operation. These advances make computationally demanding data-driven control
design approaches a viable alternative to classical model-based control problems.

This section presents a new approach for designing robust fixed-order controllers. The
approach demonstrates that convex optimization can compute robust fixed-order con-
trollers for Linear Time Invariant (LTI) systems represented by nonparametric spectral
models. The method is versatile and can be used for designing Proportional-Integral-
Derivative (PID) controllers as well as higher order controllers in discrete or continuous
time. An important feature of the proposed approach is its ability to treat multimodel
uncertainty and systems with time-delay in a straightforward manner.

2.4.1 Frequency Response Data

The system to be controlled is a Linear Time-Invariant Multi-Input Multi-Output (LTI-
MIMO) system, and is represented very generally by a multivariable frequency response
model G(jw) € C™™ where n is the number of outputs and m the number of inputs. The
frequency response G(jw) is assumed to be bounded in all frequencies. This condition
can be relaxed if G has some poles on the stability boundary (the imaginary axis for
continuous-time, or the unit circle for discrete-time systems).

The frequency response can be obtained from a parametric model by evaluating:

Gjw) =G(s =jw), weQ={w|l-0<w<x}

s s
——§w<—}

Jwls) — JwTs O =
Ge) =Gz =€), we {w T ST

for continuous-time and discrete-time models respectively, where T is the sampling time.
A notable advantage of frequency response models as compared to state-space models is
that time-delays can be considered exactly, and no approximation is required.

Following a data-driven approach, the frequency response model can also be identified
directly from time-domain measurement data using the Fourier analysis method from m
sets of input/output sampled data as:

-1

N-1 N-1
Gy = |3 Y(k)e_j“TSk] S Uk Tk weq,
k=0 k=0

where N is the number of data points for each experiment, U(k) € R™*" includes the
inputs at instant k, Y(k) € R™*™ the outputs at instant k& and Ty is the sampling period.
Note that at least n,, different experiments are needed to extract G from the data (each
column of U(k) and Y(k) represents respectively the input and the output data from one
experiment). In order to obtain an accurate model, the input data should have a rich
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frequency spectrum such as e.g. a PRBS signal, a sum of sinusoids or a frequency sweep.
The main advantage of directly using frequency-domain data is that a parametric model
of the plant is not required, and there are no unmodeled dynamics. The only source of
uncertainty for an LTI system is the measurement noise, whose influence can be reduced
significantly if the amount of measurement data is large.

2.4.2 Controller Structure

In this section, d will be used to denote both the Laplace variable in the continuous-time
case and the z-transform variable in the discrete-time case. The controller structure is
chosen as K = X(6)Y1(6) where X(§) and Y (§) are transfer function matrices with
bounded infinity norm that are affine with respect to the controller parameters (optimiza-
tion variables). They can be defined as

X(6) = Zxk.]% (2.11)
Y(6) = Zyk.]% (2.12)

where p(d) is a stable polynomial. A possible choice is p(d) = (0 — )", a < 0 for
continuous-time, or |a| < 1 for discrete-time systems. Moreover, Y is restricted to be
diagonal to avoid increasing the degree of Y when inverted. The final controller is not
sensitive to the choice of « as it will be cancelled when forming XY ~!. However, its main
role is to normalize the constraints and improve the numerical accuracy of the optimization
solvers.

This controller structure is very general and covers centralized, decentralized and dis-
tributed control structures, as will be shown in the following examples.

Example 2.5. PID controller: In continuous-time, a multivariable PID controller
-1 K’L -1
K=XY =K, +—+Kys(Tys+1)
S

corresponds to a fixed-degree controller with n = 2, Y5 = 0 and Y; and Y, diagonal.
Show that the PID coefficients can be obtained from Xj,Y} as follows: Ty = YoY L,
K, =XoY7 !, K, = XY ' = KTy and Ky = XoY, ' — K, Ty.

Example 2.6. Distributed controller: Different actuators may be located physically far
apart, and the various control inputs can only be computed using a subset of all mea-
surements. Controllers for a distributed control system with ¢ nodes can be designed by
choosing Y} as block diagonal matrices with ¢ x ¢ partitions which leads to a block diago-
nal Y. X is chosen such that the off-diagonal block X,ij is 0 if there is no communication
of information from node j to node ¢. For decentralised controls, all off-diagonal blocks
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would be zero. For example, consider a distributed control system with 3 nodes and
a communication infrastructure providing bidirectional communication between nodes 1
and 2, and between nodes 2 and 3. Then the partitioned X} and Y} for k € {0,1,...,n}
are given by

x| x2 o
X = || X X2 |XP (2.13)
0 |X7? X
(v o0 0
V, = [0 Y2 o0 (2.14)
0 0 Y3

where red boxes indicate the controllers that use local measurements while blue boxes
indicate the controllers that use information from other nodes.

Example 2.7. State-space controller: For designing a state-space controller of order n we
can choose :

X(6) =Cy(6I — A)'B+ Dy (2.15)
Y (8) = Cy(61 — A) ' B + Dy (2.16)

where A € R™" and B € R™"™ are fixed and can be freely chosen, with only the re-
quirement that A is stable, the pair (A, B) is controllable, and B full column rank. The
optimization variables are C7, Cy, D1 and Dy which leads to an affine parametrization of
X and Y. A minimal realization of K = XY ! is given by

[ A-BD;'Cy | BD;!
~ | C1—DiD;'Cy | D1DyY

K (2.17)

2.4.3 Control Performance

This section demonstrates how classical loop-shaping, Hs, and H., control performance
constraints can be converted into constraints on the spectral norm of systems. To proceed,
let’s consider the following Quadratic Matrix Inequality (QMI):

A B
[B* <I>*<I>} =0 (2.18)

where A is a positive definite matrix belonging to R™*"™ and B, ® € C™*" are linear in the
optimization variables. The Schur complements of this QMI are:

®*® — B*A'B = 0 (2.19)
A—B(®®)'B* =0 (2.20)
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This type of constraints is called a convex-concave constraint and can be convexified using
the following lemma:

Lemma 2.5. The QMI in (2.18) or its Schur complements in (2.19) and (2.20) have at
least a feasible solution if the following LMI is satisfied:

1194* DD, + @?@ _ o, | 70 (2.21)
where ®, € C™*" is any known matrix.
Proof. The proof uses the following inequality:

QP > P, + DD — DD, (2.22)

which comes directly from the expansion of
(P—D)(P—P.) =0

It is clear that in ®*® — B*A~!B > 0 we can replace ®*® with a smaller or equal value
(i.e. the right side of 2.22), which leads to (2.21) using Schur Lemma. O

The upcoming sections will present the convex formulation of various performance
specifications that are commonly used in robust control. However, it is important to note
that the method is not limited only to the presented specifications. Essentially, any H, or
‘H, objective or constraint on any weighted transfer function can be formulated within the
presented framework. This results in a highly flexible and powerful tool that is suitable
for a wide range of applications.

Furthermore, the performance objectives are generally specified through weighting
filters W (jw). These weighting filters can be defined e.g. as transfer functions, scalar
values, or even arbitrary non-smooth functions such as piece-wise continuous functions,
which greatly simplifies the problem formulation.

H. Performance

Constraints on the infinity-norm of any weighted sensitivity function can be considered.
For example, consider the following design objective:

where § = (I + GK)™! is the sensitivity function and W is a performance weight. The
infinity norm of a stable system is equal to:

[ ]| = max owax(H(jw))
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where 0.« is the maximum singular value of a matrix. Therefore, this problem can be
converted to an optimization problem on the spectral norm as:

m}énv
subject to: (2.23)
(WlS)(WlS)* < ’}/I, Yw € Q

where v € R is an auxiliary scalar variable and * stands for complex conjugate transpose.
Note that the argument jw has been omitted for W;(jw), S(jw) and K (jw) in order to
simplify the notation. The above constraint can be rewritten as:

Wil + GK)[Wi(l + GK) 7' <~1
Replacing K = XY !, we obtain:
WY (Y +GX) Y +GX) ) (W Y)* <41
Then, taking ® =Y 4+ GX, we can rewrite the above inequality as:
v — WY (@*0) (W Y)* =0

which has exactly the same form as (2.20). Therefore, Lemma 2.5, can be used to find
the following convex optimization problem:

B
subject to: (2.24)
vl WYy

Yy &d, + &b — dra, | =00 TWEL

where &, = Y. + GX_ is chosen based on an initial controller K, = XCYC_I. This convex
constraint is a sufficient condition for the spectral constraint in (2.23) for any choice of
initial controller K, = X, Y, 1.

Analogously, the following H., constraints on the weighted stable closed-loop sensi-
tivity functions:

WoTlle <1, [[Wsld]lo <1
where T = GK(I + GK)™', U = K(I + GK)™! can be expressed as:

I WoGX
1 Wy X
{ (W3X)* @0, + OID — D7D, } =0, Vwe

The derivation is straightforward and will be left as an exercise for the students.
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Mixed sensitivity problem: Another classical example is the mixed sensitivity problem:

min
K

WS
Wald ||

(2.25)
which can be written for stable closed-loop systems as minimizing v subject to:
(WA(I + GE) " [Wi(I + GK) ™ + [WsK (I + GK) " [Ws K (I + GK) ™) < 41
for all w € Q. Replacing again K = XY ! and ® =Y + GX we obtain:
YWy WY + X Wiy ' WX — &% < 0
This inequality can be rewritten as:
WY } { ~I 0 ]‘1 [ W,Y

e — [ WX 0 ~I W5 X

-0

which has exactly the form of (2.19). Then using Lemma 2.5, it can be converted to the
following optimization problem:

gl
P, + PP — DD, (WY)* (W3X)*
WyY ~I 0 -0 YweQ (2.26)

‘Ho, Performance

The method can also accommodate Hs control performance objectives. As an example,
consider the following Hs control performance for a stable, discrete-time system:

™

m}}n ||W18||§ = m}}n/n trace[(W1 (I + GK)_l)*Wl(I + GK)_I]dw

_
This is equivalent to:
min / trace[l"(w)]dw

K J_=
Ts

subject to:
(Wil + GK)™)" (Wi(I+GK)™'] < D(w) , Yw € Q

where T'(w) = 0 is an unknown matrix function € C"*". Replacing K with XY ! and
® =Y 4+ GX in the above inequality, we obtain:

WY (&*®) " (W1Y)* < ['(w)
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which, using Lemma 2.5, leads to the following convex problem:

75
min / trace[l"(w)]dw
X,Y,F(UJ) _T

s

['(w) Wy

(WYY &, + 20 — DL, } =0, Vwel

Remark: The unknown function I'(w) can be approximated by a polynomial function of
finite order as:
F(w) :F0+F1w+--'+Fhwh

In case the constraints are evaluated for a finite set of frequencies
Qy={wi,...,wy}
['(w) can also be replaced with a matrix variable 'y at each frequency wy.

Loop Shaping

Assume that a desired loop transfer function L, is available and that the objective is to
design a controller K such that the loop transfer function L = GK is close to L, in the
2- or co-norm sense.

oco-Norm: The objective function for the oco-norm case is to minimize:
min [|L — Ll
and can be expressed as follows:
miny
(GK - Ld)(GK - Ld)* <l , Yw e
Replacing K with XY ! in the constraint, we obtain:
Y — (GX — LyY) (YY) HGX — LyY) =0  VweD
Again using Lemma 2.5 the following convex formulation is obtained:
o

NI GX — LY

(GX = LiY) Y'Y, +Y'Y — VY, >~ 0 Yw € Q)
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2-Norm: In a similar way, minimizing ||L — Ly||3 can be written as:

X7Y P S
Ts

min/Ts trace[l"(w)]dw

(GK — L) (GK — Lyg)* < T'(w) , Yw € Q

Then, the constraint can be reformulated as:
(GX — LyY) (YY) HGX — LyY)* < T'(w)

and using Lemma 2.5, the following convex optimization problem can be solved:

min/Ts trace[l"(w)]dw
XY J 2

I (w) GX — LY

(GX — LgY)* Y*Y. 4+ Y'Y —Y}Y. ] -0 YweQ (2.27)

Multimodel Uncertainty

The case of robust control design with multimodel uncertainty is very easy to incorporate
in the given framework. Systems that have different frequency responses in ¢ different
operating points can be represented by a multimodel uncertainty set:

G(e?) = {G1(e?¥), Go(e?), ..., G (')}

Note that the models may have different orders and may contain pure input/output time
delays. This can be implemented by formulating a different set of constraints for each of
the models. Let P, =Y +G; X and P, = X.;+G,Y.;, where K., is a stabilizing controller
for model GG;. Again taking the mixed sensitivity problem from (2.26) as an example, the
formulation of this problem would be:

B
subject to:
P;0,, + O; D; — DL D, (WY) (WaX)*
Wiy vl 0 >0
fori=1,...,9 ; YweQ
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K

Figure 2.11: Linear fractional transform interconnection of system and controller

2.4.4 LFT Framework

A generalized Linear Time-Invariant (LTT) system, mapping exogenous disturbances w €
R"™ and control inputs u € R™ to performance channels z € R" and measurements
y € R™ is given as follows:

z = P 1w + P, 12U

Yy = P21UJ + PQQ’LL (228)

We assume that only the FRF of the generalized system

P = | B P 229

is available, where P;;(jw) are FRFs of appropriate size. The frequency response of the
(discrete-time) plant Pss = —G can be estimated using the Fourier analysis method from
n, sets of finite input/output sampled data.

The synthesis objective is to design a fixed-structure feedback controller K that reg-
ulates the effect of the exogenous disturbances w onto the performance channels z. The
corresponding block-diagram, shown in 2.11, is commonly referred to as a lower linear
fractional transformation (LFT) and is given by

Tow = Py + PaK(I — Py K) ' Py (2.30)

Under the assumption that the closed-loop system is stable, the norm of 7., can be
expressed using only its FRF:

1

Tl = 5 | trace (Tuulio)T2, () do 231
2 QO

Tl = sup & (T T2, ) 232
we

The controller design problem can be formulated as the minimization of an upper bound
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on the system norms

iy
subject to : K stabilizes the closed-loop (2.33)

T (jeo) T () < T(jw), Ve € O

w

For the Ho norm, I'(jw) = vI, where v € R and for the Hy norm, we have:

Y trace (I'(jw)) dw (2.34)

The following assumptions will be made for the generalized plant model:
A1 One of the following is true

(a) P;(jw) has full row rank Vw € €.
(b) Pi2(jw) has full column rank Yw € Q.

A2 P(jw) is bounded for all w € .

Remark: Al is related to the control performance specifications, and similar equivalent as-
sumptions exist on the rank of some matrices in the state-space model-based approaches.
Al(a) is made to ensure that any possible disturbances have an effect on the measure-
ments. Such a situation, from a control design perspective, indicates that either more
sensors or better placement is required for the desired objective. Similarly, A1(b) en-
sures that any possible control input has an effect on the performance channels, and its
relaxation indicates the need for a better selection of performance channels.

Assume that G has full row rank and the controller is factorized as K = XY ~!. How-
ever, if G; is not full row rank but Pj2(jw) has full column rank a controller factorization
as K = Y 'X can be used for the problem.

Then, the transfer function 7%, can be rewritten as

Toww = Py + P X (Y — Py X) ™' Py (2.35)
Since Py; has full row rank, its right inverse PR = Pj, (P, Pj,) ™! exists, and we can define
d =Py (Y — PpX) (2.36)

which is linear in controller parameters. If ® has full column rank, i.e., the feedback inter-
connection is well-posed, its left inverse ®- = (&*®)~1d* is given by (Y — Py X) ™" Pyy.
Denoting ¥ = I —®®L = [ — PR Py, then the closed-loop transfer function can be written
as

Tow = P+ PpX®t = P(00" + U) + P X0t (2.37)
= (P, ®+ P X)®" + P, U
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The inequality in (2.33) can then be reformulated as
T.,1T7, = (Pn®+ PpX) (CID*CI))L (P ® + P X)" + (P V) (Py0)" =T (2.38)

using the fact that ®'U* = dL¥ = L — PLPP- = 0. Since P»; was assumed to have
full row rank, ®*® is a full rank square matrix and (®*®)" = (®*®)~". Using the Schur
complement lemma on (2.38) results in

—
. g = 0 (2.39)

{r A (Pud+ P12X)]
where A = (P;;¥) (P;;¥)". Using Lemma 2.5, and subject to closed-loop stability, the
synthesis problem can be written as the following convex optimization problem:

vr !
subject to (2.40)

P—A  (Pu®+PuX) |,
{ v P Brd - arg,| W) EOTwED

where the choice of @, is an important factor in guaranteeing closed-loop stability.

2.4.5 Stability Analysis

The stability of the closed-loop system is not necessarily guaranteed even if the spectral
norm of a weighted sensitivity function is bounded. In fact, an unstable system with no
pole on the stability boundary has a bounded spectral norm. In this section, we show that
the closed-loop stability can be guaranteed if some conditions in the linearization of the
constraints are met. More precisely, the initial controller K. = XY, ™! plays an important
role in guaranteeing the stability of the closed-loop system with the resulting controller
K.

The stability analysis is based on the Nyquist stability criterion for MIMO systems
and winding number of complex functions around origin that are recalled here.

Definition 2.2. Let F'(s) or F(z) be a continuous- or discrete-time transfer function. Let
wno{F'} be the winding number, in the counterclockwise sense, of the image of F' around
the origin when s or z traverses the Nyquist contour with some small detours around the
poles of F' on the stability boundary.

Since the winding number is related to the phase of the complex function, we have the
following properties:

wno{F1 F5} = wno{F;} + wno{ F»}

wno{F'} = —wno{F"}
wno{F'} = —wno{F '}
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Theorem 2.3. (Nyquist stability theorem) The closed-loop system with the plant model
G and the controller K is stable if and only if GK has no unstable hidden modes*, and
the Nyquist plot of det(I + GK)

(a) makes Ng + Ni counterclockwise encirclements of the origin, where N and Ny are
the number of unstable poles of G and K, and

(b) does not pass through the origin.

Through Cauchy’s argument principle, wno{ f} can be related to the number of poles
and zeros of f inside the contour. This is used for the stability analysis of the closed-loop
systems using the Nyquist stability criterion by defining an adequate Nyquist contour.

For continuous-time systems, the Nyquist contour is chosen as the union of the imag-
inary axis and a semicircle with an infinite radius enclosing the right-half plane. Since
this contour is chosen clockwise oriented, wno{ f} will be equal to the number of unstable
poles minus the number of unstable zeros. Note that, for a proper transfer function, the
image of the semicircle with infinite radius will be constant and therefore the winding
number when traversing the Nyquist contour or only the imaginary axis will be the same.

For discrete-time systems, the Nyquist contour is chosen as the counterclockwise-
oriented unit circle. Therefore, the winding number is equal to the number of stable zeros
minus the number of stable poles. However, if f is bi-proper, the difference in the number
of stable zeros and stable poles is equal to the difference in the number of unstable poles
and unstable zeros.Although the Nyquist contours are oriented differently in continuous-
and discrete time, the wno in both cases is the number of unstable poles minus the number
of unstable zeros. As a result, a single theorem can be used for the stability analysis of
continuous- and discrete-time systems.

Main Stability Result

Using the Nyquist criterion, a single theorem can be used for the stability analysis of
continuous- and discrete-time systems.

Theorem 2.4. Given the frequency response P(jw) of a generalized model satisfying the
assumptions Al(a) and A2, the closed loop system with controller K = XY ™1 is stable if

(C1): det(Y) and det(Y.) has no zeros on the stability boundary.

2A hidden unstable mode is an unstable pole of GK that does not appear in det(GK). An example
are pole-zero cancellations, or the following transfer function:

1 1
GK = |: 3—51 STl :|
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(C2): &*0. 4 PID — PiP, = 0 Vw € Q, where ® is defined in (2.36) and
d, = PR (Y, — Py X,) (2.41)

with X., Y. € RHo such that K, = X. Y, is a stabilizing controller.

Proof. The winding number of the determinant of ®*®, is given by

wno{det(®*®.)} = wno {H )\Z} = Z wno{\;} (2.42)

where \; are the eigenvalues of ®*®.. If the LMI in C2 holds, and given Al(a), ®*®,
will be a non-Hermitian strictly positive definite matrix and all its eigenvalues have
strictly positive real parts. Therefore, \; cannot wind around the origin and we must
have wno{\;} = 0. As a result W{®*®.} = 0, where for conciseness W{-} is defined as
W{-} := wno{det(-)}.

On the other hand, W{®*®.} can be rewritten as:

W{d*®.} = —W{Y — Py X} + W{PR*PR} + W{Y, — P, X.} (2.43)
=0

= -W{I — Py K} —W{Y} + W{PR* Py} + W{I — Py K.} + W{Y.}

By Al(a),A2 and C1, the Nyquist contour does not cross any zeros or poles, and the
winding numbers in (2.43) are well-defined. From Al(a), PR*PR is a strictly positive
definite matrix in all frequencies as PR has full column rank. Therefore,

W{Ple*P2R1} =0 (2.44)

Since K. is a stabilizing controller, based on the Nyquist theorem,
W{I — Py K.} = Np,, + Nk,, where Np,, is the number of unstable poles of P,
and Ng_ is the number of unstable poles of K.. Furthermore, since Y, Y, € RH,
W{Y} = =Nk and W{Y.} = —Nk,, where N is the number of unstable poles of the
controller K. Now using (2.43) and (2.44), we obtain

thus K stabilizes the closed-loop system. O]

If the LMI (2.40) holds, then C2 must also hold, as the last minor in (2.40) must also
be strictly positive. Thus, closed-loop stability is ensured with the choice ®,. as described
in (2.41). The following remarks are in order:
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Remark 1: Condition C1 can be removed with some (infinitely small) detours on the
Nyquist contour, avoiding all zeros of det(Y) and det(Y.). However, there is no
need to evaluate wno{det(®*®.)} on the new contour because its variation around
the zeros of det(Y) and det(Y,.) is small and can be ignored. Similarly, if P, has
some poles on the stability boundary, they can be avoided by some detours on
the Nyquist contour. Again, there is no need to evaluate wno{det(®*®.)} on the
additional detours because the contribution of Y — Py X and Y, — P5, X, are equal
(dominated by Psy around these poles) and therefore cancelled.

Remark 2: Note that any controller leading to unstable pole-zero cancellation in Py K
corresponds to a point in the space of the controller parameters, which is not part
of the interior of the convex set represented by the LMI in C2. Because of a small
variation of the controller parameters, the number of unstable poles of Py K changes,
and the closed-loop system becomes unstable. The only possible case is to have pole-
zero cancellations on the stability boundary, which are avoided by C2:

e A zero of Py on the stability boundary cannot be canceled as otherwise Y —
Py X factors the same zero, ® becomes rank deficient at the frequency of the
canceled zero, and therefore ®*®. cannot be strictly positive.

e If Py has a pole on the stability boundary, it cannot be canceled, as other-
wise there exists a vector e; such that $e; = v is bounded but ®.e; = w
is unbounded when w approaches the frequency of the pole on the stability
boundary. This leads to a contradiction with C2 as

ef (D D, + PFP — P D) ey = vi'w +vw* — ||w|[* <0
for w sufficiently close to the frequency of the canceled pole.

Remark 3: The proof requires an initial stabilizing controller. For stable plants, a suffi-
ciently small gain controller can always be chosen as the initial stabilizing controller.
For unstable systems, in a data-driven setting, it is reasonable to assume that a sta-
bilizing controller is known since it is required for data collection.

2.4.6 Implementation Issues

Using the methods described above, we are now able to pose various control design prob-
lems as convex optimization problems with linear matrix inequality (LMI) constraints.
In this section, various practical aspects concerning the implementation of the algorithm
will be discussed.

Frequency Gridding

The optimization problems formulated in this section contain an infinite number of con-
straints (i.e. Yw € ) and are called semi-infinite problems. A common approach to
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handle this type of constraints is to choose a reasonably large set of frequency samples
Q, = {w1,...,w,} and replace the constraints with a finite set of constraints at each of the
given frequencies. For discrete-time plants and/or controllers, the maximum frequency
should be chosen as w, = 7/T;. As the complexity of the problem scales linearly with
the number of constraints, g can be chosen relatively large without severely impacting
the solver time. The frequency range is usually gridded logarithmically-spaced. Since all
constraints are applied to Hermitian matrices, any constraint at a frequency w; is auto-
matically imposed at —w; as well, so the grid does not need to cover negative frequencies.
In applications with low-damped resonance frequencies, the density of the frequency
points can be increased around the resonant frequencies to prevent constraint violations.
An alternative is to use a randomized approach for the choice of the frequencies at which
the constraints are evaluated. In this case, the probability of the violation of the con-
straints can be computed, and decreased by increasing the number of frequency points.

Example 2.8. Loop Shaping Performance: The loop shaping performance objective in
2-norm from (2.27) can be formulated by replacing I'(w) with a matrix variable I'y €
{T'1,..., Ty} at each frequency wy € €,. Then, the integral in the objective function can
be replaced by the sum of the trace of the matrix variables as follows:

g

min 2 trace[l'y] Awy,

subject to:
Ly Ge Xk — La, Yy
(Gr Xk — La, Yi)" VYo + Y Y =YY,
DD, + @7 P — D7 P, =0 fork=1,...,9

where Awy = wg —wi_1. It can be ignored if the frequency samples are equally spaced, or
if we are interested in more weights in some frequency region by choosing more frequency
points at that region. The subscript & for the frequency response functions denotes the
frequency response at wy, e.g. G = G(e/“*). Note that the condition C2 is added to the
constraints to guarantee the closed-loop stability..

=0

Controller Order

The choice of the order of the controller is sometimes not obvious. Often, a good initial
guess of the order can be made from observing the dynamics of the plant (e.g. the
number of resonance modes and couplings). Otherwise, a relatively low order of 4 to 6 is
a good starting guess for most systems. Once a controller has been designed, its order can
be adjusted by evaluating its performance. If the desired specifications have been met,
the order can often be reduced while still achieving the desired result. However, if the
final controller deviates significantly from the desired specifications, increasing its order
can improve its performance. Furthermore, it has been demonstrated that approaching
optimal performance can be achieved by increasing the controller’s order.



96 ROBUST CONTROLLER DESIGN

Iterative Algorithm

Once a stabilizing initial controller K. is available, it is used to formulate the optimization
problem. Any Semi Definite Programming (SDP) solver can be utilized to solve the
optimization problem and compute a suboptimal controller K around the initial controller
K.. Since we are only solving an inner convex approximation of the original optimization
problem, K heavily relies on the initial controller K., and the performance criterion can
significantly deviate from the optimal value. To address this issue, an iterative approach
can be adopted, which solves the optimization problem multiple times, utilizing the final
controller K of the previous step as the new initial controller K,.. This approach always
guarantees closed-loop stability, assuming the initial choice of K, is stabilizing. Since
the objective function is non-negative and non-increasing, the iteration converges to a
locally optimal solution of the original non-convex problem. The iterative process can be
terminated once the change in the performance criterion becomes sufficiently small.

Numerical Issues

All LMI constraints formulated so far are strict positive definiteness constraints. This
is important especially for the stability constraints, where strict positive definiteness is
crucial. However, numerical optimization generally does not support strict inequalities,
meaning the stability constraints may be violated due to numerical precision. This issue
can be mitigated by defining a non-strict constraint with a sufficient margin:

"D, + B*d — d*d, (W,Y)*

—
WY I = el

where € € R is a small number. Practical experience has shown that often values around
1071 can serve to improve numerical robustness without affecting the achieved perfor-
mance.

To improve the numerical robustness of the optimization it is also crucial that the
constraints are scaled properly. Especially for MIMO systems, all inputs and outputs of
the plant should be normalized properly in order to obtain good results. If necessary,
individual LMI constraints can be scaled to increase the precision. Assume the following

QMI:

1
—(®*® - B*A™'B) = 0

n
where 7 € R is a scaling factor. This can be transformed to either of the following

convexified constraints:

1
jé* L+ +pr — ) ] =0
\/ﬁ n c C c*¢C
nyl B
{ B L@, + 010 — 210,) ] =0
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2.4.7 Simulation Examples

In this section, several simulation examples demonstrate the applicability of the method to
general problems, and the obtained performance is compared with several state-of-the-art
methods [3].

Example 2.9. Hard-disk Drive: This example is drawn from Matlab’s Robust Control
Toolbox and treats the control design for a 9th-order model of a head-disk assembly in a
hard-disk drive. In the Matlab example, hinfstruct is used to design a robust controller
such that a desired open-loop response is achieved while satisfying a certain performance
measure. We will show that an equivalent controller of the same order can be designed
using the method presented in this section.

The desired open-loop transfer function is given by L4(s) = 1000/s. Additionally, a
constraint on the closed-loop transfer function is introduced to increase the robustness
and performance: ||[W2T || <1 and W5 = 1. To stay in line with the data-driven aspect,
we choose to design a discrete-time controller with the same order as the continuous-time
controller given in the Matlab example:

K( ) X222—|—X12+X0
Z) =
(z—1)(2+Yp)

Since the plant is stable, an initial controller is easily found by setting Xy, Xs, Y to zero
and choosing a small enough value for X;. This results in the following initial controller:

10762
~ 2

K.(2)

VANV

While with hinfstruct the loop-shaping can only be formulated in the co-norm sense,
we choose to formulate the loop-shaping problem in the 2-norm sense by minimizing
|L — Lgl|2, which will lead to a better performance as shown below.

The semi-infinite formulation is sampled using g = 1000 logarithmically spaced fre-
quency points in the interval Q, = [10,5 x 10*7] (the upper limit being equal to the
Nyquist frequency). The semi-definite problem is as follows:

g
min E Vi
k=1

subject to:
Vi GX — LY ,
1 (WoGX)* .
{ WoGX @D, + 00 — &, | o) >0

k=1,...,9
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Figure 2.12: Comparison of the open-loop transfer functions. In blue is the desired open-
loop function Ly, in red the obtained open-loop function L with the data-driven method,
and in dashed yellow the obtained L with the hinfstruct controller.

Remark: Note that Aw, = wp — wy_1 has been dropped out in the approximation of the
integral by a finite sum in the control objective. For an equally spaced gridding, this will
not change anything. However, for a logarithmically spaced gridding, it is equivalent to
have more weights in low frequencies and leads to a better fit in those frequencies.

The algorithm converges within 10 iterations to a final, stabilizing controller that
satisfies the closed-loop constraint and has the following parameters:

2.28722 — 3.152 + 0.8631
(z — 1)(z — 0.8598)

K(z)=10"*

Fig. 2.12 shows a comparison of the desired open-loop transfer function and the results
produced by the data-driven method as well as the controller calculated in the Matlab
example using hinfstruct. It can be seen that the result is very similar to the result
generated by hinfstruct, with the data-driven result being closer to the desired transfer
function at lower frequencies. This is especially noticeable when comparing the obtained
2-norm of the objective function, with the data-driven solution achieving a value that is
around 30 times smaller. The controller obtained by this method is also already formulated
in discrete-time, and no additional controller discretization step is necessary.

Example 2.10. Multivariable Control System: This example demonstrates that the
method is able to obtain near-optimal performance for low-order controllers, and shows
that the convex approximation of the problem is not restrictive in practice. The mixed
sensitivity problem of a 3x3 MIMO continuous-time plant model is considered. The
globally optimal solution to this problem with a full-order controller can be obtained via
Matlab using mizsyn. The plant model is taken from literature and has the following
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transfer function:

1 0.2 0.3

s+1 s+3  s+0.5
_ 0.1 1 1

G(S> - s+2 s+1 s+1
0.1 0.5 1

s+05  st2 s+l
The objective is to solve the mixed sensitivity problem:

WS
WoKS ||

min
XY

where the weighting transfer functions are:

s+ 3 10s + 2
= — Ws(s) = I

sro0sl 0 =T
In this example, we design a continuous-time controller to show that the developed

frequency-domain LMIs can be used in the same way to design continuous-time con-
trollers. The controller transfer function matrix is defined as K(s) = X (s)Y !(s):

Wl(S)

X(s) =[Xps" + ...+ Xis + Xo|/(s — a)’
Y(s)=[Is"+...+Yis+ Y]/(s — a)’
where p is the controller degree, @ = 1 and X;,Y; € R3*? are full matrices. The optimiza-

tion problem is sampled using N = 1000 logarithmically spaced frequency points in the
interval , = [1072,10%], resulting in the following optimization problem:

min -y
XY
D, + 10— 0, (MY)* (WoX)'
Wiy vl 0 (jwk) =0
WQX 0 ’)/I

k=1,...,¢9

Since the plant is stable, an initial controller can be found by setting the poles of the
controller to —1 and choosing a low enough gain: Y, = (s + 1)1, X. = 1.

The problem is formulated for controller degrees p from 1 to 5, implemented in Matlab
using Yalmip, and solved with an SDP solver called Mosek. The algorithm converges
quickly within 3 to 6 iterations. The value of the obtained norm is shown in Fig. 2.13.
The number of design parameters is equal to (2p + 1) x 9. The figure also shows the
globally optimal norm for a full-order state-space controller with 289 design parameters
obtained through mizsyn. It can be seen that already for p = 3 a good value is achieved
and for p = 5, with only 99 design parameters the global optimum is attained. This
example shows that the proposed method is able to reach the global optimum value of the
mixed sensitivity norm for a general MIMO transfer function while having a significantly
lower number of design parameters than classical state-space methods.
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Figure 2.13: Plot of the achieved mixed sensitivity norm for different controller orders p.
The dashed red line shows the globally optimal value obtained by mizsyn.

2.4.8 Data-Driven Control Design for Atomic-Force Microscopy

An AFM is a mechanical microscope with a resolution on the order of nanometers, and
a wide range of applications in various fields such as solid-state physics, semiconductor
science, molecular biology and cell biology [5].

The basic functionality of the AFM is shown in Fig. 2.14. The main sensor is a
cantilever with a sharp tip that is used to probe the surface of the sample to be studied.
The deflection of the cantilever can be measured using a laser that is reflected off its back
and collected by a photodetector. From this measurement, the tip-sample interaction force
can be extracted, which yields information about various mechanical material properties.
Furthermore, the measured deflection is used to control a piezo actuator that moves the
vertical position of the sample up and down in order to keep the deflection at a controlled
value. Another piezo actuator is used to move the sample in the horizontal plane, and
by scanning the sample in a raster an image is acquired point by point. As the deflection
of the piezo is proportional to the applied voltage, the image can be reconstructed from
the input signal that is extracted from the feedback loop. This also means that the
tracking performance of controller used to regulate the piezo actuator plays a crucial
role in determining the quality of the image. Ringing in the closed-loop response leads
to visible ripples and distortions in the AFM image, and good disturbance rejection is
important. Furthermore, the image is acquired line by line as the scanner moves back and
forth in the horizontal direction. The relevant metric for the speed is the line rate, which
indicates the number of lines per second (L/s) that are recorded. As the scanning motion
translates the spatial frequencies of the surface into temporal frequencies, the maximum
line rate (and therefore the time required to record an image) directly depends on the
closed-loop bandwidth. Simply put, the controller has to be able to track any features of
the sample fast enough. A too slow controller leads to distortions in the image, blurs out
the features and creates artefacts that obscure the true image.
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Figure 2.14: a) Block diagram of the functionality of an AFM. b) Exploded view of the
head used for the experiments.

Increasing the number of images that can be recorded in a given time enables the
observation of processes on the nanoscale in real-time, which is of great interest to many
fields. Fast scanning speeds make it possible to record time-lapse image series of processes
that could not be observed before. Also, a high controller bandwidth reduces feedback-
error-induced force interactions between the tip and the sample, which improves the image
quality.

Plant identification: Here, we consider only the control design in the lateral axis. The
input of the plant corresponds to the voltage applied to the piezo actuator, and the output
corresponds to the deflection of the cantilever (see Fig. 2.14). Both signals are within a
range of =10 V. The system is excited by applying 100 periods of a pseudorandom binary
sequence (PRBS) with a length of 8191 samples and a sampling frequency depending
on the bandwidth of the system. The frequency response is calculated in Matlab using
the spa command with a Hann window length of 700. Figure 2.15 shows an example of
the evolution of the frequency response over time. The change in the response can be
significant, with magnitudes changing by 10 dB or more, and resonance peaks appearing
and disappearing over time.

Control performance: The objective is to achieve good tracking performance of the
reference input. This is achieved through loop shaping, where a controller is designed
such that the loop transfer function L = GK is close to a desired transfer function Lg4:

: w
min L — Lglla, Lq= ?C

where w, is the desired bandwidth of the system.
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Figure 2.15: Evolution of the frequency response of a J-scanner in liquid over 3 hours. The
envelope shows the range of the variations. Three example responses are shown, where
blue is at the start, red is after 1 hour and yellow is after 2 hours.

To improve the robustness, H., constraints on the complementary sensitivity function
T = GK(I+GK)™! and the input sensitivity function i = K (I +GK)~! are introduced:

W Tl <1 5 [[Wsld]leo <1
where W5, W3 are chosen as:

Wel— 128, Wil { 10G(0)B  Yw < w,

G(0)B  Vw > w,
where B is a second-order discrete-time Butterworth lowpass filter with a cutoff frequency
of 1.1w.. In order to have a generic formulation, the input filter Wj is scaled by the dc-gain
of the plant G(0). This choice of filters enforces a roll-off in the closed-loop and input
sensitivities, which improves the robustness of the controller towards plant uncertainties
at frequencies above the desired bandwidth.

Controller design: An 11th-order discrete-time transfer function controller K with
forced integrator is designed. This choice of order has been found to be sufficient
for the systems the method was applied to. To solve the robust design problem, a
frequency grid with g = 500 logarithmically-spaced frequency points in the interval

Q, = 0.017, %} rad/s is chosen, where the upper limit is the Nyquist frequency of

the controller. Since the plants are always stable, an integral controller with low gain is
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chosen as initial controller K,(z) =: 1073, Then, the control design problem is reformu-
lated as a convex optimization problem:

9
min ) %
k=1
- Yk GX — LY .
L (GX — LgY)" Y*Y.+ Y'Y —-Y'Y, (Jwr) =0
o N (jwi) = 0
- (WLGX) &P, + 0P — D7D, JWk
(1 WX |
L (W3X)* *®, + O*P — O:P, 1 (Jwg) =0

k=1,...,N

The optimization problem is implemented in Matlab using Yalmip and solved with Mosek.
The time to compute a controller is around 1 minute, and since the design is in discrete-
time the controller parameters are directly written to the real-time software without re-
quiring any user interaction.

A comparison of the obtained performance of the standard PI controller and the 11th-
order controller is shown in Fig. 2.16. It can be seen in subfigure 2.16¢) that the bandwidth
of the 10th-order controller exceeds the PI by about one order of magnitude. At the same
time, the resonance peak in the closed-loop sensitivity function is removed, which also
leads to less ringing and better tracking performance.

2.4.9 Data-driven Multivariable Control of a 2-DOF Gyroscope

This experimental example presents the design of a data-driven, robust multivariable
controller with multimodel uncertainty to control the gimbal angles of a gyroscope. The
controller is then applied on the experimental setup to validate the performance.

System description: The experiment was conducted on a 3-DOF gyroscope setup built
by Quanser (see Fig. 2.17). The system consists of a disk mounted inside an inner blue
gimbal, which is in turn mounted inside an outer red gimbal. The entire structure is
supported by the rectangular silver frame. The disk, both gimbals and the frame can be
actuated about their respective axis by electric motors, and their angular positions can be
measured using high resolution optical encoders. For this experiment, the position of the
silver frame is mechanically fixed in place (to make it 2-DOF'). The control objective is to
achieve a good tracking performance on the angular positions of the blue and red gimbal
and to minimize the coupling between the axes. The dynamics of the system change
depending on the angular velocity of the disk, which is included in the control design as
a multimodel uncertainty:.
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Figure 2.16: Comparison of the nominal closed-loop sensitivities. a) Measured plant
frequency response in green, designed 10th-order controller in blue. b)-d) Sensitivity S,
closed-loop sensitivity 7 and input sensitivity U for the 10th-order controller in blue and
the Pl-controller in yellow. Black dashed lines indicate the constraints.

The gyroscope is a strongly nonlinear system, and linear control design methods only
achieve good performance in a small range around the operation points. In order to im-
prove this range, a cascaded control architecture was chosen, with a feedback linearization
forming the inner loop. The block diagram in Fig. 2.18 shows the structure of the system,
where G, is the real plant and Ky is the feedback linearization controller. The closed-loop
response of the inner loop is taken as the new plant G, which is used to design the outer
controller K. The variables 8 = [0,,60,]" and 6* = [0;,6*]" are vectors containing the
measured and desired blue and red gimbal angles, and 6, = [0, GW]T are the reference
gimbal angles given to the feedback linearization.

Frequency response: The black box model G therefore has 2 inputs and 2 outputs, and
a single-channel excitation is applied to calculate the frequency response of G. A PRBS
signal with an amplitude of £10°, a length of N = 511 samples and a sampling time of
T, = 20 ms was applied for 4 periods to 6,, and 6, respectively. The non-excited input
was set to zero during the process. The frequency response was calculated in Matlab
using the spa command with a Hann window length of 150. The frequency response was
measured for the three different disk velocities v = [300,400, 500] rpm, resulting in three
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Figure 2.17: The gyroscope experi- Figure 2.18: Block diagram of the cascaded
mental setup by Quanser. controller structure of the gyroscope.

models G = |Gy, Gg, G3]. The frequency responses are shown in Fig. 2.19. It can be seen
that the coupling and resonance modes become stronger at higher disk speeds.

Control performance: Based on the three frequency responses, a multivariable con-
troller is designed. The goal is to decouple the system while also achieving good tracking
performance of the reference angles 6#*. Therefore, as objective function we choose to
minimize the 2-norm ||L — Ly||s between the actual open-loop transfer function L and
desired open-loop transfer function Lq = #2/, where a bandwidth of w. = 4 rad/s is de-
sired for the decoupled system. To limit the overshoot and guarantee a good roll-off at
higher frequencies, an additional H., constraint is put on the complementary sensitivity

function: .
_ Jw+6.5

~1.05-6.5

where W, ! has the form of a low-pass filter to ensure a roll-off at high frequencies. The
fact that W5 is not proper does not create any problem in practice because the constraints
are evaluated only for finite values of w. To prevent input saturation, a constraint on the
input sensitivity is included:

IWoT ||eo <1, Wa(jw) I

”Wg?/[”oo <1 , W3 = 0.051

where the magnitude of the weighting filter is chosen based on the expected worst-case
disturbance.

Controller design: A 5Hth-order discrete-time controller with a forced integrator is cho-
sen. Note that the desired L,; and the weighting filters can be in continuous-time, while
the designed controller is in discrete-time. The optimization problem is sampled using



106 ROBUST CONTROLLER DESIGN

Bode Mhgnitude Pot of G

Fom: 0, Hom: 0,,

w0} \\ | x
€40/ X ] .
& \\:‘!'\x‘ W\l'»‘
Sl o
0 ‘ ‘ — ‘ ‘
= —20 F 1 \
; —40 ﬂ\%\ 1 N\
\ Y
W“l{*\m ] !‘ W ﬂ"\(ﬂ
60| | O ‘ 1
100 10! 10% 100 10 10%

Hequency (rad/8)

Figure 2.19: The measured frequency response of the blackbox model G at different disk

speeds. The blue line is the response at a disk speed of 300 rpm, red at 400 rpm and
yellow at 500 rpm.

g = 500 logarithmically spaced frequency points in the interval 2, = [10~!, 7/T] (the up-
per limit being the Nyquist frequency of the controller). The lower limit is chosen greater
than zero in order to guarantee the boundedness of L — Ly. The constraint sets are for-

mulated for each of the three models [G1, Go, G3], resulting in the following optimization
problem :

I)I{ll}I/lZ Ztrace[Fk]
i=1 k=1
subject to:
[ Y*Y. +YY - Y, G X — LgY)* .
G X — LY ( Iy I ) } (]wk> >0

[ D, + PF D, — DD, (WG X)F .

WHGiX | " ) }(ka)>0
[ OrD,, + PF D, — OF D, (W3 X)* ,

WgX Z | 3] ) 1(‘7('%) >0
k=1,....N ; i=1,2,3

In fact a weighted two-norm of L — L, is minimized because more frequency points in low
frequencies are considered in the objective function (the term Awy has been dropped out
in the approximation of the integral).

As the gyroscope is a stable system, the initial controller was chosen as an integral

controller with low gain. The optimization problem is implemented in Matlab using
Yalmip, and solved with Mosek. The iteration converges to a final controller in 10 steps.
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Figure 2.20: Bode magnitude plots of the desired open-loop transfer function L, and the
achieved L o 3 for the three different plant models. The blue line is the achieved response
at a disk speed of 300 rpm, red at 400 rpm and yellow at 500 rpm. The desired L, is
shown in dashed purple.

The Bode magnitude plots of L; and the obtained L;33 for the three different plant
models are shown in Fig. 2.20. It can be seen that the designed controller approximates
the desired loop shape well at low frequencies, and that the system is well decoupled.
The singular value plots of the obtained closed-loop and input sensitivity are displayed in
Fig. 2.21. It can be seen that the constraints are satisfied for all three plant models.

Experimental results: To validate the results, the controller was implemented in Lab-
view and applied on the experimental setup. The step responses of the blue and red gimbal
angle were measured for varying disk speeds, and the results are shown in Fig. 2.22. It
can be seen that the decoupling is good, and that the multimodel uncertainty introduced
by the varying disk speed is handled well. The rise time is 0.625 s for the blue and
0.486 s for the red gimbal angle, which matches well the desired bandwidth specified for
Lg. Furthermore, the overshoot is limited to less than 10 %.
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Figure 2.22: Step response of the blue and red gimbal angles during a varying disk velocity.
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Chapter 3
ROBUST ADAPTIVE CONTROL

3.1 Introduction

In the presence of model parameter variations or more generally in the presence of varia-
tions of the dynamic characteristics of a plant to be controlled, robust control design is a
powerful tool for achieving a satisfactory level of performance for a family of plant models.
This family is often defined by means of a nominal model and a size of the uncertainty
specified in the parameter domain or in the frequency domain.

The range of uncertainty domain for which satisfactory performance can be achieved
depends upon the problem. Sometimes, a large domain of uncertainty can be tolerated,
while in other cases, the uncertainty tolerance range may be very small. If the desired per-
formance cannot be achieved for the full range of possible parameter variations, adaptive
control has to be considered in addition to a robust control design.

Adaptive Control covers a set of techniques which provide a systematic approach for
automatic adjustment of controllers in real time, in order to achieve or to maintain a
desired level of control system performance when the parameters of the plant dynamic
model are unknown and/or change in time.

Furthermore, the tuning of a robust design for the true nominal model using an adap-
tive control technique will improve the achieved performance of the robust controller
design. Therefore, robust control design will benefit from the use of adaptive control in
terms of performance improvement and extension of the range of operation. On the other
hand, using an underlying robust controller design for building an adaptive control system
may drastically improve the performance of the adaptive controller.

Since the adaptive controllers are implemented in computers, the associated controllers
are usually digital. Therefore, this chapter starts with a recall on the principles of dig-
ital control systems, especially using RST controllers. The pole placement technique is
recalled and model reference control problem for an RST structure is studied. The use
of Q-parameterisation for improving the robustness of pole placement technique is also
investigated. Then, some adaptive control schemes are presented in details. In particu-
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lar the parametric adaptation algorithms (PAAs) are introduced and their properties are
studied. An overview of the most common adaptive controllers, like direct, indirect and
switching adaptive control is given.

3.2 Digital Controller Design

The use of a digital computer or microprocessor in control loops offers several advantages.
These include: considerable choice of strategies for controller design; possibility of using
complex and more efficient structures than the PID controllers; suited for high order
dynamic linear models (including systems with multiple low damped vibration modes)
and systems with time delay.

We consider the design of digital controllers for single-input/single-output systems
described by discrete-time models in input-output form. The control strategies and the
corresponding design assume that the discrete-time plant model is known. In general, one
has to solve a joint tracking and regulation problem. The design will also incorporate the
a priort knowledge upon the disturbances. It is important to note that in many cases the
tracking and regulation performances have to be decoupled (as much as possible). This
leads us to consider a two-degree of freedom digital controller.

Since the plant model is given in the input/output form, it is also reasonable to search
for a controller structure which will be fed by the measurements of the output and the
desired tracking trajectory (or reference signal) and will generate the control w(k). This
controller will also have an input/output form and will consist of three polynomials in the
delay operator ¢~! related to the control u(k), the output y(k) and the desired tracking
trajectory y*(k).

In many cases the design can be done using a polynomial approach, which in fact
corresponds to a design in the frequency domain. This will allow the introduction of
specifications in various frequency ranges both for assuring the nominal performances
as well as robustness with respect to plant parameter variations, noise etc. The pole
placement strategy is the basic method that we discuss in this section.

3.2.1 Input-Output Difference Operator Models

We will consider single-input single-output time invariant systems described by input-
output discrete-time models of the form:

y(k) = — Z agy(k — i) + Z bou(k — 1) (3.1)

where k denotes the normalized sampling time, u(k) is the input, y(k) is the output, a;
and b; are the parameters (coefficients) of the models. As such the output of the system
at instant k is a weighted average of the past output over an horizon of n, samples
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plus a weighted average of present and past inputs over an horizon of ng samples. This
input-output model (3.1) can be more conveniently represented using a coding in terms
of backward shift operators defined as:

¢ g y(k) =y(k—1) (3:2)
Using the notation:
Al = 14+aqg '+ +an,,q "™ (3.3)
B(g™") = bo+big +bag P4+ buyg " (3.4)
Eq. (3.1) can be rewritten as:
Alg "y (k) = Blg™ u(k). (3.5)

Note that in the discrete-time systems, there is always some delay between the inputs
and outputs such that the first leading coefficients of B(¢™!) becomes equal to zero. The
number of these coefficients is called delay and denoted by d. Because of sampling time
delay the output y(k) will not depend on u(k) (by is always zero and so the delay d is
always greater than or equal to 1). Using this fact Eq. (3.1) can be rewritten forward in
time as:

nA np
y(k+1) = = aylk—i+1)+ Y bulk—i+1) (3.6)
=1 i=d
= —A(qy(k) + B (¢ ulk —d+1) (3.7)
where
ANgY) = a1 tag - Fa,,qg (3.8)
B*(q") = bg+bagiq by q T (3.9)

Observe that Eq. (3.6) can also be expressed as (the regressor form):
y(k+1) =0"p(k) (3.10)
where 0 defines the vector of parameters
0" = [as, -y, ba, - - by (3.11)
and (k) defines the vector of measurements (or the regressor)
ol(k)=[-yk)- —ylk —na+1),u(k —d+1)---u(k —ng +1)] (3.12)

The form of Eq. (3.10) will be used in order to estimate the parameters of a system model
from input-output data. Consider Eq. (3.5). Passing the quantities in the left and in the
right through a filter A(q;,l) one gets:

y(k) = G(q Mu(k) (3.13)
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where:

is termed the transfer operator.t
Computing the z-transform of Eq. (3.1), one gets the pulse transfer function charac-
terizing the input-output model of Eq. (3.1)%:

Zde*(Zfl)

R T

(3.15)

Observe that the transfer function of the input-output model of Eq. (3.1) can be
formally obtained from the transfer operator by replacing the time operator ¢ by the
complex variable z. However, one should be careful since the domains of these variables
are different. Nevertheless in the linear case with constant parameters one can use either
one and their appropriate signification will result from the context.

Note also that the transfer operator G(¢~1) can be defined even if the parameters of
the model (3.1) are time varying, while the concept of pulse transfer function does simply
not exist in this case.

Theorem 3.1. The order r of the system model (3.1), is the dimension of the minimal
state space representation associated to the input-output model (3.1) and in the case of
wrreducible transfer function it is equal to:

r = max(na,ng) (3.16)

which corresponds also to the number of the poles of the irreducible transfer function of
the system.

The order of the system is immediately obtained by expressing the transfer opera-
tor (3.14) or the transfer function (3.15) in the forward operator ¢ and respectively the
complex variable z. The passage from H(z7!) to H(z) is obtained multiplying by 2"

B B(2) _ Z7B(z )
Glz) = Alz)  2rA(zTY

(3.17)

Example 3.1.

273(171271 + b2272) b1z + by
1+a;271! 25 4 a2t
!Note that (3.14) is not mathematically well defined because the devision by a polynomial in shift
operator ¢~ . However, it is understood that this notation has the same meaning as (3.5).

2A number of authors prefer to use the notation G(z) for this quantity, instead of G(z~1), in order to
be coherent with the definition of the z-transform.

G(z) = r=max(1,5) =5 , G(z2)=
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Note that if ng > ny, the system will have ng — na poles at the origin (z = 0). In
general we will assume that the model of Eq. (3.1) and the corresponding transfer function
(3.15) is irreducible. However, situations may occur where this is indeed not the case (an
estimated model may feature an almost pole zeros cancellation). The properties of the
system model in such cases are summarized below:

e The presence of pole zeros cancellations correspond to the existence of unobservable
or uncontrollable modes.

e If the common poles and zeros are stable (they are inside the unit circle) the system
is termed stabilizable, i.e., there is a feedback law stabilizing the system.

e If the common poles and zeros are unstable, the system is not stabilizable (a feedback
law stabilizing the system does not exist).

The co-primeness of A(z7!) and B(z7!) is an important property of the model. A
characterization of the co-primeness of A(z7!) and B(z~!) without searching the roots of
A(z71) and B(z71) is given by the Sylvester Theorem.

Theorem 3.2. : The polynomials A(q~'), B(q™") are relatively prime if and only if their
eliminant matric M (known also as the Sylvester Matriz) is nonsingular, where M is a
square matrix with ny + np columns given by:

np na
T1 o 0 b 0 0 1Y)
a1 bi by
aq 0 : bl
M = ! L o | na+np (3.18)
aq bl >
A, : by :
0 ap, 0 by
i 0 0 an, 0 0 by 1)
Remarks:

e The non-singularity of the matrix M implies the controllability and the observability
of the associated state space representation.

e The condition number of M allows to evaluate the ill conditioning of the matrix M,
i.e., the closeness of some poles and zeros.
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Figure 3.1: Control loop with RST digital controller

3.2.2 RST Controller Structure

A general (canonical) form of a two-degree of freedom digital controller is given by the
equation:

R(qy(k) + S(q u(k) =T(q )y*(k + d) (3.19)

where y*(k + d) represents the desired tracking trajectory given with d steps in advance

which is either stored in the computer or generated from the reference signal r(k) via a

tracking reference model

_ Bn(g")
Aplg)

(with Bp(¢7") = bmo + bm1g™" + - -+ ). The corresponding block diagram is shown in Fig.

3.1.

The controller of equation (3.19) is termed “RST controller” and its two-degree of
freedom capabilities come from the fact that the requlation objectives are assured by the
R-S part of the controller and the tracking objectives are assured by an appropriate design
of the T polynomial.

y*(k+d) r(k) (3.20)

RST controllers are very appealing because their implementation is very easy by the
use of Eq. (3.19). Moreover, all types of two-degree of freedom controllers can be converted
to an RST controller. Figure 3.2 shows a very general output feedback control system
where K;(¢7'), Ko(q™!) and K3(g™') are rational transfer operators:

) = gy R = D Rl -

Therefore, we have:

N3(qg™)
Ds(q™)
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Figure 3.2: General two degree of freedom control system

If we compare this equation with that of an RST controller in (3.19) we get:

R(g™") = Ni(¢ " )Ns(g ") Da(q7") (3.21)
S(g") = Dilqg ")D2(q ") Ds(q) (3.22)
T(q') = Ni(g ")Na(q " )Ds(q ) (3.23)

The classical one degree of freedom controller in the forward path is a particular case
with Ky(¢7') = K3(¢™') = 1 for which we have R(¢™') = Ni(¢7'),S(¢7') = Di(¢7!) and
T(q7') = Ni(q7'). For the controller in the feedback path with K(¢7!') = Ks(q™t) = 1,
we obtain R(q™1) = N3(¢71),S(¢7!) = D3(q7t) and T'(¢~1) = Ds(q™1).

3.2.3 Pole Placement Technique

The pole placement strategy allows the design of an RST digital controller both for stable
and unstable systems:

e Without restriction on the degrees of the polynomials A(¢™!) and B(q™!) of the
discrete-time plant model (provided that they do not have common factors)

e Without restriction on the time delay

e Without restriction on the plant zeros (stable or unstable)

The only restriction concerns the possible common factors of A(¢~!) and B(q~'), which
must be simplified before the computations are carried out.
The structure of the closed-loop system is given in Figure 3.1. The plant to be con-
trolled is characterized by the transfer operator (irreducible):
B(q™")

G(g ") = AT (3.24)

The closed-loop transfer function is given by

T(¢")B(q")
1)

H01<q71> = P(q_

(3.25)
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where
Plg) =Alg S ) +q 'Blg HR(q") =14+ pig " +pag + -+ (3.26)

is the closed-loop characteristic polynomial that plays an essential role for the regulation
behavior. The behavior with respect to an output disturbance is given by the sensitivity

function:
S(gh) = % (3.27)

Desired Closed-Loop Poles

The desired performance is related to the polynomial P(q~!). Consider the following
example.

Example 3.2. Let P(qg7') = 1 + pjg~! with p; = —0.5. When there is no reference, i.e.
r(k) = 0, the free output response is defined by

y(k+1) = —pry(k) = 0.5y(k)

One thus obtains a relative decrease of 50% for the output amplitude at each sampling
instant. It is clear that the disturbance rejection speed can be tuned by choosing p;
between —0.2 and —0.8.

Nevertheless, generally speaking, P(g~!) is chosen in the form of a second-order poly-
nomial by discretization of a second-order continuous-time system. In what follows, we
recall how time-domain performance is related to the place of the poles of a second-order
system.

Consider a second-order continuous-time system given by:

UJ2

H(s) = n 2
() 52 + 2Cwps + w? (3.28)

where w;, is the natural frequency in rad/s (w, = 27 f,) and ( is the damping factor. The
poles of H(s) are

8172 = —Cwn :I:jwn\/ 1-— CZ (329)

for |¢| < 1, we have two complex poles (oscillatory response) and for |(| > 1, two real
poles (aperiodic response). It is clear that for ¢ > 0 the system is asymptotically stable
and for ¢ < 0 the system is unstable.

The step response of the second-order model H(s) is given by (for 0 < { < 1):

y(t)=1-— \/1;_76_@’“ [sin <\/1—7C2t + 1/))} t>0 (3.30)
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Step Response
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Figure 3.3: Step response of a second-order system for various damping factor (.

where 1) = cos™! . The step response is shown in Fig. 3.3 for a fixed w,, = 1 and various
values of the damping factor (. As ( decreases, the roots approach the imaginary axis,
and the response becomes oscillatory. The peak value M, is a function of the damping
factor and is computed by:

M, =1+ e ¢™/V1=¢ (3.31)

The settling time, Ty is defined as the time required for the step response to settle
within a certain percentage of the final value. The settling time of a second-order system
for which the response remains within 2% of the final value, occurs approximately when

emwnTset <002 or  (CwpTeer 4 (3.32)

The swiftness of step response can be measured as the time it takes to rise from 10%
to 90% of the final value. This is the definition of the rise time T,.. Although it is difficult
to obtain exact analytic expression for 7)., the following approximations can be used:

2.16¢ + 0.6 1.8
7o 20006 18 (3.33)
Wn Wn,
which is accurate enough for 0.3 < ¢ < 0.8.
Example 3.3. Consider the problem of finding w,, and ¢ to obtain a rise time of 1s with
an overshoot of 5%. From Eq. (3.31) we have:

e IVITC 005 = (~0.7

Then, from the first relation in Eq. (3.33), w, = 2.11 is computed. This corresponds to
the following poles s; 9 = —1.4784 + 51.507 for the continuous-time model.



118 ROBUST ADAPTIVE CONTROL

In the next step, using the transformation 21 5 = €12 where h is the sampling period,

the equivalent discretized poles can be computed. The following formula can be used for
a general transformation :

(z — M) (z — M) = 22 4+ prz + po (3.34)

with
p1 = —2e “rcos <wnh\/1—7(2) (3.35)
py = e Xt (3.36)

Example 3.4. Compute the desired discrete-time closed-loop polynomial to have an over-
shoot of 10% and a settling time of 1.2 s. Suppose that the sampling period h = 0.1s.
From Eq. (3.31) for 10% overshoot we have:

e IVISC 01 = (=06

The natural frequency is computed from Eq. (3.32) as w, ~ 5.55. Then from Eqs (3.35)
and (3.36) we obtain:

PlgY)=1+4+pig +pg? with p,=-1294 , py,=0.513
that corresponds to the following desired poles:
219 = 0.647 £ j0.308

The loci of the roots of P(g~1) can also be found for fixed values of ¢ and w,. Fig. 3.4
shows the loci for ¢ = 0.1 to 0.9 and w, for 0.17/h to m/h (the Nyquist frequency). Using
this figure, which can be plotted in Matlab, the desired closed-loop poles can be chosen
very easily. For example if ¢ = 0.7 (5% overshoot) and w,h = 0.628, the roots of P(q™')
will be at the intersections of the loci of the poles with ¢ = 0.7 and w,, = 0.27/h. This
leads to z; 9 = 0.5806 + j0.2794 which is illustrated in Fig. 3.4.

The typical values for ¢ and w, are:

0.25 1.5
<

S Sw, <= 5 07<(<]1

Auxiliary poles: If it is desired to introduce a filtering action in certain frequency regions
(or to reduce the effect of the noise on the measurements, or to smooth the variations of the
control signal, or to improve the robustness), the poles of the corresponding filter, defined
by a polynomial P;(g~!), should also be the poles of the closed loop. As a consequence,
the polynomial P(¢™!) defining the desired closed-loop poles will be the product of the
polynomials Py(¢~') and P(¢') specifying dominant and auxiliary closed-loop poles,
respectively.

P(q") = Pa(q™") Pr(a™) (3.37)
As a general rule, the poles named “auxiliary poles” are faster than the “dominant poles”.
That is expressed, for the case of discrete-time models, by the property that the roots of
P(q"') should have a real part smaller than the real part of the roots of Py(¢™').
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Pole-Zero Map
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Figure 3.4: Desired closed-loop poles with the loci for constant ¢ and w,

Regulation: Computation of R(¢g™') and S(q~ ')

Once P(q™1) is specified, in order to compute R(¢~!) and S(¢~!), the following equation,
known as “Bezout identity” (or Diophantine equation), must be solved:

Al )S(a ")+ Ba HR(¢) =P(a) (3.38)

Defining
ny =deg A(¢™') ; np=deg B(¢") (3.39)

this polynomial equation has a unique solution with minimal degree (when A(¢~!) and
B(q™') do not have common factors) for

ng = deg R(¢™") =na—1
ng = deg S(¢")=np—1
np = deg P(q_l) <ng+np—1

in which

R(g™Y) = ro+rg "+ g R (3.40)
S(@") = 148+ +sp.g ™ =1+q 'S¢ (3.41)

Example 3.5. Consider a discrete-time plant model given by:

14+ a1qgt + azq2
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The objective is to find the polynomials R(¢~!) and S(¢~!) to place the closed-loop poles
in the desired places. For this system we have: ng = 2,ng = 2. Therefore, the controller
with the minimal degree has ng = 1 and ng = 1. So three unknown parameters rg, rq
and s; in R(¢™!) =ro+rig ! and S(¢g7') = 1+ s;¢7 ! should be computed. On the other
hand, since np < 3 we can place 3 poles in the desired places. Suppose that we choose
two complex conjugate poles to meet some conditions on the damping factor and natural
frequency, i.e. np = 2. Therefore, the following Bezout identity should be solved:

(1+a1qg "+ aq )1+ 517" + (g™ +boqg ) (ro+11g7") = 14+ pig~ " + pag?

By making equal the coefficients of the same powers of ¢ in both sides of the above
equation, three linear equations are obtained:

a; + s1+birg = p
a9 +CL151 +b27‘0 +b17“1 = P2
a9S1 +bQT’1 =0

These equations can be written in the matrix form:

1 0 0 O 1 1
a; 1 by O S1 D1
— 3.42
ay a; by by To P2 ( )
0 ay O bg ™ 0

A solution to these equation can be found if the matrix of the coefficients is non singular.
We know from Theorem 3.2 that this condition is met if and only if A(¢™!) and B(q™')
do not have common factors.

A general solution to Eq. (3.38) can be written in the matrix form
Mz =p (3.43)
where

= o Spg T .o Tnp | (3.44)
p'o= [l p oo pup 0 o O] (3.45)
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and the matrix M (known as Sylvester matrix or controllability matrix) has the form:

np na
T1 o0 0 b 0 0 7)
aq 1 b1 bo
: aq 0 b1
M = I bo na+ng (3.46)
ay bl
A, by :
0 ap, 0 bny,
0 0 ay, 0 -+ 0 by |

The vector x, which contains the coefficients of the polynomials R(¢™') and S(¢™!), is
obtained, after the inversion of the matrix M, by the formula

r=M"p (3.47)

Note that the inverse of M exists if the determinant of the matrix M is different from
zero, i.e. if and only if A(¢™') and B(q™!) are coprime polynomials (no simplifications
between zeros and poles).

For different reasons the polynomials R(¢~') and S(¢~!) may contain, in general, fixed
parts specified before the resolution of Eq. (3.38) . In order to take into account these
pre-specified fixed parts, the polynomials R(¢~') and S(¢~!) are factorized in the form

R(g™") = R(q "“)Hr(q") (3.48)
S = S'(¢HHs(q) (3.49)

where Hgr(q™') and Hg(q™!) are pre-specified polynomials and

1o —1 _ / r -1 / —Npr

R(g") = ro+rg +-+r,, ¢ (3.50)
!/ —1 . /7 _—1 / —Ngr

Sq7) = 1+s1g +-+s,,4" (3.51)

Hgr(q™') and Hg(g™') are primarily chosen in relation with the desired nominal perfor-
mances. Hg(q™!) should incorporate the internal model of the disturbance to be rejected
(for example Hg(g™') = 1 — ¢7', in order to have an integrator which will assure zero
steady state error for a step disturbance). Hg(g™') will typically incorporate a filter for
reducing the actuator stress in a certain frequency range (by reducing the gain of the
controller).
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For this parameterization of polynomials R(¢™!) and S(g¢™'), the closed-loop transfer
function will be

Halg™") =

T(¢)B(¢™") _ T )B(™)
Alg)S" (¢ ") Hs(q™") + Blg )R (¢ ) Hr(q™") P(g)

Therefore, we need to solve the following equation :
Alg S (¢ HHs(a™) + Bl )R (¢ ) Hr(q™") = P(¢™") (3.52)

This can be done after replacing: A(¢™') by A'(¢7') = A(¢ ) Hs(q™') and B(q™!) by
B'(¢7') = B(q¢ ')Hr(q™') with the restriction that polynomials [A(¢~')Hs(¢™!)] and
[B(q')Hgr(q™')] are coprime. The conditions on the orders of the polynomials that allow
one to get a unique solution of minimal order, become in this case

ng = deg R(¢7')=na+ny, —1
ng = deg S'(q7") = np +nm, — 1
np = deg P(q') <na+np,+np+ny, —1

For the controller implementation, S(¢~!) will be given by S’(¢~!)Hgs(q™!) and R(¢~') by
R'(q~")Hr(q™).

Choice of Hr and Hg

Zero steady-state error for a step disturbance: From Fig. 3.1 in the absence of the
reference signal (i.e. 7(k) = 0), one has:

o) = ML) (3.53

For a step disturbance we have

(k) = 5(k) (3.54)

where (k) is the Kronecker impulse (§(k) = 0 for ¢ # 0 and 6(0) = 1). The problem
can be viewed as either imposing the cancellation of the disturbance model (in this case
(1—q 1)) or as choosing Hg(q™!) such that the gain of the transfer function between v(k)
and y(k) be zero for the zero frequency (i.e., for ¢ = z = 1). Both points of view lead to:

Hs(qg') =(1—q")
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Perfect rejection of a harmonic disturbance: In this case the disturbance is:

1
o(k) = 1)

with

a = —2cos(wh) = —2cos(2m--)

and applying the same reasoning one finds:
Hs(¢™')=(1+aq' +¢7?)

If we would like only a desired attenuation at the frequency f, one can use a pair of
damped zeros in Hg with a damping factor in relation with the desired attenuation.

Opening the loop: In a number of applications, the measured signal may contain specific
frequencies which should not be attenuated by the regulation (they correspond in general
to signals inherent to the technology of the process). In such cases the system should be
in open loop at these frequencies. i.e., this disturbance is made unobservable at the input
of the plant. In the absence of the reference, the input to the plant is given by:

Al Y)Hr(¢ )R (")
P(q1)

and therefore in order to make the input sensitivity function zero at a given frequency f
one should introduce a pair of undamped zeros in Hg(¢!) i.e.,

Hr(qg") = (148" +¢7?)

u(k) = ~U(g~")v(k) = — v(k)

where
f = —2cos(wh) = =2 cos(27rfi)

S
In many cases it is desired that the controller does not react to signals of frequencies close
to 0.5fs (where the gain of the system is in general very low). In such cases one uses:

Hp(q™') = (1+B¢7")

where 0 < 3 < 1. Note that (1 4+ 3¢~1)? corresponds to a second order with a damped
resonance frequency equal to w;/2:

woV 1-— CQ = %
and the corresponding damping is related to 8 by
< .
6 = e V1-¢2

For = 1, the system will operate in open loop at f;/2.
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Tracking: Computation of T'(¢™ 1)

In the ideal case we would like to perfectly follow a desired trajectory
y*(k + d), known d steps ahead, which is stored in the computer or generated from the
reference signal via a tracking reference model, i.e.,

Hm(q’l) = (3.55)
Often, this tracking reference model is determined from the desired tracking performances
(rise time, settling time, overshoot) by selecting either an appropriate normalized second
order system (defined by w,, () or sometimes a cascade of two second orders. Once a
continuous-time reference model is selected, one gets by discretization the discrete-time
tracking reference model.

The remaining design element of the controller is the polynomial T'(¢g~!). The transfer
function from the desired reference trajectory to the output is:

T(¢)B(¢") _ ¢ "T(@)B(¢")
Fa(lq)Ps(q™")  Palg™")Pr(q™)

where B(q™!) = ¢7B*(¢™") is used to show clearly the existence of a pure time delay in
this transfer function. Two situations may occur.

Hy(qgh) = (3.56)

a) Different dynamics for tracking and regulation.

b) Same dynamics for tracking and regulation.

In the case a) Hy(q™') should have a steady-state gain of 1 and T'(¢~!) should compensate
the closed-loop poles i.e.,

T(q™") = 6P (3.57)
where .
B = —B(l) (3.58)
The resulting transfer function from the reference to the output is:
_ ' “Bu(¢")B*(a)
Ha(qhy = BrleDB) _ a "By 550
@@ B T A B 359
In the case b)
Hp(g ') =1 (3.60)
T(q™) = BP(1) (3.61)

If S contains an integrator then P(1) = B(1)R(1) and therefore:

(") = R(1) (3.62)
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Figure 3.5: Pole placement scheme for tracking and regulation

The resulting transfer function from the reference to the output is in this case:

Ly _ Bl@)P(1) ¢ 'B* (¢ h)P()
@) = P nB1) ~ P B (369

Note that better tracking performances can be obtained if the stable zeros of B(q™!)
are compensated and the unstable ones are partially compensated by using the stable
reciprocal inverse. However, this requires a very good knowledge of the coefficient of
B(g™).

The complete block diagram of the pole placement for the case a) (different dynamics
for tracking and regulation) is shown in Fig. 3.5.

Example 3.6. Consider the following discrete-time second-order plant model:

Glg ) = 0.1g71 + 0.2¢72
T T T3¢+ 0.42¢2

The sampling period is h = 1s. Design an RST controller such that the tracking dynamics
is close to the dynamics of a second-order continuous-time model with w,, = 0.5 rad/s and
¢ = 0.9. The regulation dynamics should be close to that of a second-order continuous-
time model with w, = 0.4 rad/s and { = 0.9. The steady state error for an output step
disturbance should be zero.

Step 1: From the desired regulation dynamics the dominant closed-loop poles should be
computed. Using Eqs (3.35) and (3.36), with w,, = 0.4 rad/s and ¢ = 0.9, we obtain:

P(gY) =1—1.3741¢"" +0.4867¢ >
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Step 2: Zero steady state error is obtained by choosing Hs(q™') =1 — ¢ L.
Step 3: The following Bezout equation should be solved:
Al )Hs(q S (¢7") + Blg)R(a™") = Pl¢™)
We have deg S’ =np —1=1and deg R=n4+npg, —1 =2 and
Al =A¢"H1-q¢ ) =1-23¢"+1.72¢7% - 0.42¢3

Therefore the Bezout equation in the matrix form becomes:

1 0 0 0 0 1 1
—2.3 1 01 0 O 50 —1.3741
172 =23 02 0.1 0 ro | = 0.4867
-042 172 0 02 0.1 1 0

0 —042 0 0 0.2 T2 0

Solving this equation leads to
R(g™Y) = 3—394¢71 +1.3141¢2
Sl = Q+shg D)1 —q ) =1-03742¢"" — 0.6258¢ >

Step 4: The reference model H,,(¢') is computed by discretization of a second-order
model with w, = 0.5 rad/s and ¢ = 0.9:

-1 -2
Ho (gt — 09274+ 0.0687g
1 —1.2451¢=! + 0.4066¢—2

Finally, the polynomial T(¢~') = BP(¢™"') where 8 =1/B(1) = 3.333 :
T(q™") = 3.333 — 4.5806¢ " + 1.6225¢ >

If we wish to have the same dynamics for tracking and regulation, then H,,(¢7!) = 1

and T(¢™1) = R(1) = 0.3741.

3.2.4 Model Reference Control

In the conventional pole placement technique we could choose different dynamics for
regulation and tracking. However, the transfer function between the reference and the
closed-loop output, Hy(g™1) in (3.59), contained the zeros of the plant model in addition
to the reference model H,,(¢7') in (3.55). In Model Reference Control, the zeros of the
plant model can also be cancelled that enables the tracking and regulation performance to
be achieved without approximation. As a result of the simplification of the zeros, however,
this strategy can only be applied to discrete-time models with stable zeros.
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Figure 3.6: Tracking and regulation for Model Reference Control

Note that for continuous-time model, unstable zeros represents non-minimum-phase
systems. But for discrete-time models, unstable zeros can be the consequence of too
fast sampling (even if the continuous-time zeros are stable). A large fractional delay can
also generate unstable zeros which can be avoided by re-identification of a model with
augmented delay or resampling. Suppose that the pure time delay of the continuous-time
model 7 is written as 7 = dh + L, where 0 < L < h is the fractional delay. It can be
shown that if L > 0.5h the identified model will have an unstable zero.

This method can be considered as a particular case of the “pole placement” method.
This equivalence can be obtained by imposing that the closed-loop poles contain the zeros
of the discrete-time plant model (defined by the polynomial B*(¢~!)). This is the reason
for which the zeros of the plant model must be stable. It is convenient then to verify that,
before the application of this method, the zeros of B*(¢~!) are stable, and, moreover, that
complex zeros have a sufficiently high damping factor (¢ > 0.2). In other words, the zeros
should lie inside a region defined by the cardioids related to the constant damping factor
¢=0.2.

The structure of the closed-loop system is represented in Fig. 3.6. The desired closed-
loop poles are defined by a polynomial P(g~!) which specifies the desired regulation
behavior.



128 ROBUST ADAPTIVE CONTROL

Regulation: Computation of R(¢g~') and S(q™!)

The transfer function of the closed loop without precompensator is:

—B(q”") ¢ 'B(q")
Ha(g ™) = ! = 3.64
@ A ) e B ORG)  Ba P Y
where B(q™!) = ¢7B*(¢™!) and

B (q7") = ba+bas1q" "+ o+ by (3.65)

While P(q!) represents the desired closed-loop poles, the real closed-loop poles will
include also B*(¢™'). Standard application of pole placement leads to:

Al )S(a ) +a B (¢ HR(¢™") = B* (¢ )P(a™") (3.66)
The structure of this equation implies that S(¢g~1) will be of the form:
S =s0+s1¢" +...+ 85" =B(¢g")S (¢ ") (3.67)

In fact S(g~1) will compensate the plant model zeros. Introducing the expression of S(q~)
in (3.66) and after simplification by B*(¢™!), one obtains:

Alg S (¢ )+ ¢ R(g") = P(¢) (3.68)

Theorem 3.3. The polynomial equation (3.68) has a unique solution for:

np = degP <ny+d-—1 (3.69)
ng = degS' =d-1 (3.70)
ng = degR(¢")=na—1 (3.71)

and the polynomials R and S’ have the form:

R(g™") = ro+mg " +.. 4 rnag " (3.72)
S'(gY) = 148 +.. 4 st (3.73)

Proof. Eq. (3.68) corresponds to the matrix equation

Mz =1p (3.74)
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where M is a lower triangular matrix of dimension (n4 4+ d) x (n4 + d) of the form:

d 1 ‘
T 1 0 0 0 . o1
a1 :
: aq . 0 : :
M = 1 0 ««- - 0 na+d (3.75)
' ay 1 :
g 0
0 an, : 0
i 0 an, 0 0 11 ]
o' = 1,8, 8T T, ] (3.76)
P" = [LD1 e Poas Prasts o Prasdi (3.77)

Some of the coefficients p; can be zero. Since M is a lower triangular matrix it is always
non-singular which implies that (3.74) (and respectively (3.68)) always has a solution:
x = M1p. O

As in the case of the pole placement it is convenient to consider a parameterization of
the controller polynomials S(¢~!) and R(¢™') as:

S(g™) =S¢ Hs(g™) (3.78)
R(g™') = R'(¢"")Hr(¢") (3.79)

where Hp(q™!) and Hg(q™') represent the prespecified parts of R(¢™!) and S(¢™1). In
this case Hg(q™!) takes the specific form:

Hs(¢™) = B*(¢"")Hs(q™) (3.80)
and (3.68) becomes
Al Hg(¢™)S (¢7) +a Hr(¢)R(¢7") = P(g™") (3.81)

All the consideration concerning Hr(g') and H(q ') discussed in Section 3.2.3 for the
pole placement are applicable.

Tracking: Computation of T'(¢g™1)

The precompensator T'(¢g") is computed in order to ensure the following transfer function
between the reference r(k) and y(k):

—1\ qidBm(qil) _ qidBm(qil)T(qil)
Hala™) = = Ty = Anla VP D

(3.82)
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From (3.82) one obtains:
T(q")=Pq) (3.83)

The input to T'(¢') at sampling instant % is the desired trajectory y*, d steps ahead
(y*(k + d)).

Controller Equation

The controller equation is given by:
S(g M u(k) = —R(q " )y(k) + P(g~")y*(k + d) (3.84)
Taking into account the form of S(q ')

S(g') = s+ s1g L Snsq "5 = S0+ q_ls*(q_l) = B*(q_l)S’(q_l) (3.85)

with
50 = ba (3.86)
(3.84) takes the form:
u(k) = - [Pl b+ d) = 5@ Dulk =D~ Rig k)] (87
or in a regressor form:
Ococ(k) = Pq )y (k +d) (3.88)
where:
oc(k) = [u(k),...,ulk —ns),y(k),...,y(k —ng)| (3.89)
0L = 1[50, Sns,T0;- - Tnp) 3.90)

Observe in (3.87) that low values of |by| may lead to very large plant inputs. But this is
exactly what happens when one has a significant fractional delay or an unstable zero.

3.2.5 Robust Pole Placement

Using the pole placement technique the closed-loop poles can freely be assigned in the de-
sired places and desired performance in tracking and disturbance rejection can be achieved
for the nominal model in simulation. However, the designed controller may not be imple-
mented on the real system for the following reasons:

1. the controller may not be robust with respect to model uncertainty;

2. the control input may be too large and saturated in real experiment.
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Therefore, the robustness of the designed controller and the maximum value of the input
signal should be verified in simulation before implementation.

Robustness can be verified using the robustness margins like gain, phase and modulus
margin. The inverse of the infinity norm of the sensitivity function, the modulus margin
M,,, is a good indicator of the robustness margin. A modulus margin M,, > 0.5 implies
a gain margin of greater than 2 and a phase margin of greater than 29°. The robustness
can be verified by observing the Bode diagram of the output sensitivity function :

A(z7HS(z _ A(z7HS(z
A(z=1)S(z"Y) + B(zH)R(z71) P(z71)

Siz™h =

The infinity norm of the sensitivity function ||S||o = max, |S(e77*)| < 6dB is equivalent
to M, > 0.5.

Sensitivity Function Shaping

In general, robustness can be improved and the amplitude of the control input can be
reduced by slowing down the swiftness of the closed-loop system. This can be done by
reducing the natural frequency w, of the dominant desired closed-loop pole and/or by
placing the auxiliary poles with greater real part. However, the auxiliary poles should be
always faster than the dominant poles. The use of fixed terms in the controller can help
improving the robustness and reducing the amplitude of the control input (see Section
3.2.3).

Example 3.7. Consider the following plant model with h = 1s:

-1 2
_ q  +0.5¢q
Glg™) =
O N s

First we compute a controller to assign the closed-loop poles at z;, = 0.3 £ j0.2 and to
reject a constant disturbance (Hg(q™') = 1 — ¢'). Solving the Bezout equation with
P(g7') =1—-0.6¢7"+0.13¢72, we obtain:

R(q™") = 1.4667 — 1.72¢"' 4+ 0.6067¢2 ; S(¢')=1—-0.5667¢ " — 0.4333¢>

The polynomial T(¢~!) = P(¢~')/B(1) and the reference model H,,(q¢~') is chosen appro-
priately to achieve the desired tracking performance. This controller, however, does not
have necessarily a good robustness. The modulus margin M, = 1/||S]|o = 0.39 is not
large enough and the peak-to-peak value of the control input for an impulse disturbance
at the output is greater than 5 and its two-norm is 4.05. The maximum of the amplitude
of the input sensitivity function is about 17dB which shows poor robustness with respect
to additive uncertainty at high frequencies.

There are two approaches to improve the robustness of the closed-loop system. The
first one is to slowing down the desired closed-loop poles. A good choice is to choose the
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desired poles with the same natural frequency of the open-loop poles but with a larger
damping factor. The plant model has two complex poles with w, = 0.4926 rad/s and
¢ = 0.362. So the desired closed-loop poles with the same natural frequency and ¢ = 0.9
are chosen (22 = 0.6272 & j0.1368). This leads to a new controller with:

R(¢g™') =0.8721 — 1.29¢"' 4+ 0.5231¢"2 ; S(¢')=1-0.6264¢ " — 0.3736¢ >

This controller has a modulus margin of M,, = 0.566 and a maximum of 10dB for the
amplitude of the input sensitivity function. So it is more robust than the original con-
troller. On the other hand, it has better performance in terms of the control input; the
peak-to-peak value of the control input is less than 2 and its two norm is [|U]|2 = 1.92.
However, as a result of slower poles, a step disturbance at the output is rejected after 12
seconds while the rejection time for the original controller is 6s. The second solution is to
add a fixed term Hp(q™!) = 1+ ¢! in the controller to reduce the input sensitivity func-
tion at high frequencies. Therefore, the same closed-loop poles as the original controller
is chosen (P(q™!) =1 —0.6¢7! + 0.13¢7?) and the following controller is computed:

R(g™") = 0.8740 — 0.2382¢"" — 0.6973¢ 2 + 0.4149¢ 3
S(g") = 140.0260¢"" —0.7297¢~2 — 0.2964¢ >

This controller does not improve the modulus margin (M,, = 0.3913) but reduces the
maximum magnitude of the input sensitivity function to 10dB. It leads to a peak-to-peak
value of the control input of about 2 and two-norm of 1.8675. The rejection time of output
step disturbance is also fast enough (7s). Figure 3.7 shows the step response for an output
disturbance, the control input for an impulse disturbance at the output, the magnitude
of the output sensitivity function and the input sensitivity function for the three different
controllers designed for this example.

In [7] some iterative methods are proposed to design the fixed terms in the controller
that lead to a robust controller. Here, an optimization based approach is proposed to
shape the sensitivity function and assign the closed-loop poles. The approach is based on
Q-parameterization and uses the convex optimization algorithms.

Q-Parametrization

Suppose that Ry(q~') and So(q~ ') are computed for a nominal model and a given P(q™1).
Then, the following set of controllers:

where
Qe ) =w+aq "+ +a,q "
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(a) Output disturbance step response (b) Control input for impulse disturbance at output
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Figure 3.7: Original controller (blue curves), improved controller by slowing down the
closed-loop poles (red curves), improved controller by adding a fixed term Hpy(q™!) =
1+ ¢! (green curves)

are also the solutions of (3.38) which are not necessarily of minimal order. This can be
observed by computing the closed-loop poles for the parameterized controller:

AlgH)S(@ )+ Bla HR(gY) = Alg")Solg™") — Alg H)B(g HQ(¢™)
+B(q " )Ro(q™ ") + Blqg A HQ(g )
= A(g")So(¢™") + B(g ") Ro(q™)

Equations (3.91) and (3.92) can be used to tune an initial controller by shaping the
sensitivity functions without solving the Bezout equation.

Example 3.8. Suppose that Ry(¢~!) and Sp(¢!) are designed to obtain desired closed-
loop poles. Then we decide to add an integrator to the controller and to open the loop
at Nyquist frequency which is equivalent to add the fixed terms Hg(¢™') =1 — ¢! and
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Hr(q™') =1+ ¢!, respectively. This can be done by Q-parametrization as follows. Let
Q(g") = g + q1¢~'. An integrator in controller means that S(1) = 0 and opening the
loop at Nyquist frequency means that R(—1) = 0. So ¢o and ¢; can be computed from
the following equations:

]=0 (3.93)
So(1) = B(D)[go + ] =0 (3.94)
The main advantage of this parameterization is that while the desired closed-loop poles

remain the same, the sensitivity functions will depend linearly on the Q parameters as
follows:

Az (7Y — AT B(THR(ET

S('zilaQ) - P(Z_l)
Z_l Z—l 2 Z—l Z_l
Ue,Q) = A(z77) Ro( P)(;r_fl‘l) (z7)Q(=")

As a result, any norm of S or U is a convex function of the Q parameters. Therefore,
after computing a nominal controller that meets the regulation and tracking performance,
robustness of the designed controller can be improved by computing the polynomial Q(g™')
such that the weighted infinity- or two-norm of the sensitivity functions are minimized. For
example the two norm of & can be minimized under a constraint on the modulus margin
and the maximum amplitude of the input sensitivity function. This can be presented as
a convex optimization problem:

min [U(Q)]2

subject to: (3.95)
M S(Q)]loo < 1
1U(@Q)]loo < Unax

Fixed terms in the controller: If we had some fixed terms in Ry(q~') and Sy(q~"), after
QQ parameterization, they will be lost. It can be seen in (3.91) and (3.92), that a fixed
term Hg in Ry will be preserved in R if it includes in ) as well. In the same way a fixed
term Hg in Sy is preserved in S if it includes in Q. A simple way to include the integrator
Hs(¢7') =1—¢'in Q, is to add the equality constraint Q(1) = 0. In addition to include
Hr(qg™') =14 ¢ ' in Q, we can add the equality constraint Q(—1) = 0. In general, Q
can be parameterized as:

Q(q™") = Hr(q HHs(¢ Q' (¢7")

to guarantee that the existing Hgr and Hg in Ry and Sy will be preserved in R and S,
respectively. If Ry and Sy do not have the fixed terms but we want to include them in R
and S, we can add some equality constraints for R and S to the optimization problem.
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For example, to have an integrator in the controller we should have an additional equality
constraint S(1) = 0, which leads to Q(1) = Sy(1)/B(1), see (3.94).

If we consider again Example 3.7 and we solve the convex optimization problem in
(3.95) for a third-order Q(¢~!) we obtain the following results:

Q¢™") = —0.8952+0.3068¢ " + 0.3430¢ % + 0.2453¢*
R(g™") = 0.5715—0.0704¢"" — 0.1372¢"% — 0.0544¢ > — 0.1279¢* + 0.1717¢"°
S(g~") = 1.0000 + 0.3285¢ " — 0.2926¢ > — 0.4964¢ > — 0.4169¢* — 0.1227¢ "

This controller gives a modulus margin M,, = 0.5, a maximum amplitude of 3.66 dB and
a two-norm of 0.896 for the input sensitivity function. The step response for an output
disturbance, the impulse response of the input sensitivity function, the magnitude of the
output and input sensitivity functions are given in Fig. 3.8 for the comparison purpose
with the results of Example 3.7.

(a) Output disturbance step response (b) Control input for impulse disturbance at output

Amplitude
Amplitude

(c) Output sensitivity function (d) Input sensitivity function

Magnitude (dB)
|

Magnitude (dB)

i

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
Frequency (Hz)

Figure 3.8: Example 3.7 using QQ parametrization (blue curves), initial controller (green
curves)
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3.3 Introduction to Adaptive Control

Adaptive Control covers a set of techniques which provide a systematic approach for
automatic adjustment of controllers in real time, in order to achieve or to maintain a
desired level of control system performance when the parameters of the plant dynamic
model are unknown and/or change in time.

Consider first the case when the parameters of the dynamic model of the plant to be
controlled are unknown but constant (at least in a certain region of operation). In such
cases, although the structure of the controller will not depend in general upon the partic-
ular values of the plant model parameters, the correct tuning of the controller parameters
cannot be done without knowledge of their values. Adaptive control techniques can pro-
vide an automatic tuning procedure in closed loop for the controller parameters. In such
cases, the effect of the adaptation vanishes as time increases. Changes in the operation
conditions may require a restart of the adaptation procedure.

Consider the second case when the parameters of the dynamic model of the plant
change unpredictably in time. These situations occur either because the environmental
conditions change (ex: the dynamical characteristics of a robot arm or of a mechanical
transmission depend upon the load; in a DC-DC converter the dynamic characteristics
depend upon the load) or because we have considered simplified linear models for non-
linear systems (a change in operation condition will lead to a different linearized model).
These situations may also occur simply because the parameters of the system are slowly
time-varying (in a wiring machine the inertia of the spool is time-varying). In order to
achieve and to maintain an acceptable level of control system performance when large
and unknown changes in model parameters occur, an adaptive control approach has to
be considered. In such cases, the adaptation will operate most of the time and the term
non-vanishing adaptation fully characterizes this type of operation (also called continuous
adaptation).

Further insight into the operation of an adaptive control system can be gained if one
considers the design and tuning procedure of the “good” controller illustrated in Fig. 3.9.
In order to design and tune a good controller, one needs to:

1) specify the desired control loop performance;
2) know the dynamic model of the plant to be controlled;

3) possess a suitable controller design method making it possible to achieve the desired
performance for the corresponding plant model.

The dynamic model of the plant can be identified from input/output plant measure-
ments obtained under an experimental protocol in open or in closed loop. One can say
that the design and tuning of the controller is done from data collected on the system.
An adaptive control system can be viewed as an implementation of the above design and
tuning procedure in real time. The tuning of the controller will be done in real time from
data collected in real time on the system. The corresponding adaptive control scheme is
shown in Fig. 3.10.



3.3 Introduction to Adaptive Control 137

Desired Controller Plant
—> .
Performance Design < Model
Controller
parameters
Reference
—> u
> Controller y >

Figure 3.9: Principles of controller design
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Figure 3.10: An adaptive control system
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The way in which information is processed in real time in order to tune the controller
for achieving the desired performance will characterize the various adaptation techniques.
From Fig. 3.10, one clearly sees that an adaptive control system is nonlinear since the
parameters of the controller will depend upon measurements of system variables through
the adaptation loop.

Adaptive Control Versus Conventional Feedback Control

The unknown and unmeasurable variations of the process parameters degrade the perfor-
mance of the control systems. Similarly to the disturbances acting upon the controlled
variables, one can consider that the variations of the process parameters are caused by dis-
turbances acting upon the parameters (called parameter disturbances). These parameter
disturbances will affect the performance of the control systems. Therefore the disturbances
acting upon a control system can be classified as follows:

a) disturbances acting upon the controlled variables;

b) (parameter) disturbances acting upon the performance of the control system.

Feedback is basically used in conventional control systems to reject the effect of dis-
turbances upon the controlled variables and to bring them back to their desired values



138 ROBUST ADAPTIVE CONTROL

1
1
: Disturbances :
1
. / :
I A
Reference ! Adjustable + u Plant ¥ , .
—'—" Contrafler ;: 1
1 + :
Desired Adjustable System
Performance
! | Comparison Adaptation Performance i
| e > : — —
| Decision Mechanism Measurement i
E T ] §

Adaptation Scheme

Figure 3.11: Basic configuration for an adaptive control system

according to a certain performance index. To achieve this, one first measures the con-
trolled variables, then the measurements are compared with the desired values and the
difference is fed into the controller which will generate the appropriate control.

A similar conceptual approach can be considered for the problem of achieving and
maintaining the desired performance of a control system in the presence of parameter
disturbances. We will have to define first a performance index (PI) for the control sys-
tem which is a measure of the performance of the system (ex: the damping factor for a
closed-loop system characterized by a second-order transfer function is an PI which allows
to quantify a desired performance expressed in terms of “damping”). Then we will have
to measure this PI. The measured PI will be compared to the desired PI and their dif-
ference (if the measured PI is not acceptable) will be fed into an adaptation mechanism.
The output of the adaptation mechanism will act upon the parameters of the controller
and /or upon the control signal in order to modify the system performance accordingly. A
block diagram illustrating a basic configuration of an adaptive control system is given in
Fig. 3.11.

Associated with Fig. 3.11, one can consider the following definition for an adaptive
control system.

Definition 3.1. An adaptive control system measures a certain performance index (PI) of
the control system using the inputs, the states, the outputs and the known disturbances.
From the comparison of the measured performance index and a set of given ones, the
adaptation mechanism modifies the parameters of the adjustable controller and/or gener-
ates an auxiliary control in order to maintain the performance index of the control system
close to the set of given ones (i.e., within the set of acceptable ones).

Note that the control system under consideration is an adjustable dynamic system
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in the sense that its performance can be adjusted by modifying the parameters of the
controller or the control signal. The above definition can be extended straightforwardly
for “adaptive systems” in general.

A conventional feedback control system will monitor the controlled variables under
the effect of disturbances acting on them, but its performance will vary (it is not mon-
itored) under the effect of parameter disturbances (the design is done assuming known
and constant process parameters).

An adaptive control system, which contains in addition to a feedback control with
adjustable parameters a supplementary loop acting upon the adjustable parameters of
the controller, will monitor the performance of the system in the presence of parameter
disturbances.

Consider as an example the case of a conventional feedback control loop designed to
have a given damping. When a disturbance acts upon the controlled variable, the return
of the controlled variable towards its nominal value will be characterized by the desired
damping if the plant parameters have their known nominal values. If the plant parameters
change upon the effect of the parameter disturbances, the damping of the system response
will vary. When an adaptation loop is added, the damping of the system response will be
maintained when changes in parameters occur.

The operation of the adaptation loop and its design relies upon the following funda-
mental hypothesis: For any possible values of plant model parameters there is a controller
with a fized structure and complexity such that the specified performance can be achieved
with appropriate values of the controller parameters.

In the context of this chapter, the plant models are assumed to be linear and the
controllers which are considered are also linear. Therefore, the task of the adaptation loop
15 solely to search for the “good” values of the controller parameters.

This emphasizes the importance of the control design for the known parameter case
(the underlying control design problem), as well as the necessity of a priori information
about the structure of the plant model and its characteristics which can be obtained by
identification of a model for a given set of operational conditions.

In other words, an adaptive controller is not a “black box” which can solve a control
problem in real time without an initial knowledge about the plant to be controlled. This
a priori knowledge is needed for specifying achievable performance, the structure and
complexity of the controller and the choice of an appropriate design method.

3.4 Parameter Adaptation Algorithms

On-line estimation of the parameters of a plant model or of a controller is one of the
key steps in building an adaptive control system. Direct estimation of the controller
parameters (when possible) can also be interpreted as a plant model estimation in a
reparametrized form. Therefore, the problem of on-line estimation of plant model param-
eters is a generic problem in adaptive control. Such systems will feature a parametric
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Figure 3.12: Parameter estimation principle

adaptation algorithm which will up-date the estimated parameters at each sampling in-
stant.

On-line plant parameter estimation can also be viewed as a technique for achieving
system identification in general by using recursive parametric estimation methods which
process a pair of input-output measurements sequentially, as opposed to non recursive (or
off-line) identification methods which process an input-output data file acquired over a
certain time horizon at once.

The on-line parameter estimation principle for sampled models is illustrated in
Fig. 3.12. A discrete-time model with adjustable parameters is implemented on the com-
puter. The error between the system output at instant k, y(k) and the output predicted
by the model g(k) (called plant-model error or prediction error) is used by the parameter
adaptation algorithm, which, at each sampling instant, will modify the model parameters
in order to minimize this error (in the sense of a certain criterion).

The input to the system is either a low-amplitude frequency-rich signal generated
by computer for the case of plant model identification, or the signal generated by the
controller in the case of an adaptive control system. It can also be the combination of
both (e.g., identification in closed loop).

The key element for implementing the on-line estimation of the plant model param-
eters is the parameter adaptation algorithm (PAA) which drives the parameters of the
adjustable prediction model from the data acquired on the system at each sampling in-
stant. This algorithm has a recursive structure, i.e., the new value of the estimated
parameters is equal to the previous value plus a correcting term which will depend on the
most recent measurements.

In general a parameter vector is defined. Its components are the different parameters
that should be estimated.
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Parameter adaptation algorithms generally have the following structure:

New estimated Previous estimated | Adaptation
parameters = parameters + gain
(vector) (vector) | (matriz)
Measurement [ Prediction error
X function X function
(vector) i (scalar)

This structure corresponds to the so-called integral type adaptation algorithms (the algo-
rithm has memory and therefore maintains the estimated value of the parameters when
the correcting terms become null). The algorithm can be viewed as a discrete-time inte-
grator fed at each instant by the correcting term. The measurement function vector is
generally called the observation vector. The prediction error function is generally called
the adaptation error. The adaptation gain plays an important role in the performance of
the parameter adaptation algorithm and it may be constant or time-varying.

The problem addressed in this section is the synthesis and analysis of parameter adap-
tation algorithms in a deterministic environment. We focus on the least square recursive
algorithm, because it is the most used one. Detailed mathematical analysis for the sta-
bility and convergence of PAA is given in Appendix A.1 and A.2, respectively.

3.4.1 Recursive Least Squares Algorithm

Consider for example the discrete-time model of a plant described by:
y(k +1) = —ay(k) + biu(k) = 07 (k) (3.96)

where the unknown parameters a; and b; form the components of the parameter vector
0:
07 = [ay, b1 (3.97)

and
o' (k) = [~y(k), u(k)] (3.98)
is the measurement vector. The adjustable prediction model will be described in this case
by:
9°(k +1) = gl(k + D|0(k)] = —d1(k)y(k) + bi(k)u(k) = 67 (k)p(k) (3.99)

where 3°(k + 1) is termed the a priori predicted output depending on the values of the
estimated parameter vector at instant k:

~

07 (k) = [dr(k), by (k)] (3.100)

As it will be shown later, it is very useful to consider also the a posteriori predicted
output computed on the basis of the new estimated parameter vector at k + 1, 0(k + 1),
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which will be available somewhere between k£ 4+ 1 and k + 2. The a posterior: predicted
output will be given by:

Glk+1) = §(k+1)|0(k +1)]

= —a1(k+ Dy(k) + by (k + Du(k)
_ Tkt Do) (3.101)

One defines an a priori prediction error as:
Ek+1)=yk+1)—9°(k+1) = y(k +1) — 67 (k) (k) (3.102)
and an a posterior: prediction error as:
ck+1)=yk+1) —gk+1)=ylk+1) — 07 (k+ 1)¢(k) (3.103)

The aim is to find a recursive algorithm, which minimizes the least squares criterion:

k

min J(k) = 3 [y(i) — 67 (k)i — 1)) (3.104)

o(k) i=1

The term (k)¢ (i — 1) corresponds to:

~ ~

07 (k)p(i — 1) = —an(k)y(i — 1) + bi(k)uli — 1) = gli | O(F) (3.105)

Therefore, this is the prediction of the output at instant i(i < k) based on the param-
eter estimate at instant k obtained using & measurements.

First, a parameter # must be estimated at instant k so that it minimizes the sum
of the squares of the differences between the output of the plant and the output of the
prediction model on a horizon of k measurements. The value of A(k), which minimizes
the criterion (3.104), is obtained by seeking the value that cancels 0.J(k)/90(k):

aJ (k)
o6(k)

= =2 [y(@) = 0" (k)o(i = D — 1) =0 (3.106)

From (3.106), taking into account that:
(07 (k)i — Deli — 1) = ¢(i — 1" (i — 1)A(k)

one obtains:
k k

Y dli =]’ (i = 1)| 6(k) =Y y(@)o(i —1)

i=1 i=1
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and left multiplying by?:

F(k) = [Z o(i — 1) (i — 1)] (3.107)
one obtains:
:[z(bu—wu—ul Zy o(i = 1) = F(k) 3 _y(Do(i=1)  (3.108)

This estimation algorithm is not recursive. In order to obtain a recursive algorithm,
the estimation of §(k + 1) is considered:

k+1
Ok +1)=F(k+1) Zy (i—1) (3.109)

k+1

= 0= D" 1) = F7'(k) + o(k)o" (k) (3.110)

We can now express 8(k + 1) as a function of 8(k):

0(k+1) = 0(k) + AG(k + 1) (3.111)
From (3.109) one has:
0(k+1)=F(k+1) Zy(i)gb(i — 1) +y(k+ 1)o(k) (3.112)

Taking into account (3.108), (3.112) can be rewritten as:
O(k+1) = F(k+ 1)[F ' (k)0(k) 4+ y(k + 1)p(k)] (3.113)
From (3.110) after post-multiplying both sides by 6(k) one gets:
FH(k)O(k) = F~(k+ 1)0(k) — o(k)¢" (k)O(k) (3.114)
and (3.113), becomes:
00 +1) = F(k+ D) { P (k + D8(k) + o(R)y(k + 1) — 0" (W)6(k)] ) (3.115)
Taking into account the expression of €°(k + 1) given by (3.102), the result is:
0(k+1) = 0(k) + F(k+ 1)o(k)e (k + 1) (3.116)

31t is assumed that the matrix Zle (i — 1)¢T (i — 1) is invertible. As it will be shown later this
corresponds to an ezcitation condition.
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The adaptation algorithm of (3.116) has a recursive form but the gain matrix F(k + 1)
is time-varying since it depends on the measurements. A recursive formula for F(k + 1)
remains to be given from the recursive formula F~'(k + 1) given in (3.110). This is
obtained by using the matriz inversion lemma.

Lemma 3.1. (Matrix Inversion Lemma): Let F be a (nxn) dimensional nonsingular
matriz, R a (mxm) dimensional nonsingular matriz and H a (nxm) dimensional matriz
of maximum rank, then the following identity holds:

(F'+HR'H")Y'=F-FH(R+ H'FH)'H'F (3.117)
Proof. By direct multiplication one finds that:
[F—FHR+H'"FH)'H'F[F'+ HR'H"| =1
O

For the case of (3.110), one chooses H = ¢(k), R = 1 and one obtains from (3.110)
and (3.117):
F(k)¢(k)o™ (k) F'(k)
F(k+1)=F(k)— 3.118
() = F ) = T o Fet (G415
and, putting together the different equations, a first formulation of the recursive least
squares (RLS) parameter adaptation algorithm (PAA) is given below:

0(k+1) = 0(k)+ F(k+1)¢

(
s - Fs) - T >¢T<(g;ﬁ;gg Fiy 220
)

e (k+1) =y(k +1) - 0" (k)o(k

d(k)e(k + 1) (3.119)

(3.121)

An equivalent form of this algorithm is obtained by introducing the expression of
F(k + 1) given by (3.120) in (3.119), where:

0(k+1)—0(k)] = F(k+1)ok)e(k+1)

= PO ;((:); (1]3) s (3.122)
However, from (3.102), (3.103) and (3.122), one obtains:
e(k+1) = ylk+1) =0Tk +1)p(k)
= y(k+1) = 6(k)o(k) — [B(k + 1) — (k)] o (k)
. T e(k+1)
_ ekt 1) (3.123)

L+ ¢" (k) F(k)o(k)
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which expresses the relation between the a posterior: prediction error and the a priori
prediction error. Using this relation in Eq. (3.122), an equivalent form of the parameter
adaptation algorithm for the recursive least squares is obtained:

O(k +1) = 0(k) + F(k)p(k)e(k +1) (3.124)
YE+1) = F k) + o(k)o (k) (3.125)
Fk+1) = F(k) — 1<+) qu(?);bFE ;5((:; (3.126)

y(k £ 1) — 07 (R)o(k)
LT G R E(R)o(R) (3.127)

For the recursive least squares algorithm to be exactly equivalent to the non-recursive
least squares algorithm, it must be started from a first estimation obtained at instant
ko = dim ¢(k), since normally F~'(k) given by (3.107) becomes nonsingular for k& = k.
In practice, the algorithm is started up at k£ = 0 by choosing:

ek+1)=

FO)=6 §>1 (3.128)

a typical value being § = 1000. It can be observed in the expression of F'~1(k + 1) given
by (3.110) that the influence of this initial error decreases with the time. In this case one
minimizes the following criterion:

k

min J(k) =Y [y()) — 0" (k)o(i — DI + [0 — 67 ()] F~(0)[ — 6(0)]" (3.129)

o) p

A rigorous analysis (based on the stability theory - see Appendix A.1) shows never-
theless that for any positive definite matrix F'(0)[F'(0) > 0],

lime(k+1)=0
k—o0

The recursive least squares algorithm is an algorithm with a decreasing adaptation gain.
This is clearly seen if the estimation of a single parameter is considered. In this case,
F (k) and ¢(k) are scalars, and (3.126) becomes:

F(k |
1+ ¢(l€)2F(k) < F(k)v ¢U€)7F(k3) ceR

The same conclusion is obtained observing that £~ (k+1) is the output of an integrator
which has as input ¢(k)¢” (k). Since ¢(k)o” (k) > 0, one conclude that if ¢(k)¢” (k) > 0
in the average, then F'~1(k) will tends towards infinity, i.e., F'(k) will tends towards zero.

Flk+1)=

The recursive least squares algorithm in fact gives less and less weight to the new
prediction errors and thus to the new measurements. Consequently, this type of variation
of the adaptation gain is not suitable for the estimation of time-varying parameters, and
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other variation profiles for the adaptation gain must therefore be considered. Under
certain conditions, the adaptation gain is a measure of the evolution of the covariance of
the parameter estimation error.

The least squares algorithm presented up to now for f(k) and ¢(k) of dimension 2 may
be generalized for any dimensions resulting from the description of discrete-time systems
of the form:

—d p*x(,—1
¢ “B*(q")
k) = ——F———u(k 3.130
k) = T k) (3130)
where:
Al =14+aig +---+ An,q "4 (3.131)
B*(q7") = bg+bgi1q -+ bpqET (3.132)
Eq. (3.130) can be written in the form:
na np
y(k+1) == aw(k+1—140)+ Y bu(k—i+1)=0"¢(k) (3.133)
i=1 i=d
in which:
QT: [alﬂ"' 7anA7bd7"' aan] (3134)
o7 (k) = [~yk) - —y(k —na+1),ulk —d+1) - u(k —npg+1)] (3.135)

The a prior: adjustable predictor is given in the general case by:

PPk+1) = —Zdi(k:)y(k: +1—4)+ Zl;i(k;)u(k —i+1)
=07 (k)o(k) (3.136)
in which: R K R
QT(k) = [dl(k)a T 7dnA(k)7 bd(k)7 T 7bn3(k)] (3137)

and for the estimation of §(k), the algorithm given in equations (3.124) through (3.127)
is used, with the appropriate dimension for 0(k), ¢(k) and F(k).

3.4.2 Choice of the Adaptation Gain

The recursive formula for the inverse of the adaptation gain F~!(k+1) given by (3.125) is
generalized by introducing two weighting sequences A;(k) and Ay (k), as indicated below:
F7 (k+1) = M(k)F ' (k) + Ma(k)p(k)o" (k) (3.138)

0<M(k)<1;0< N(k)<2; F(0)>0
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Note that Aj(k) and Ao(k) have the opposite effect. Ai(k) < 1 tends to increase the
adaptation gain (the gain inverse decreases); A2(k) > 0 tends to decrease the adaptation
gain (the gain inverse increases). For each choice of sequences, A;(k) and A2(k) correspond
to a wvariation profile of the adaptation gain and an interpretation in terms of the error
criterion, which is minimized by the PAA. Eq. (3.138) allows one to interpret the inverse
of the adaptation gain (for constant weighting sequences) as the output of a filter Ay /(1 —
A1g™ ') having as input ¢(k)¢” (k) and as initial condition F~1(0).
Using the matriz inversion lemma given by (3.117), one obtains from (3.138):

( )o(k)¢" (k) F (k)

FESD =35m0 [T 20 g p o)

(3.139)

Next, a certain number of choices for A\;(k) and Ay(k) and their interpretations will be
given.

(A.1) Decreasing gain: In this case \;(k) = A\; = 1, \p(k) =1 and F~!(k + 1) is given
by (3.125), which leads to a decreasing adaptation gain. The minimized criterion is that
of (3.104). This type of profile is suited to the estimation of the parameters of stationary
systems.

(A.2) Constant forgetting factor: In this case A\;(k) = A;; 0 < A\ < 1; Ao(k) = Ao = 1.
The typical values for A\; are: A\; = 0.95 to 0.99. The criterion to be minimized will be:

J(k) =DM ly(0) = 67 (k)oli — DI (3.140)

The effect of A;(k) < 1 is to introduce increasingly weaker weighting on the old data
(¢ < t). This is why A; is known as the forgetting factor. The maximum weight is given
to the most recent error. This type of profile is suited to the estimation of the parameters
of slowly time-varying systems.

The use of a constant forgetting factor without the monitoring of the maximum value
of F(k) causes problems in adaptive regulation if the {¢(k)¢” (k)} sequence becomes null
in the average (steady state case) because the adaptation gain will tend towards infinity.
In this case:

F Y k+i)=\)'F (k)

and:

F(k+i)=(\)""F(k)

For: A\; < 1, lim;_,oo (A1) ™" = 0o and F(k + 4) will become asymptotically unbounded.
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(A.3) Variable forgetting factor: In this case A\y(k) = A2 = 1 and the forgetting factor
A1 (k) is given by:

The typical values being: A;(0) = 0.95 to 0.99 and Ao = 0.5 to 0.99. (A;(k) can be
interpreted as the output of a first order filter (1 — \g)/(1 — Aog™!) with a unitary steady
state gain and an initial condition A;(0)).

Relation (3.141) leads to a forgetting factor that asymptotically tends towards 1. The
criterion minimized will be:

J(k) = [H M) — i)] [y(i) = 0" (k)g(i — 1)]? (3.142)

i=1 Lj=1

As A\; tends towards 1 for large i, only the initial data are forgotten (the adaptation gain
tends towards a decreasing gain).

This type of profile is highly recommended for the model identification of stationary
systems, since it avoids a too rapid decrease of the adaptation gain, thus generally resulting
in an acceleration of the convergence (by maintaining a high gain at the beginning when
the estimates are at a great distance from the optimum).

Other types of evolution for A (k) can be considered. For example:

T (R F(k)g(k)
L+ ¢T (k) F(k)¢(k)

(k) =1

This forgetting factor depends upon the input/output signals via ¢(k). It automatically
takes the value 1 if the norm of ¢(k)¢” (k) becomes null. In the cases where the ¢(k)
sequence is such that the term ¢7(k)F(k)¢(k) is significative with respect to one, the
forgetting factor takes a lower value assuring good adaptation capabilities (this is related
to the concept of “persistently exciting” signal - see Appendix A.2).

Another possible choice is:

RO
M =L e rmem | 7

The forgetting factor tends towards 1, when the prediction error tends towards zero.
Conversely, when a change occurs in the system parameters, the prediction error increases
leading to a forgetting factor less than 1 in order to assure a good adaptation capability.

(A.4) Constant trace: In this case, \j(k) and \y(k) are automatically chosen at each
step in order to ensure a constant trace of the gain matrix (constant sum of the diagonal
terms):

trF(k+1)=trF(k) =trF(0) =nd (3.143)
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in which n is the number of parameters and ¢ the initial gain (typical values: § = 0.1 to
4), the matrix F'(0) having the form:

) 0
F(0) = (3.144)
0 )
The minimized criterion is of the form:
k k R )
UOEDY [_H M- i)] (i = 1) [u0) — 0" (R)a(i — 1) (3.145)
with:

L+ o7 (k) E (K)o (k)

Using this technique, at each step there is a movement in the optimal direction of the
RLS, but the gain is maintained approximately constant. The value of A\;(k) and Ay (k)
are determined from the equation:

F(k)p(k)o" (k) F(k

) )
trF(k+1) = a(k) + ¢T(k)F(k)p(k)

tr | F(k) — (3.147)

A (k)

fixing the ratio a(k) = A\ (k)/A2(k) (Eq. (3.147) is obtained from (3.139)). This type of
profile is suited to the model identification of systems with time-varying parameters and
for adaptive control with non-vanishing adaptation.

(A.5) Decreasing gain + constant trace: In this case, A.1 is switched to A.4 when:
trF(k)<nd; 6 =0.1to4 (3.148)

in which ¢ is chosen in advance. This profile is suited to the model identification of
time-varying systems and for adaptive control in the absence of initial information on the
parameters.

(A.6) Variable forgetting factor + constant trace: In this case A.3 is switched to A.4
when:

trF (k) <nd (3.149)

The use is the same as for A.5.
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Choice of the Initial Gain F'(0)

The initial gain F(0) is usually chosen as a diagonal matrix of the form given by (3.128)
and, respectively, (3.144). In the absence of initial information upon the parameters to
be estimated (typical value of initial estimates = 0), a high initial gain (6/) is chosen.
A typical value is 6 = 1000 (but higher values can be chosen). If an initial parameter
estimation is available (resulting for example from a previous identification), a low initial
gain is chosen. In general, in this case § < 1.

Since in standard RLS the adaptation gain decreases as the true model parameters
are approached (a significant measurement is its trace), the adaptation gain may be in-
terpreted as a measurement of the accuracy of the parameter estimation (or prediction).
This explains the choices of F'(0) proposed above. Note that under certain hypotheses,
F(k) is effectively a measurement of the quality of the estimation.

This property can give indications upon the evolution of a parameter estimation pro-
cedure. If the trace of F/(k) did not decrease significantly, the parameter estimation is in
general poor. This may occur in system identification when the level and type of input
used are not appropriate. The importance of the input choice for parameter convergence
is discussed in Appendix A.1.

3.4.3 Robust Parameter Estimation

In practice a number of the hypotheses used for the development of parameter adaptation
algorithms are violated. Therefore a number of modifications have to be introduced in
order to accommodate these situations safely.

The conventional assumptions are:

1. The true plant model and the estimated plant model have the same structure (the
true plant model is described by a discrete-time model with known upper bounds
for the degrees n4,ng).

2. The disturbances are zero mean and of stochastic nature (with various assumptions).

3. For parameter estimation in closed-loop operation, the controller

a) has constant parameters and stabilizes the closed loop;
b) contains the internal model of the deterministic disturbance for which perfect
state disturbance rejection is assured.

4. The parameters are constant or piece-wise constant.

5. The domain of possible parameter values is in general not constrained.

In this section, we will examine the effects of the violation of these hypotheses and see how
they can be overcome. Appropriate modification of the parameter adaptation algorithms
in order to obtain a robust parameter estimation will be introduced. This will allow us
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to guarantee certain boundedness properties for the parameter estimates and adaptation
error, which will be needed for establishing the boundedness of plant input-output signals
in adaptive control.

Probably the major difficulty encountered when analyzing adaptive control schemes is
caused by the fact that we cannot assume that the plant regressor vector (containing the
plant inputs and outputs) is bounded, i.e., that the adaptive controller stabilizes the plant.
The boundedness of the regressor vector is a result of the analysis and not an hypothesis
(as in the plant model identification in open or closed loop). The robustification of the
parameter adaptation algorithms is crucial both for practical and theoretical reasons.

The basic factors in the robustification of the parameter estimation algorithms are
explained briefly as follows:

Filtering of input/output data: Filtering of input-output data results naturally if we
consider the problem of plant model identification in closed loop using open-loop identifica-
tion algorithms. Filtering of input-output data also represents a solution for enhancing an
input-output spectrum in the “positive real” region of the transfer functions which occurs
in convergence conditions of some algorithms. When we would like to estimate a model
characterizing the low frequency behaviour of a plant, we have to filter the high-frequency
content of input-output, in order to reduce the effect of the unmodelled dynamics.

PAA with dead zone: In a number of applications, it is difficult to assume a stochastic
or a deterministic model for the disturbance, but a hard bound for the level of the dis-
turbance can be defined. In such situations, trying to make the (a posteriori) adaptation
error smaller than the bound of the disturbance is irrelevant. Therefore, a dead zone is
introduced on the adaptation error such that the PAA stops when the adaptation error
is smaller or equal to the upper magnitude of the disturbance.

PAA with projection: In many applications, the possible domain of variation of the
parameter vector 6 (or of some of its components) is known (for example, the model is
stable, or the sign of a component of ¢ is known). Similarly, in a number of parameter
estimation schemes, 0 or part of the components of é, should be restricted to a stability
domain. In such cases, the estimated parameters should be restricted to a given convex
domain by projecting the estimates on the admissible domain.

Data normalization: When the estimated model is of lower dimension than the true
plant model, the unmodelled response of the plant (if the unmodelled part is stable) can
be bounded by a norm or a filtered norm of the reduced order regressor ¢ containing the
inputs and outputs over a certain horizon. This unmodelled response can also be consid-
ered as a disturbance added to a reduced order model. In the context of adaptive control,
since we cannot assume that the regressor ¢ containing plant inputs and outputs does
not grow unbounded, we have to assure that the parameter estimates and the adaptation
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error remain bounded. This is obtained by defining “normalized” input-output data. This
data corresponds to the input-output data divided by a norm of ¢. This new data cannot
become unbounded, and the resulting normalized unmodelled response is also bounded.
Therefore, the parameter estimator built from this data, will lead to a bounded adaptation
error and using a PAA with dead zone or projection the boundedness of the parameter
estimates will be assured.

3.5 Direct Adaptive Control

Direct adaptive control covers those schemes in which the parameters of the controller are
directly updated from a signal error (adaptation error) reflecting the difference between
attained and desired performance. Direct adaptive control schemes are generally obtained
in two ways.

1. Define an equation for a signal error (adaptation error) which is a function of the
difference between the tuned controller parameters and the current controller pa-
rameters. Use this adaptation error to generate a PAA for the controller parameters.

2. Use an indirect adaptive control approach with an adaptive predictor of the plant
output reparameterized in terms of the controller parameters and force the output
of the adaptive predictor to follow exactly the desired trajectory.

The second approach allows the direct adaptation of the parameters of the controller
without solving an intermediate “design equation”. As it will be shown the prediction
error used in the PAA is in fact an image of the difference between the nominal and
the attained performance because of closed-loop operation. Furthermore, the resulting
schemes are governed by the same equations as those obtained by the first approach.

Although direct adaptive control is very appealing, it cannot be used for all types of
plant model and control strategies. In fact, the situations where direct adaptive control
can be used are limited. The basic hypothesis on the plant model is that, for any possible
values of the parameters, the finite zeros of the plant model are inside the unit circle.

It also has to be mentioned that even if the zeros of the plant model are asymptotically
stable, it is not possible (or it becomes very complicated) to develop direct adaptive control
schemes for pole placement, linear quadratic control or generalized predictive control. The
reason is that it is not possible to obtain an adaptation error equation which is linear in
the difference between the nominal and estimated controller parameters.

3.5.1 Model Reference Adaptive Control

When the plant parameters are unknown or change in time, in order to achieve and to
maintain the desired performance, an adaptive control approach has to be considered and
such a scheme known as Model Reference Adaptive Control (MRAC) is shown in Fig. 3.13.
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Figure 3.13: Model Reference Adaptive Control scheme

This scheme is based on the observation that the difference between the output of the
plant and the output of the reference model (called subsequently plant-model error) is a
measure of the difference between the real and the desired performance. This information
(together with other information) is used by the adaptation mechanism (subsequently
called parameter adaptation algorithm) to directly adjust the parameters of the controller
in real time in order to force asymptotically the plant-model error to zero. Note that
in some cases, the reference model may receive measurements from the plant in order to
predict future desired values of the plant output.

The model reference control for the case of known plant model parameters has been
discussed in detail in Section 3.2.4. For the development of a direct adaptive control
scheme, the time-domain interpretation is useful.

The plant model (with unknown parameters) is assumed to be described by:

Alq " y(k) = Blg Yu(k) = ¢ 'B*(q " u(k) (3.150)

where u(k) and y(k) are the input and the output of the plant respectively.
In the case of known parameters, the objective is to find a control law

u(k) = fuly(k), y(k = 1) - u(k — 1), u(k —2)---]
such that
Ek+d)=Plgylk+d -y (k+d)]=0 (3.151)

where P(g™!) is an asymptotically stable polynomial defined by the designer. For the case
of unknown plant model parameters the objective will be to find a control

u(k) = fulle(k), y(k),y(k = 1) - u(k — 1), u(k = 2)---]

where 6,(k) denotes the current controller parameters estimates such that with bounded
{u(k)} and {y(k)} we have:
lim e®(k+d) =0 (3.152)

k—o0
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Observe that €°(k+d) is a measure of the discrepancy between the desired and achieved
performance, and as such is a potential candidate to be the adaptation error. This quantity
can be generated at each sample (y*(k + d) is known d steps ahead).

The next step toward the design of an adaptive control scheme is to replace the fixed
controller given in (3.84) or (3.88) by an adjustable controller. Since the performance
error for a certain value of plant model parameters will be caused by the misalignment of
the controller parameters values, it is natural to consider an adjustable controller which
has the same structure as in the linear case with known plant parameters and where the
fixed parameters will be replaced by adjustable ones. It will be the task of the adaptation
algorithm to drive the controller parameters towards the values assuring the satisfaction
of (3.152). Therefore, the control law in the adaptive case will be chosen as:

S(k,q " Yu(k) + R(k,q ")y(k) = P(qg~")y*(k + d) (3.153)

where:
Sk, q7b) = 50(k) 4+ 51 (K)g ™t + - 8ng (k)g™ = 80(k) + ¢ 15*(k, ¢ Y) (3.154)
R(k,q") = to(k) + 71 (k)g ™ + - Fpp(k)g " (3.155)

which can be written alternatively as (see also Eq. (3.88)):

0o (k)po(k) = Pl )y" (k + d) (3.156)

where:
0L(k) = [80(k) - 3ug(K), Fo(k) -+ g (k)]; S0 (k) = bi(k) (3.157)
du(k) = [u(k)--u(k —ng),y(k) - y(k — ng)] (3.158)

and the effective control input will be computed as:

Pl )y b+ d) = 8" (kg Dulk = 1) = Rk, g y(k)]  (3159)

The choice made for the adaptation error in (3.151) and the structure of the adjustable
controller leads to the block diagram of the adaptive control system shown in Fig. 3.14. It
shows that the adaptation error is defined by the difference between the desired trajectory
y*(k) generated by the tracking reference model and the plant output y(k) filtered by
P(q™'). Therefore, P(¢~!) can be interpreted as a “reference model” for regulation.
Since we have selected a candidate for the adaptation error and a structure for the
adjustable controller, the next step will be to give an expression for €°(k+d) as a function
of the controller parameters misalignment. This will allow one to see to what extent
€°(k + d) can be considered as an adaptation error to be used in a PAA of the forms
discussed in Section 3.4. We note first that for the case of known parameters where the
controller parameters are computed by solving the polynomial equation (3.68), one has
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Figure 3.14: The detailed diagram of the model reference adaptive control

€°(k + d) = 0 and using (3.88), one can conclude that the filtered predicted plant output
is given by:

080c(k) = Plg " )y(k + d) (3.160)
since in the case of known parameters:
Pg Yy (k+d) = P(g Yy(k+d); Yk >0 (3.161)
where:
00 =[50+ Sng,T0 "+ Tng] (3.162)

defines the parameter vector of the tuned controller (unknown). Subtracting Eq. (3.154)
which contains the parameters of the adjustable controller from Eq. (3.160), one obtains:

e(k+d) = Plg y(k+d) = Plg )y (k+d)
= [0c — Oc(k))" pc (k) (3.163)

which has the desired form (linear in the parameter error). Therefore, the PAA to be
used for assuring:

kh—{go e(k+d)=0 (3.164)
Oc(k+d) = Oc(k+d—1) + F(k)pc(k)e(k + d) (3.165)
F7Hk +1) = M(B)F7 (k) + Ao (k) e (k)og (k) (3.166)

0< (k) <1;,0< (k) <2; F(O)>0

To make the above PAA implementable, we have to give an expression of €(k+d) in terms
of the a priori adaptation error €°(k + d) and the parameters 6(k +14) up to and including
i =d— 1. We can associate to (3.161) an a posteriori adaptation error equation

ek +d) = [0c — Oc(k+ d)]  dc(k) (3.167)
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and rewrite it as :

ck+d) = ek+d) +[0ck)— 0ok + d)] dc(k)
= & (k+d) —A¢£<k)F(k)¢c(k:>e(k +d)
+[0c (k) = O (k +d — 1) ¢c(k) (3.168)

from which one obtains:

e (k+d) — [Oc(k+d—1) — Oc (k)] ¢c (k)

(k+d)= L+ 05 (R F(R)oc () (3109
which can also be expressed as:
elh+d) = Py(k + d) — 0L(k + d — 1)pc (k) (3.170)

1+ ¢¢ (k) F (k)po(k)
The stability of the direct adaptive control is shown in Appendix A.3.

Example 3.9. In this example, we will illustrate the influence of the regulation dynamics
(the polynomial P(q~!)) on the performance of the model reference adaptive control.

Two different plant models are considered. The plant model before a parameter change
occurs is characterized by the discrete transfer operator:

¢ 2(1+04¢1)
(1= 0.5 [ — (0.8 + 0.37)g 1[I — (0.8 — 0.3)q" ]

Gi(g™") =

At time k = 25, a change of the plant model parameters is made. The new plant model
is characterized by the transfer operator:

g 2(0.9+0.5¢7")
(1—0.5¢ D1 — (0.9 + 0.42)g~ [T — (0.9 — 0.425)q" 1]

Ga(q™") =

The simulations have been carried out for two different values of the regulation polynomial:

1. Pi(¢7"') =1 (deadbeat control);
2. Py(qg™!) =1 — 1.262¢"" + 0.4274"2.

Py(q™*) corresponds to the discretization (b = 1 s) of a continuous-time second-order
system with wy = 0.5 rad/s and ¢ = 0.85.
The tracking reference model is characterized by:

Bun(q7") (0.28 +0.22¢7 1)
An(gt) (1 =0.5¢")[1 — (0.7 +0.25)g][1 — (0.7 — 0.25)qg~ ]

In all simulations a PAA with constant trace adaptation gain has been used with trF'(k) =

trF(0), Fo = diag[10] and [\ (k)/Ae(k)] = 1.
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case a
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Figure 3.15: Tracking behaviour in the presence of plant model parameters changes at
k = 25. [-] desired output, [- -] achieved output. a) Regulation dynamics P(¢~!) = 1, b)
Regulation dynamics P(q™') =1 — 1.262¢7* + 0.4274¢ 2

Fig. 3.15 shows the desired trajectory and the achieved trajectory during a sequence
of step changes on the reference and in the presence of the parameter variations occurring
at k = 25. One can observe that the adaptation transient is much smoother using the
Py(q7 1) regulation polynomial than in the case P(q71!).

Fig. 3.16 shows the behaviour in regulation, i.e., the evolution of the output from
an initial condition at £k = 0 in the presence of a change in the parameters at k£ = 0.
Same conclusion can be drawn: the poles defined by the regulation polynomial strongly
influence the adaptation transient. Too fast dynamics in regulation with respect to the
natural response of the system will induce undesirable adaptation transients.

3.6 Indirect Adaptive Control

Fig. 3.17 shows an indirect adaptive control scheme which can be viewed as a real-time
extension of the controller design procedure represented in Fig. 3.9. The basic idea is that
a suitable controller can be designed on line if a model of the plant is estimated on line
from the available input-output measurements. The scheme is termed indirect because
the adaptation of the controller parameters is done in two stages:

1) on-line estimation of the plant parameters;

2) on-line computation of the controller parameters based on the current estimated
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Output

20 | | | |
0 5 10 15 20 25
Time
Figure 3.16: Regulation behaviour in the presence of plant model parameters changes
at k = 0. [] Regulation dynamics P(¢~') = 1, [- -] Regulation dynamics P(¢!) =
1 —1.262¢7" + 0.4274¢2

plant model.

This scheme uses current plant model parameter estimates as if they are equal to
the true ones in order to compute the controller parameters. This is called the ad-hoc
certainty equivalence principle.

The indirect adaptive control scheme offers a large variety of combinations of control
laws and parameter estimation techniques.

The situation in indirect adaptive control is that in the absence of external rich ex-
citations one cannot guarantee that the excitation will have a sufficiently rich spectrum
and one has to analyze when the computation of the controller parameters based on the

Desired Controller Plant model
performance > design < estimation

I

Reference /

—P>{ Adjustable | y y
> controller Plant >

y

Figure 3.17: Indirect adaptive control (principle)
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Figure 3.18: Indirect adaptive control (detailed scheme)

parameters of an adaptive predictor will allow acceptable performance to be obtained
asymptotically.

Introducing the block diagram for the plant model parameter estimation into the
scheme of Fig. 3.17, one obtains the general configuration of an indirect adaptive control
shown in Fig. 3.18. Using the indirect adaptive control schemes shown in Fig. 3.18, one can
further elaborate on the ad-hoc use of the “certainty equivalence” or “separation theorem”
which hold for the linear case with known parameters.

In terms of separation it is assumed that the adaptive predictor gives a good prediction
(or estimation) of the plant output (or states) when the plant parameters are unknown,
and that the prediction error is independent of the input to the plant (this is false how-
ever during adaptation transients). The adjustable predictor is a system for which full
information is available (parameters and states). An appropriate control for the predictor
is computed and this control is also applied to the plant. In terms of certainty equiv-
alence, one considers the unknown parameters of the plant model as additional states.
The control applied to the plant is the same as the one applied when all the “states” (i.e.,
parameters and states) are known exactly, except that the “states” are replaced by their
estimates.

However, as mentioned earlier, the parameters of the controller are calculated using
plant parameter estimates and there is no evidence, therefore, that such schemes will work
(they are not the exact ones, neither during adaptation, nor in general, even asymptoti-
cally). A careful analysis of the behaviour of these schemes should be done. In some cases,
external excitation signals may be necessary to ensure the convergence of the scheme to-
ward desired performance. As a counterpart adaptation has to be stopped if the input
of the plant whose model has to be estimated is not rich enough (meaning a sufficiently
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large frequency spectrum).

The resulting control scheme should guarantee that the input and the output of the
plant remain bounded and that some indices of performance are achieved asymptotically.
This requires a deep analysis of the indirect adaptive control system which is nonlinear
and time-varying.

Fortunately, good properties of the indirect adaptive control schemes will be guaran-
teed if, separately, the parameter estimation algorithm and the control strategy satisfy a
number of properties (largely similar to those required for indirect adaptive prediction)
which are summarized next:

1. The a posteriori adaptation error in the parameter estimation algorithm goes to
zero asymptotically.

2. The a priori adaptation error does not grow faster than the observation vector
(containing the input and output of the plant).

3. The estimated plant model parameters are bounded for all k.
4. The variations of the estimated plant model parameters go to zero asymptotically.

5. The design equation(s) provide(s) bounded controller parameters for bounded plant
parameter estimates.

6. The estimated plant model is admissible with respect to the design equation which
means that assuming that it corresponds to the exact plant model, the resulting
controller has bounded parameters, stabilizes the system and achieves the desired
performance.

If these conditions are satisfied, it is then possible to show that the input and the output
of the plant remain bounded and that some indices of performance are achieved asymp-
totically.

Probably, the most difficult problem (at least theoretically) is to guarantee that any
estimated model is admissible with respect to the control design strategy. For every
control strategy, even if the estimated plant parameters are bounded at each time k, the
current estimated model may not be admissible in the sense that there is no solution for
the controller. For example, if pole placement is used as the control strategy, an estimated
model at time k, which features a pole-zero cancellation, will not allow to compute the
controller. Furthermore, getting close to non-admissibility situations will lead to numerical
problems resulting in very large and undesirable control actions. The consequence of this
fact is twofold:

1. One has to be aware of the admissibility conditions and take appropriate ad hoc
action in practice, in order to deal with the singularities which may occur during
adaptation.

2. One can make a theoretical analysis and develop modifications of the parameter
estimates (or of the algorithms) in order to avoid the singularities corresponding to
the non-admissibility of an estimated plant model.
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As indicated earlier (property 6), to remove the singularities one has to assume that the
unknown plant model is admissible with respect to the control strategy.

While the various modifications of the estimated parameters or of the algorithms
resulting from a theoretical analysis are in general complex to implement, they have the
merit of showing that there are solutions that avoid the non-admissibility of the estimated
model and give hints for simple ad hoc modifications to be implemented.

The analysis of the indirect adaptive control schemes is carried out in two steps:

1. One assumes that the estimated models are always in the admissibility set.

2. One modifies the parameter estimation algorithm in order to satisty the admissibility
condition.

The objective of the analysis is to guarantee that a stabilizing controller is obtained
without any assumption about the presence or the richness of an external excitation.
However, the use of an external or internal excitation signal, even for short periods of
time, is useful for speeding up the convergence of the adaptive control scheme since it can
be shown that exponential stability is achieved under richness conditions.

3.6.1 Implementation Strategies

To implement an indirect adaptive control strategy effectively, we have two major options.
The choice is related to a certain extent to the ratio between the computation time and
the sampling period.

Strategy 1

1. Sample the plant output;
2. update the plant model parameters;

3. compute the controller parameters based on the new plant model parameter esti-
mates;

4. compute the control signal;

5. send the control signal;

=)

. wait for the next sample.

Using this strategy, there is a delay between w(k) and y(k) which will essentially
depend upon the time required to achieve (2) and (3). This delay should be small with
respect to the sampling period and, of course, smaller than the delay between wu(k) and
y(k) scheduled in the /O system. In this strategy, a posteriori parameter estimates are
used and the a posterior: adaptation error will occur in the stability analysis.
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Strategy 2

1. Sample the plant output;

2. compute the control signal based on the controller parameters computed during the
previous sampling period;

3. send the control signal;
4. update the plant model parameters;

5. compute the controller parameters based on the new plant model parameter esti-
mates;

6. wait for the next sample.

Using this strategy, the delay between w(k) and y(k) is smaller than in the previous
case. In fact, this is the strategy used with constant parameters controllers (Steps 4 and
5 are deleted). In this strategy, one uses a priori parameter estimates and the a priori
adaptation error will appear in the stability analysis.

The analysis of the resulting schemes is very similar except that as indicated earlier,
in the Strategy 1 the a posteriori adaptation error will play an important role, while in
the Strategy 2, the properties of the a priori adaptation error will be used.

One uses a non-vanishing adaptation gain to get an indirect adaptive control scheme
which can react to changes in plant model parameters. One uses a time-decreasing adap-
tation gain to implement indirect adaptive control schemes for the case of plant models
with unknown but constant parameters (over a large time horizon). In the latter case,
adaptation can be restarted either on demand or automatically, based on the analysis of
an index of performance.

We can also update the estimates of the plant model parameters at each sampling
instant, but updating the controller parameters only every N sampling instants. The
analysis remains the same as long as N is finite. The use of this approach is related to:

e the possibility of getting better parameter estimates for control design,

e the eventual reinitialization of the plant parameters estimation algorithm after each
controller updating,

e the use of more sophisticated control designs requiring complex computations (in
particular robust control design),

e the reduction of the risk for getting non-admissible estimated plant models.

3.6.2 Adaptive Pole Placement

We will assume that the system operates in a deterministic environment. The basic algo-
rithm combines a parameter estimation algorithm with the pole placement control strategy
presented in Section 3.2.3. The plant model (with unknown parameters) is assumed to be
described by:

AlgNy(k) = Blg M u(k) = ¢ B* (¢~ )u(k) (3.171)
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where u(k) and y(k) are the input and the output of the plant and:

Algh) = TH+ag '+ Fan,g ™ =1+¢"A(")
BU) = bt b — 4B

One assumes that:

e the orders of the polynomials A(¢'), B(¢™!) and of the delay d are known (n4,ng,d

- known)* ;

e A(g7') and B(q™') do not have common factors (admissibility condition).

Estimation of the plant model parameters: To simplify the analysis, we will assume
that a recursive least squares type parameter estimation algorithm will be used. The plant
output can be expressed as:

y(k +1) =07 p(k) (3.172)

where:
07 = a1 an,,ba- byl (3.173)
ot (k) = [~ylk) - —ylk—na+1),ulk—d+1)---ulk —npg+1)] (3.174)

The a priori output of the adjustable predictor is given by:

§°(k +1) = 07 (k) (k) (3.175)

The a posteriori output of the adjustable predictor is given by:
gk +1) =07 (k +1)o(k) (3.176)

where: ) ) )

QT(k) = [d1<k) o dnA(k)a bd(k) e an(k)] (3177)
Accordingly, the a priori and the a posteriori prediction (adaptation) errors are given by:
ek+1) = yk+1)—g°(k+1) (3.178)
ek+1) = ylk+1)—gk+1) (3.179)

The parameter adaptation algorithm is:

A ~

Ok + 1) = B(k) + F(k)o(k)e(k + 1) (3.180)
FH E+ 1) = M (k)FH(E) + Ao (k) (k)o" (k);

0<M(k)<1;0< N(k)<2; F(0)>0 (3.181)
eht1) = — k+D (3.182)

1+ T (k) F(k)o(k)

4What is in fact needed is the knowledge of np. However, the knowledge of d reduces the number of
estimated parameters.
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It is also assumed that:
FYEk)>aF0); F0)>0; a>0VYtc]0,o] (3.183)

Selection of A\;(k) and Ay(k) allows various forgetting profiles to be obtained (see Section
3.4.2) and this leads to:

e a time-decreasing adaptation gain;
e a time-decreasing adaptation gain with reinitialization;

e a non vanishing adaptation gain.

It also allows the introduction of the various modifications in order to have a robust
adaptation algorithm. Using this algorithm, one will have the following properties:

e The a posterior: adaptation error is bounded and goes to zero asymptotically, i.e.:

k1
Jim Ek+1)<C<oo (3.184)
1—00
k=1
lim e(k+1) =0 (3.185)
k—o00

e The a priori adaptation error satisfies:

: [k + 1P
1 = 1
T T ER)ek) " (3-186)
e The parameter estimates are bounded for all k
16(k)|| < C < o0 ; YE >0 (3.187)

e The variations of the parameter estimates go to zero asymptotically:

lim 16(k +¢) —0(k)|| =0 ; VI < (3.188)
—00

Computation of the controller parameters and of the control law: We will use Strat-
egy 1 for updating the controller parameters. The controller equation generating u(k)
is:

S(k,q " )u(k) + Rk, g y(k) = B(k)P(q " )y*(k + d) (3.189)

or alternatively:

A

u(k) = =5"(k,q "u(k — 1) — R(k,q ")y (k) + B(E)P (¢ )y*(k + d) (3.190)
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where:
B(k) =1/B(k,1) (3.191)
Stkyg ) =148 (k) g+ 8p(k)g™ =14 ¢715*(k, ¢ ") (3.192)
R(k,q") = #o(k) + P1(k)g " 4+ g (k)g ™" = Fo(k) + ¢ 'R (kg ") (3.193)

A

and S(k,q 1), R(k,q1) are solutions of®:
A(k,gHS(k, g + ¢ B (k, ¢ )R(k, ') = P(¢™Y) (3.194)

P(g') in (3.189), (3.190) and (3.194) is the desired closed-loop characteristic polynomial
and y* the desired tracking trajectory. Eq. (3.194) can be reformulated in matrix form:

M[6(k))2 = p (3.195)

where:
':%T - [17SA1""§71577¢107"'7¢171R] (3196)
T o= [Lpipup00-0] (3.197)

and M[(k)] is the Sylvester matrix. Therefore, S(k) and R(k) are given by:
&= MO(k)]p (3.198)

The admissibility condition for the estimated model is:

~

|det M[O(k)]| > >0 (3.199)
which can alternatively be evaluated by the condition number:

S 5y > 0 (3.200)
Amax M [0(F)]

Remark: If Strategy 2 is used, Equations (3.189) through (3.200) remain the same except
that the index k& becomes (k — 1).

Example 3.10. Robust adaptive pole placement
The continuous time plant to be controlled is characterized by the transfer function:

2 229
s+ 1 (524 30s+229)

G(s) =

where the first order part is considered as the dominant dynamics and the second order
part as the unmodelled dynamics. The system will be controlled in discrete time with a

5In fact S(k,q_l) = S”(k, g YH)Hs(qg™Y), R(k‘, gl = R’(k‘, q V) Hg(q7') where Hs(q™!) and Hg(q™!)
are the fixed parts of the controller.
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sampling period h = 0.04 s. For this sampling period the true discrete time plant model
is given by:
b1g~" + bag™? + bsg?

Glq") =
() L4+ a1q7t 4 aq2 + azqg™3
with:
(451 a2 as
—1.8912 1.1173 —0.21225
by b b3

0.0065593  0.018035  0.0030215

Since this model has unstable zeros, it is reasonable to use an indirect adaptive control
strategy which can handle unstable zeros. Adaptive pole placement will be used. The
plant model will be estimated using a filtered recursive least squares with dynamic data
normalization. Adaptation freezing will be enforced in the absence of enough rich infor-
mation (i.e., the scheduling variable for the dead zone will depend on the signal richness
measured by ¢F (k) F (k)¢ (k) - see [7] for details). Estimated models of different orders
will be used (n = 1,2, 3).

Figures 3.19, 3.20 and 3.21 summarize the results obtained with various orders for the
estimated model. The controller is first initialized using an open-loop recursive identifi-
cation, then the loop is closed and a series of step reference changes is applied followed
by the application of an output disturbance.

For a first order estimated model, while the system is stable and the signals have
acceptable form, one can see that the tracking performance is not very good. Second
order and third order estimated models give almost the same results and they are very
good.

Fig. 3.22 shows the frequency characteristics of the estimated models for n = 1,2, 3.
The identified third order model corresponds exactly to the true model. From this figure,
one can see that the second and third order models have similar frequency characteristics
in the interesting frequency range for control (related to the desired closed-loop poles)
while the first order model cannot cope with the frequency characteristics of the third
order model in a sufficiently large frequency region. The desired closed-loop poles used
are as follows:

forn = 1: P(g"") =(1-08¢")(1-0.9¢")
forn = 2,3: P(g")=(1-08¢")(1-0.4¢ ")(1-02¢")(1—-0.1¢")

The controller has an integrator. For the case n = 2, a filter Hg(q™') = 1+ ¢! has
been introduced in the controller in order to reduce the “activity” of the control action by
reducing the magnitude of the input sensitivity function in the high frequencies. Same
dynamics has been used in tracking and regulation.

An adaptation gain with variable forgetting factor combined with a constant trace
adaptation gain has been used (F(0) = 61; 6 = 1000 desired trace: tr[F (k)] = 6). The
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Figure 3.20: Second order Estimated model
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Third order estimated model
1.5 \

1 1 1
0 100 200 300

1 1 1
400 500 600
Time(s)

-

Input
o

—

1 1 1
0 100 200 300
Time(s)

Figure 3.21: Third order estimated
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Figure 3.22: Frequency characteristics for n = 1(—.—),2(——),3(—)
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filter used on input/output data is: L(¢™') = 1/P(q™'). The normalizing signal m(k)
has been generated by m?(k) = p*m?(k — 1) + max(||¢¢(k)|, 1) with = 0.9. For n = 1,
taking into account the unmodelled dynamics, the theoretical value for pis 0.6 < p < 1
(the results are not very sensitive with respect to the choice of the desired trace and p).

The conclusion is that for this example, despite the fact that a stable adaptive con-
troller can be obtained with a first order estimated model corresponding to the dominant
dynamics of the true plant model, one should use a second order estimated model in order
to obtain a good performance.

The rule which can be established is that low-order modelling can be used in adaptive
control but good performance requires that this model be able to copy the frequency
characteristics of the true plant model in the frequency region relevant for control design.

Concluding Remarks

1. Indirect adaptive control algorithms emerged as a solution for adaptive control of
systems featuring discrete time models with unstable zeros.

2. Indirect adaptive control offers the possibility of combining (in principle) any linear
control strategy with a parameter estimation scheme.

3. The plant model parameter estimator should allow a good prediction of the behavior
of the closed loop.

4. The design of the controller based on the estimated plant models should be done such
that some robustness constraints on the sensitivity functions be satisfied (in partic-
ular on the output and on the input sensitivity functions). This can be achieved by
a suitable choice of the desired performance and introduction of some fixed filters
in the controller.

5. For each type of underlying linear control strategy used in indirect adaptive control
a specific admissibility test has to be done on the estimated model prior to the
computation of the control.

6. Robustification of the parameter adaptation algorithms used for plant model pa-
rameter estimation may be necessary in the presence of unmodelled dynamics and
bounded disturbances.

7. Adaptive pole placement and adaptive generalized predictive control are the most
used indirect adaptive control strategies.

3.7 Switching Adaptive Control

The plants subject to abrupt and large parameter variations are generally very difficult to
control. A classical adaptive controller or a fixed robust controller encounter difficulties
to solve this problem. An adaptive controller is not fast enough to follow the parameter
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variations and unacceptable transients occur. Whereas a fixed robust controller normally
leads to poor performance because of large uncertainties.

Multimodel adaptive control can be considered as a solution to this problem. In this
approach a set of Kalman filters are used to estimate the states of the plant model. A
set of state feedback controllers are also designed such that for each Kalman filter there
is a state feedback controller in the set. The final control input is the weighted sum
of the control inputs from different controllers. The weightings are computed using the
covariance matrix of state estimates such that smaller variances lead to larger weights for
the corresponding control inputs. In a robust version of this scheme the state feedback
controllers are replaced by robust output feedback controllers designed using the H.,
control approach. Although this method has been successfully applied in a few simulation
examples, the stability of the scheme has not yet been proved.

An alternative solution is to choose one of the control inputs that corresponds to the
best output estimator and apply it to the real system. This approach which is based
on switching among a set of controllers has the advantage that a stability analysis for
the closed-loop system can be carried out. Switching is often based on an error signal
measured in real-time that represents the difference between the measured and estimated
output. In this approach, it is supposed that a set of models for different operating
points is a priori known. Then at every instant a controller corresponding to the model
yielding the minimum of a performance index is used to compute the control input. The
precision of the control can be further improved using an adaptive model (a model whose
parameters are updated with a parameter adaptation algorithm) in the set of models.

3.7.1 Basic Scheme

In this section, the main structure of adaptive control with switching is presented. This
structure, shown in Fig. 3.23, contains four blocks: plant model, multi-estimator, multi-
controller and supervisor.

Plant with uncertainty Plant model is supposed to be a member of a very large set of
admissible models given by :

g=JGo (3.201)

0cO

where O is a compact set and each G() is a family of models centered around a nominal
model G(#). For example, if we consider multiplicative uncertainty, the plant model can
be represented by

G(0) = Go(0)[1 + WA

where W is the uncertainty filter and A is a stable transfer function with ||Al|s < 1. As
a result, G represents the parametric uncertainty (or variation) and for each fixed 6, the
subfamily of G(6) represents the unmodelled dynamics.
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Figure 3.23: Block diagram of adaptive control with switching

Multi-estimator The multi-estimator is a dynamical system whose inputs are the input
and output of the plant and whose outputs are the estimates of the plant output. Suppose
that © is a finite set. In this case, multi-estimator can be chosen as a set of fixed models
corresponding to each #. The fixed models can be considered as output error estimators.
However, any other estimators like Kalman filter or ARMAX estimator can be used as well.
If © is an infinite set, some fixed models and one adaptive model can be considered. Since
the number of available models is finite but the number of possible models is generally
infinite, the estimation is performed in two steps:

e The model with smallest error with respect to a criterion is rapidly chosen (switch-
ing).

e The parameters of the model are adjusted using a parameter adaptation algorithm
(tuning).

Multi-controller For each estimator (or fixed model) in the multi-estimator block, a
controller should be designed that stabilizes and satisfies the desired performance for the
estimator (or fixed model). If © is not a finite set but the set of multi-estimators is finite,
the controllers should be robust with respect to the parameter uncertainty as well as
unmodelled dynamics. If an adaptive model is considered in the multi-estimator set, like
the classical adaptive control, the controller should be a function of the model parameters.
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Supervisor The supervisor decides the output of which controller should be applied
to the real plant at each instant. The decision is based on a monitoring signal and a
switching logic. The monitoring signal is a function of the estimation error to indicate
the best estimator at each time. It may be defined as follows:

k
Ji(k) = aei(k) + BZ@"\(k_j)ef(j) a>0 BA>0 (3.202)

J=0

where j is the time index and « and J are the weighting factors on the instantaneous
measures and the long term accuracy. A is a forgetting factor which also assures the
boundedness of the criterion for bounded ¢;(k). Therefore, the design parameters for the
switching part of the control system are «, 5 and A. If we choose a large value for o/
and A\, we will obtain a very quick response to the abrupt parameter changing but a bad
response with respect to disturbances. It means that, an output disturbance will generate
an unwanted switching to another controller which results in a poor control. Contrary, a
small value for o/ and A\ makes the criterion a good indicator of steady-state identifier
accuracy, which reduces the number of unwanted switching but leads to a slow response
with respect to the parameter variations.

The switching logic is based on the monitoring signal. A switching signal o(k) indi-
cates which control input should be applied to the plant. In order to avoid chattering, a
minimum dwell-time between two consecutive switchings or a hysteresis is usually consid-
ered. The switching logic plays an important role on the stability of the switching system
which will be discussed in the next section.

A combination of two logics (dwell-time and hysteresis) may also be considered. A
small value for T, dwell-time, gives too frequent switchings and may lead to instability,
while a large T} leads to a slow response system.

A hysteresis cycle with a design parameter y is considered between two switchings. It
means that a switching to another controller will occur if the performance index concerning
a model is improved by u.J;. With hysteresis, large errors are rapidly detected and a better
controller is chosen. However, the algorithm does not switch to a better controller if the
performance improvement is not significant.

3.7.2 Stability Issues

The objective of this section is not to give a formal proof for the stability of multimodel
adaptive control, but to present the basic idea of the proof and a practical way to compute
the dwell-time to ensure the closed-loop stability. It should be mentioned that in this
section we suppose that the real plant is fixed but unknown. However, the results can be
used for large and abrupt parameter changes but not for frequent parameter variations.
The stability is analyzed in two steps. In the first step we show that under some mild
assumptions the stability of the system can be reduced to the stability of a subsystem
called the “injected system”. This subsystem is a switching system that contains only
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stable models. In the second step the stability of this particular switching system is
discussed. It is shown that this system can always be stabilized by choosing an appropriate
dwell-time.

Stability of adaptive control with switching: Consider a trivial case in which one
of the models in the multi-estimator block matches perfectly with the plant model (no
unmodelled dynamics). Suppose that there is no measurement noise and that the plant is
detectable®. In this case, the estimation error for one of the models, say (k) goes to zero.
Consequently ¢, (k) goes to zero and the switching signal o (k) goes to k (switching stops
after a finite time). It is evident that C} which stabilizes the k-th model will stabilize the
plant based on the certainty equivalence stabilization theorem.

However, in practice, because of unmodelled dynamics and measurement noise, the
switching will not necessarily stop after a finite time and the analysis becomes more
involved. To proceed, we consider the following assumptions:

A1l: In the multi-estimator block there exists at least one “good” estimator. It means
that at least for one estimator, say estimator k, the estimation error is “small”. The
smallness of the estimation error can be defined by an upper bound that depends
on the modeling error and noise variance.

A2: ¢,(k) = y(k)—y,(k) is small. It means that the monitoring signal, switching criterion
J(k), and the switching logic are properly designed (o, § and A are well tuned and
dwell-time or hysteresis are not too large).

It can be shown that under the above assumptions all closed-loop signals and states are
bounded if the injected system is stable. The injected system is a dynamical system which
has ¢, as input and u, (or u) and y, as outputs. Fig. 3.24 is the same as Fig. 3.23 but
is drawn differently to make appear the injected system as a separate block from the rest
of the system. The supervisor and the switch are replaced by index o in the output of
multi-estimator and multi-controller. It can be observed that if the injected system is
stable, the input of the plant u and y, are bounded for a bounded e, . It is clear that
boundedness of y, implies the boundedness of . So the input and output of the plant are
bounded and all internal states of the plant are also bounded if the plant is detectable.

If the switching stops after a finite time, the injected system becomes an LTT system
and is naturally stable (each controller stabilizes the corresponding model in the multi-
estimator block). However, in presence of noise and unmodelled dynamics, the switching
may not stop and the injected system becomes a switching system with arbitrary switching
among stable systems. This type of switching systems are not necessarily stable and their
stability has been analyzed in the literature. In the next subsection some recent results
on the stability of such systems are given.

6A system is detectable if and only if all of its unobservable modes are stable.
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Figure 3.24: Representation of the closed-loop system including the injected system

Stability of the injected system: It is shown that the injected system is a switching
system containing only the stable systems constructed by the members of the multi-
estimator block and their corresponding controllers in the multi-controller block. In this
subsection we study the stability of a switching system containing n stable models in the
state space. Consider the following models:

x(k+1)=Ax(k), z(k+1)=Ax(k), ... z(k+1)=Az(k)

where A, Ay, ..., A, are stable matrices. Consider also a switching signal o(k) €
{1,2,...,n}. Then z(k + 1) = A,x(k) is stable if A; to A, have a common Lyapunov
matrix or the minimum time between two switchings is greater than Tj.

Stability with common Lyapunov matrix: The existence of a common Lyapunov matrix
P for Ay, As, ..., A, guarantees the stability of A,. It is easy to show that if we take a
Lyapunov function V (k) = x(k)” Pz(k) its finite difference
AV(k)=V(k+1)—V(k) =a2(k) (A, PA, — P)z(k) <0
if
ATPA, — P <0
ATPA, — P <0

ATPA, — P <0

The above inequalities are linear with respect to P and represent a set of Linear Matrix
Inequalities (LMIs). Therefore, the existence of P can be easily verified using Semi Definite
Programming (SDP) solvers. The main interest of this stability test is that the stability
is guaranteed for arbitrary fast switching. However, it is well known that this stability
test is too conservative.
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Stability by minimum dwell-time: It can be shown that if A, As, ..., A, are stable, there
exists always some dwell-time T, > 1 such that the switching system z(k + 1) = A,z (k)
is stable. This result is expressed in the following theorem:

Theorem 3.4. Assume that for some Ty > 1, there exists a set of positive definite matrices
{P,...,P,} such that:

ATP A, — P, <0, fori=1,....n (3.203)

and

AT Pj[A))"* — P <0 Vi#j=1,...,n (3.204)

Then the switching signal o(k) =i € {1,...,n} with a dwell-time greater than or equal
to Ty makes the equilibrium solution x = 0 of the switching system x(k + 1) = A,x(k)
globally asymptotically stable.

The inequalities in (3.203) and (3.204) are LMIs with respect to Lyapunov matrices
and therefore a feasible value for T,; can be readily computed.

Concluding Remarks

1. Large and fast parameter variations may lead to poor transient performance or even
instability in classical adaptive control systems.

2. Adaptive control with switching can significantly improve the transient behavior of
adaptive systems.

3. The basic idea is to use a multi-estimator instead of a unique estimator in the
adaptive control scheme. During the transients, one of the estimator can provide
rapidly a good estimate of the plant output and an appropriate controller can be
chosen.

4. The main issue in adaptive control with switching is the stability of the closed-loop
system. It has been shown that a dwell-time can be computed that guarantees
closed-loop stability.

5. The use of robust pole placement technique in adaptive control with switching guar-
antees quadratic stability of the injected system and consequently stability of the
adaptive system with arbitrary fast switching.

3.7.3 Relation with Gain-Scheduled Controller Design

A large class of nonlinear systems can be represented by a set of linear models that
approximate the dynamics of the systems in different operating points. Thus, the dy-
namic behavior of such systems varies as a function of some scheduling parameters. Many
electromechanical systems, such as for example component mounters, H-drives and elec-
tromagnetic levitation systems belong to this class of systems. For these examples, the
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scheduling parameter is the position, as their dynamics change as a function of the posi-
tion.

Such time-varying behavior cannot be controlled by classical linear control methods, as
these methods require a linear time invariant (LTI) model of the system. One solution to
this problem is to design an LTI controller that is robust against these varying dynamics.
This kind of approaches assures the global stability of the closed-loop system. The major
drawback is that the variation of the dynamics as a function of the scheduling parameters
is treated as uncertainty. This often leads to poor closed-loop performance.

The performance of the controlled system can be improved if the knowledge of the
scheduling parameters is included in the controller by making it dependent on these pa-
rameters. The corresponding synthesis procedure is commonly referred as gain-scheduling.

The classical gain-scheduling methods proceed in two steps. First, a finite grid of
operating points is chosen within the whole range of operating points, then a controller is
designed for each of these selected operating points based on the local model. Secondly,
an interpolation between the controllers is done to get a gain-scheduled controller. The
classical gain-scheduling methods give good closed-loop performance and are simple to
use: controllers can be designed easily using for example a classical loop-shaping method;
the implementation of the controller is straightforward. The major drawback lies in the
fact that the global stability of the closed-loop system is not always assured, in particular
for fast variations of the scheduling parameters.

The main difference between the gain-scheduling method and the adaptive switching
methods are:

1. For the gain-scheduling method the scheduling parameters are measured in real time
(usually with some sensors) to detect the operating point, while in the adaptive
switching method the variation of the operating point is detected by supervising a
performance criterion (no additional sensor).

2. In the gain-scheduling method the parameters of the controllers between two oper-
ating points are interpolated to find the intermediate controllers, while there is no
interpolation in switching adaptive control.

3. A proof of stability exists for switching adaptive control, while the stability of the
gain-scheduled controllers can be proved only for a class of Linear Parameter Varying
(LPV) systems and controllers.

Data-Driven Gain-Scheduled Control

The two steps of gain-scheduled controller design can be combined in a data-driven setting
and solved with convex optimization. Assume that the frequency response of the system
G(e’*,0) is a function of a scheduling parameter § € ©. Then we define a gain-scheduled
controller structure as:
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For example assume that 6 = [0; 05 05] is a three-dimensional vector and we are seeking a
gain-scheduled controller with linear interpolation. In this case, we have:

3 3
XO)=Xo+ > 0:X; YO =Yo+ Y 6Y;
i=1 i=1
where X; and Y; for i = 0,...,3 are stable transfer function matrices of a chosen order.

Consider a second example, where 6 is a scalar and we are interested in second order
interpolation of the scheduling parameter in the controller. In this case the controller
structure becomes:

X(0) = Xo + 60X, +6°X,
Y (0) = Yo+ 0,Y1 + 0°Y,

It is clear that for a given known 6, X () and Y (6) are linear with respect to the controller
parameters. Therefore, all performance specifications mentioned in Section 2.4 can be used
to design a gain scheduled controller by convex optimization.

For instance, consider minimizing ||W;S]|« as a control objective. The optimization
problem in (2.24) is slightly modified to design a gain-scheduled controller:

o
v WY (0)

where P(0) = Y (0) + G(0)X(0) and P.(0) = Y.(0) + G(0)X.(6). The initial controller
K. can be the same for all # or even be chosen differently for each scheduling parameter
K.(0) = X.(0)Y1(0). Note that this problem is convex with respect to the controller
parameters and nonlinearity of G, X and Y with respect to 6 does not make any problem
because 6 is the scheduling parameter and not an optimization variable. The problem,
however, is to satisfy the constraints for all w € Q and for all # € ©, which is a semi-
infinite program (SIP). As it was discussed before, this problem can be solved by gridding
in frequency and the scheduling parameters. It should be mentioned that the number
of constraints will be multiplied by the number of grid points for the frequency and the
scheduling parameters. Therefore, a controller can be designed in a reasonable time if the
number of the grid points for the scheduling parameters are small (100 frequency points
and 100 scheduling points leads to 10000 LMI constraints).

In the next section we see how the gain-scheduled controller combined with a PAA
can be applied to a benchmark problem for active suspension systems.

=0 Yw € Q Vo € ©

3.8 Active Suspension Benchmark

The objective of the benchmark is to design a controller for the rejection of unknown /time-
varying multiple narrow band disturbances located in a given frequency region. The
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Figure 3.25: Block diagram of the active suspension system and the frequency response
of the primary (red) and the secondary path (blue)

proposed controllers will be applied to the active suspension system of the Control Systems
Department in Grenoble (GIPSA - lab). The block diagram of the active suspension
system together with the proposed gain scheduled controller is shown in Fig. 3.25.

The system is excited by a sinusoidal disturbance v; (k) generated using a computer-
controlled shaker, which can be represented as a white noise signal, e(k), filtered through
the disturbance model H. The transfer function GGy between the disturbance input and
the residual force in open-loop, y,(k), is called the primary path. The signal y(k) is a
measured voltage, representing the residual force, affected by the measurement noise. The
secondary path is the transfer function Gy between the output of the controller u(k) and
the residual force in open-loop. The control input drives an inertial actuator through a
power amplifier. The magnitude Bode diagram of the primary and the secondary path
models sampled at 800Hz are shown in Fig. 3.25 that contain several high resonance
modes.

The disturbance consists of one sinusoidal signal whose frequency is unknown but lies
in an interval from 50 to 95Hz. The controller should reject the disturbance as fast as
possible.

Controller Design

An H,, gain-scheduled controller K (f) = X (0)Y (), based on the internal model prin-
ciple to reject the disturbances, is considered as follows:

Xo(Z) + eXl(Z)
(z —a)"
Fy(z,0)

(z —a)

X(z,0) =

Y(z,0) =
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where 0 < a < 1 can be chosen arbitrarily, Xo(z) and X;(z) are n-th order polynomials
in z and Y(z,0) includes only a fixed term and no other parameter for simplicity:

Fy(z,0)=2*+0z+1

The fixed-term in Y is in fact the denominator of the disturbance model for a sinusoidal
disturbance with frequency f = cos™(—60/2)/2mr. Based on the internal model principle,
this fixed term will asymptotically reject the sinusoidal disturbance. In order to improve
the transient response, the infinity-norm of the transfer function between the disturbance
and the output, HG;S, should be minimized. However, since the primary path model
(1 could not be used in the benchmark, it is replaced by a constant gain and Fy_1 is
considered for the disturbance model.

On the other hand, in order to increase the robustness and prevent the activity of the
command input at frequencies where the gain of the secondary path is low, the infinity
norm of the input sensitivity function |||/, should be decreased as well. Another con-
straint on the modulus margin M,, = 0.5 is also considered according to the benchmark
requirements (not to amplify the noise at other frequencies). As a result the following
control problem is defined:

B

W1iS(0) . .
‘ W3 U (6) HOO<7 D ISO)]e <2 ; VOEO

where Wy = F° Land W5 = 1. The first constraint is for disturbance rejection and reducing
the input sensitivity function while the second constraint is to guarantee a modulus margin
of 0.5. A gain-scheduled controller is designed using the following choices:

1. Because of many high resonance modes in the secondary path model, a very fine
frequency grid with a resolution of 0.5 rad/s (5027 frequency points) is considered.

2. The interval of the disturbance frequencies is divided to 46 points (a resolution of
1Hz), which corresponds to 46 points in the interval [—1.8478, —1.4686] for the
scheduling parameter 6.

3. The controller order is chosen equal to 10 (the controller order is increased gradually
to obtain acceptable results). Note that it is much less than the order of the plant
model (26).

This gain-scheduled controller gives very good transient performance and satisfies the
constraint on the maximum modulus of the sensitivity function for all values of the schedul-
ing parameter. Figure 3.26 shows the magnitude of the output sensitivity functions & and
the input sensitivity functions U, respectively, for 46 gridded values of the disturbance
frequencies. One can observe very good attenuation at the disturbance frequencies and
the satisfaction of the modulus margin of at least 6dB for all disturbances.
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(a) Input sensitivity function U (b) Output sensitivity function S
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Figure 3.26: Magnitude of &/ and S for disturbance frequencies from 50Hz to 95Hz

Estimator design

The scheduling parameter 6 used in the controller is estimated using a parameter adapta-
tion algorithm. To estimate the parameters of the disturbance model, we need to measure
the disturbance signal p(k) (see Fig. 3.25). If we model p(k) as the output of an ARMA
model with white noise as input, we have:

Dy(q " )p(k) = Ny(qgH)e(), (3.205)

where e(k) is a zero mean white noise with unknown variance. Estimation of the parame-
ters of N, and D, could be performed by the standard Recursive Extended Least Squares
method [7], if p(k) was measured. Since p(k) is not available, it is estimated using the

measured signal y(k) and the known model of the secondary path. From Fig. 3.25, we
have:

p(k) = y(k) — Ga(g~"u(k) — va(k), (3.206)
where:
0y ¢'B g
Ga(q ) = A

is the parametric model of the secondary path. Since vy(k) is a zero mean noise signal,
unbiased estimate of p(k) is given as

p(k) = y(k) + [A(q™") = 1[y(k) — p(k)] = B*(q" " Yu(k — d)

For the asymptotical rejection of sinusoidal disturbance, there is no need to identify the
whole model of the disturbance path, i.e. HG as shown in Figure 3.25. The information
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needed is just the frequency of the disturbance. So, by setting D,(¢™*,0) =1 — ¢~ +
>and Ny(¢7') = 1+ c1g7! + 272, a simple parameter estimation algorithm can be
developed. Let us define :

2(k+1) = pk+1)+plk—1) (3.207)
vi(k) = [-p(k),e(k),e(k — DI (3.208)
T (k) = [0,ci, e (3.209)

where (k) = z(k) — 2(k) is the a posteriori prediction error. Now, the following recursive
adaptation algorithm can be used to estimate the scheduling parameter 6:

~

Ek+1) = z(k+1)— Ok)w(k)

B e(k+1)
RN EACTI BT
Ok+1) = O(k)+ F(k)s(k)e(k +1) (3.210)
TS P L CRTOLG
1 A R (k1)
where ¢¢(k) = mw(lﬂ), e°(k) is the a priori prediction error and A;(k) and Ay(k)

define the variation profile of the adaptation gain F'(k). A constant trace algorithm is
used for the adaptation gain.

Simulation and experimental results

Figure 3.27 shows the simulated residual force in closed-loop using the gain-scheduled
controller and the scheduling parameter estimator. The transients are greater than that
of linear controllers because of the adaptation time of the estimator. The experimental
results for the same test are also shown in the same figure. Apart from the disturbance at
50Hz, disturbances at other frequencies are rejected and the transient times and their peak
values are slightly smaller than those in simulation. The discrepancy of the simulation
and experimental results for the disturbance frequency of 50Hz probably comes from the
modeling error of the secondary-path model, around this frequency, used in the simulator
of the benchmark. The residual force for a chirp disturbance (from 50 Hz to 95Hz in 4.5
second and then return to 50Hz in 4.5 second) shows that gain scheduled controller can
follow the frequency-varying disturbances as well.
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Transient responses in simulation (disturbance frequencies from 50Hz to 95Hz)

Experimental Transient responses (disturbance frequencies from 50Hz to 95Hz)

Chirp experiment
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Experimental results for chirp disturbance responses (open-loop: blue; closed-loop: green)

Figure 3.27: Simulation and experimental results for the active suspension system
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Appendix A

A.1 Stability of PAA

In the case of recursive least squares the following a posteriori predictor has been used:
gk +1) =67 (k +1)o(k) (A1)

where

éT(k) = [_dl(k)a e ’_dnA(k)vél(k)’ U vi)nB(k)]
o' (k) = [~y(k), -, —y(k —na+ 1), ulk —d+1), - ,u(k —ng + 1]

The PAA has the following form:

Ok +1) = 0(k) + F(k)p(k)e(k + 1) (A.2)
The parameter error is defined as:
0(k) = 0(k)— 0 (A.3)
Subtracting € in both sides of (A.2) and, taking into account (A.3), one obtains:
Ok +1) = 0(k) + F(k)p(k)e(k + 1) (A.4)

From the definition of the a posteriori prediction error e(k+1) given by (3.103) and taking
into account (3.133) and (A.3), one gets:

ek+ D) =ylk+1)—gk+1) =" (k) — " (k)A(k +1) = —¢T(k)0(k+1)  (A5)
and using (A.4), one can write:
d(k)0(k + 1) = ¢"(k)O(k) + ¢" (k) F (k)p(k)e(k + 1) (A.6)

Egs. (A.4) through (A.6) defines an equivalent feedback system represented in Fig. A.1.
Eq. (A.5) defines a linear block with constant parameters on the feedforward path, whose
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Figure A.1: Equivalent Feedback Representation of PAA, [a] The case of RLS, [b] Generic
equivalent representation

input is —¢7 (k)0(k + 1). In the case of least squares predictor (known also as equation
error predictor or series-parallel predictor) this block is characterized by a unitary gain.
Egs. (A.4) and (A.6) define a nonlinear time-varying block in the feedback path. For
the particular case of estimation in open loop operation using recursive least squares this
block is only time-varying, since ¢(k) does not depend neither upon €, nor upon 0.

The objective of a PAA in a deterministic environment (absence of noise), is to drive
the estimated parameter vector 0 towards a value such that the a postertort prediction
error vanishes asymptotically, i.e., limy_,, €(k + 1) = 0. This objective can be expressed
as a condition for the asymptotic stability of the equivalent feedback system associated
to the PAA.

It is assumed of course, that the structure chosen for the adjustable model is such that
there is a value of the parameter vector which gives a perfect input-output description of
the plant (i.e., the plant model and the adjustable predictor have the same structure).

Similar equivalent feedback representation (EFR) can be obtained for other PAA and
adjustable predictors (like output error predictor or ARMAX predictor). In general, the
linear feedforward block will be characterized by a transfer function and the feedback
block will be time-varying and nonlinear.

The equivalent feedback representation associated to PAA is always formed by two
blocks (see Fig. A.1.b): a linear time-invariant block (LINEAR) and a nonlinear time-
varying (NL/TV). It is therefore reasonable to use specific stability analysis tools dedi-
cated to this type of system.

Passivity (hyperstability) properties or Lyapunov functions with two (or several) terms
are well suited for the stability analysis of feedback systems. The passivity (hyperstability)
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approach is more natural and systematic, but the same results can be obtained by using
Lyapunov functions of particular form.

The passivity approach concerns input-output properties of systems and the implica-
tions of these properties for the case of feedback interconnection.

We shall next present a pragmatic approach without formal generalized and proven
results concerning the use of the passivity approach for the analysis and the synthesis of
PAA. Detailed results can be found in [7].

The norm L, is defined as:
~ 1/2
[z (k)2 = (Z x2(’f)>
0

(it is assumed that all signals are 0 for k& < 0).
To avoid the assumption that all signals go to zero as £ — oo, one uses the so-called
extended L, space denoted Lo, which contains the truncated sequences:

z(k) 0<k<T
mT(k):{ 0  k>T

Consider a SISO system G with input u and output y. Let us define the input-output

product:
k1

(0, k1) =Y ulk)y(k)

k=0
The system G is termed passive if:

n(0,k) > —7*; 7" <oo Vk >0
The system G is termed (input) strictly passive if:
n(0,k1) > =" +kllull; 7 <oo; k>0, Yk >0
and (output) strictly passive if:
n(0,k1) > = +dlyl3; 7 <o00; 6>0; Vi >0

Consider now the feedback interconnection between a block G which is strictly passive

(for example strictly input passive) and a block G which is passive as illustrated in
Fig. A.2.

One has:

m (0, k) = Zul ) > =i+ kllul3; i <oo; k>0; Vk >0

n2(0, k1) = Zug Jya(k) > —va ; va <o00; Vk >0
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Figure A.2: Feedback interconnection of two passive blocks

The feedback connection corresponds to:
Uy = —Y2; U2 =1

Taking into account the feedback connection, it results that:

k1 k1
m(0,k1) =Y wi(k)yi(k) = =D ua(k)ys(k) = —ns(0, k)

and therefore:
k1
7+ sl <> wmk)y k) <3
0

from which one concludes:
kllulld <At +73

ie.,

k1 —00

k1

lim > ui(k) <97 495 < o0
k=0

which implies that u(k) is bounded and that:

lim uy(k) =0

k—o0

If, in addition the block G is a linear asymptotically stable system, then:

lim wu; (k) = lim y,(k) =0
k—o0 k—o0

Let us see now how these results can be used for the stability analysis of the improved

gradient algorithm (which corresponds to recursive least squares using a constant adap-

tation gain F'(k+1) = F(k) = F > 0). The equivalent feedback block is characterized by

(A.4) and (A.6) with F(k) = F:

O(k +1) = 0(k) + Fo(k)e(k + 1) (A7)



A.1 Stability of PAA 187

(k) = T (R)O(k+1) = ¢" (K)O(k) + T (R)Fp(k)e(k + 1)
S(k)0(k) + ¢" (k) Fp(k)us(k) (A.8)

The input is the a posteriori prediction error €(k + 1) and the output is ¢ (k)0(k + 1).
If we want to apply the passivity approach, we should verify first that the feedback
path is passive. Taking advantage of (A.7), one gets:

S palkpualk) = 30 (k4 Do(R)e(k + 1)

- Z 0" (k+1)F! [5(/<: +1) - 9(’f)}

= i: [éT(k +D)F Ok +1) — 0" (k + 1)F*16~(k)] (A.9)

k=0
Observe that:

[é(k; 1) - é(k)]T Pl [é(k: +1)— é(k)] = 07 (k + 1)F'9(k + 1)
+0T (k) F0(k) — 207 (k+ 1)F~'4(k) > 0 (A.10)
and therefore:
0Tk + 1) F (k) > —% [éT(k: FOF Yk +1) + éT(k;)F—lé(k;)] (A.11)
Introducing this expression in (A.9), one obtains:

k1 k1 k1
kz_; yo(k)ua(k) > % ; 0" (k+1)F0(k+1) — % > 0T (k)Fo(k)

k=0
1~ - 1~ .
= 5eT(kz +1)F 9k +1) - §eT(O)F—le(O)
1~ -
> =50 (0)F70(0) = =335 75 < o0 (A.12)

One concludes therefore that the equivalent feedback path is passive. Taking now into
account the feedback connection and the corresponding linear path specified in (A.5), one
gets:

k1 k1
Z YU = Z e(k+1)
k=0 k:Ok1 . )
= =) pur=>» —0"(k+1)o(k)e(k + 1)
k=0 k=0
< 1éT(O)F—lé(O) (A.13)

2
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and, therefore:
k1
1~
lim Y e(k+1) < §9T(O)F*19(0) =92 (A.14)

kl —00
k=0

from which one concludes that e(k + 1) is bounded and:

lim e(k+1)=0 (A.15)
k1—>00
i.e., the global asymptotic convergence to zero of the a posteriori prediction (adaptation)
error for any finite initial condition on the parameter error and any adaptation gain F' > 0.
Taking into account the relationship between the a prior: and the a posterior: predic-
tion error: (ki)
e’ (k +
e(k+1) = A.16
) = T Fom) A0
one also concludes that limy . €(k 4+ 1) = 0 implies limg_,o. €°(k + 1) = 0 when ¢(k)
is bounded. In this example, ¢(k) contains the inputs and the outputs of a system
assumed to be stable and excited by an input assumed to be bounded and then, it will be
bounded. Therefore, the conclusion of this analysis is that the improved gradient algorithm
is asymptotically stable for any finite value of the adaptation gain F', which is positive
definite.

A.2 Parametric Convergence of PAA

As will be shown, the convergence toward zero of the adaptation or prediction error does

not imply in every case that the estimated parameters will converge toward the true

parameters. The objective will be to determine under what conditions the convergence of

the adaptation (prediction) error will imply the convergence toward the true parameters.
We will make the hypothesis that such a value of parameter vector exists, i.e.,

30 ; v(k+1)|j_g=0

This is based on the assumption that the structure of the adjustable model is identical to
that of the system and that the orders n 4, np of the adjustable model are equal or higher
than those of the system model.

In order to illustrate the influence of the excitation signal for the parametric conver-
gence, let us consider the discrete-time system model described by:

y(k +1) = —ary(k) + bru(k) (A.17)
and consider an estimated model described by:

Gk +1) = —any(k) + byu(k) (A.18)
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GA
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Figure A.3: Gain frequency characteristics of two systems with the same steady state
gain

in which g(k + 1) is the output predicted by the estimation model with the constant
parameters aq, 51.

Now assume that u(k) = constant and that the parameters al,bl,dl,i)l verify the
following relation:

b b
l+a, 1+a

i.e., the steady state gains of the system and of the estimated model are equal even if
51 # by and a; # a;. Under the effect of the constant input u(k) = w, the plant output
will be given by:

(A.19)

by
E+1)=y(k) = A.20
w(k+1) = y(k) = (4.20)
and the output of the estimated prediction model will be given by:
j(k+1) = (k) = b u (A.21)
4 Y 14 ay '
However taking into account Eq. (3.4.4), it results that:
ek+1)=yk+1)—gk+1)=0 (A.22)

for u(k) = constant ; a; # ay ; b, #+ by

It can thus be concluded from this example that the application of a constant input does
not allow to distinguish the two models, since they both have the same steady state gain.

If the frequency characteristics of both systems are represented, they will superpose
each other at zero frequency and the difference between them will appear for frequencies
other than zero since the poles of the two systems are different. Such a situation is shown
in Fig. A.3. Figure A.3 indicates that in order to highlight the difference between the
two models (i.e., between the parameters) a signal u(k) = sinwt (w # 0) must be applied
instead of signal u(k) = constant.
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Let us analyze the phenomenon in more detail. From (A.17) and (A.18), one obtains:

ek+1) = ylk+1)—gk+1)
= (a1 — ay)y(k) + (b — by)u(k) =0 (A.23)

From (A.17), y(k) can be expressed as a function of u(k) using the system transfer oper-

ator:
-1

biq
k‘ = ——
y(k) T Fagl

Introducing the expression y(k) given by (A.24) in (A.23) and after multiplying by (1 +
arq '), one obtains:

u(k) (A.24)

ek+1) = Um—dﬂh@4+an—@X1+am4ﬂu%)

= |:<b1 — i)l) + qil(bldl - ali)l)i| U’(k) =0 <A25>

We are concerned with finding the characteristics of u(k) so that (A.25) implies zero
parametric errors. Denoting:

b1 — Z;l = Q) ; bldl — all;l = (0 (A26)
Eq. (A.25) is thus written as:
(g + arg Hu(k) =0 (A.27)

which is a difference equation having a solution of the discretized exponential type.

Let us:
u(k) = 2& = e (A.28)

where h is the sampling period. Eq. (A.27) is then written:
(g + 27 ) 2F = (zag + 1)2F 1 =0 (A.29)

and it will be verified for z, which is the solution of the characteristic equation:

2o + o = 0 (ABO)
One obtains:
p= =2 ot (A.31)
Qp

o =real ; (ﬂ<0)
Qo

and the nonperiodic solution:

u(k) = ek (A.32)
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leads to the verification of (A.27) and (A.25) respectively without by = by and a; = a;.
Indeed the signal u(k) = constant previously considered, corresponds to ¢ = 0, i.e.,
—o = «g. However:

-] = 0y — bl—i)l:al[;l—bldl
b b
1+a1_1—|—d1

(A.33)

In conclusion, if u(k) = constant, only the steady state gain of the system is correctly
estimated. In order to correctly estimate the system model parameters, u(k) must thus
be found such that (k) = 0 implies b, = by and G; = a;. This will be obtained if u(k) is
not a possible solution of (A.27).
Let us:
u(k) = e or eIk (A.34)

For u(k) = e/“kh (A.27) becomes:
(GjWhOé() + ozl) GjWh(k_l) = 0 (A35)

Since o and «a; are real, e/** cannot be a root of the characteristic equation (A.35) and
therefore e¢(k + 1) = 0 will be obtained only if:

040:&1:0:[;1:[)1;&1:(11 (ASG)
A non zero frequency sinusoid is thus required in order to identify two parameters. The
signal u(k) which in this case is a sinusoid, is a persistently exciting signal of order 2

(allowing to estimate 2 parameters).
We are interested next in the characterization of the persistently exciting signals.

A.2.1 Persistently Exciting Signals

In the general case, one considers u(k) signals bounded in average verifying the property:

lim — Z u (A.37)

k1—>00 ]{]1

Defining o7 (k) = [u(k),u(k—1) - u(k—n-+1)], the signal u(k) is said to be a persistently
exciting of order n if:

One has the following result :
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Theorem A.1. u(k) is a persistently exciting signal of order n if:

k1~>OO kl

lim — [ZlL(ql)u(k)] -0 (A.38)

for all nonzero polynomials L(q™') of order n — 1.

This theorem is nothing else that a generalization of the previous example. In this
example, L(g™!) was a polynomial of order 1 (formed by differences between true and
estimated parameters) and we have searched a persistently exciting signal u(k) of order
2. The resulting signal was a sinusoid of nonzero frequency. It results that a sum of n/2
sinusoids of distinct frequencies is a persistently exciting signal of order n. Effectively, in
the case of the estimation of n parameters, €(k+1) = 0 leads to an equation L(qg~")u(k) = 0
where L(g™!) is a polynomial of order n — 1 whose coefficients depend upon the difference
between the estimated parameters and the true parameters. Depending on whether (n—1)
is odd or even, the equation L(¢ !)u(k) = 0 admits as solution a sum of p sinusoids of
distinct frequencies.

p
u(k) = Z sin w;kh
k=1

with p < (n — 1)/2. This leads to the conclusion that a sum of p sinusoids of distinct
frequencies with p > n/2 (n =even) or p > (n + 1)/2 (n =odd) cannot be a solution of
the equation L(¢~')u(k) = 0, and therefore:

p = g YV n = even
1
p = n—2|— VvV n = odd

leads to a persistent excitation signal of order n, allowing to estimate n parameters.

The persistently exciting signals have a frequency interpretation which is more general
than a sum of sinusoids of distinct frequencies. Using the Parseval theorem, Eq. (A.38)
becomes:

. -1 2 1 " Jwy |2

lim —Z [L(g Mu(k)]” = %/ﬂ | L(e’) |* ¢u(w)dw > 0
where ¢,(w) is the spectral density of the input signal. Since L(¢!) is of order n — 1,
L(e’*) = 0 at most n — 1 points between [—m, 7. If ¢, (w) # 0 for at least n points in the
interval —m < w < 7, u(k) is a persistently exciting signal of order n.

A signal whose spectrum is different from zero over all the interval 0 < f < 0.5f, is a
persistently exciting signal of any order. Such an example is the discrete gaussian white
noise which has a constant spectral density between 0 and 0.5 f.

In practice, one uses for system identification pseudo-random binary sequences (PRBS)
which approach the characteristic of a white noise. Their main advantage is that they have
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a constant magnitude (the stochastic character coming from the pulse width variation)
which permits the precise definition of the level of instantaneous stress on the process (or
actuator).

A.2.2 Parametric Convergence Condition

For the parameter estimation of a model of the form (d = 1):

y(k + 1) = —A*y(k) + B*u(k) = 0" (k) (A.39)

where:
07 = Jar - an,, b by, (A.40)
e (k) = [~y(k)--ylk —na+1),ulk) - ulk —ng+1)] (A.41)

using an equation error type adjustable predictor:
Gk +1) =0Tk +1)o(k) = 07 (k + 1)p(k) (A.42)
one has the following result:

Theorem A.2. Given the system model described by (A.39) and using an adjustable pre-
dictor of the form of (A.42), the parameter convergence, i.e.

lim a;(k) =a; i=1---nyu
k—ro0

lim bi(k) =b; i=1---ng

k—o0

18 assured if:
1) One uses a PAA which assures

lim e(k+1) = lim[y(k+1) —g(k+1)] =0
k—o00 k—o00

2) The orders na and ng are known exactly.

3) The plant model to be identified is characterized by an irreducible transfer function
in 27 (i.e., A(q™) and B(q™') are relatively prime).

4) The input u(k) is a persistently exciting signal of order n =na + ng.

Proof. The proof is a generalization of the example considered in this section combined
with the definition and properties of persistently exciting signals.

Under the assumption that limg_, €(k + 1) = 0, the adjustable predictor becomes
asymptotically a fixed predictor described by:

~

y(k +1) = 0" p(k) (A.43)
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where:

~ ~ ~

OF = [ay - ap,, by by (A.44)

contains the final values of the estimated parameters (i.e. a; = limy o a;(k), b =
limy 0 b;(k)), and one has:

klggo e(k+1)=— (ZA(ai — &,-)q_Hl) y(k) + (ZB(bZ — l;i)q_Hl) u(k)=0 (A.45)

i=1 =1

Taking into account Assumption (3) and replacing y(k) by:

u(k) (A.46)

Eq. (A.45) becomes:
[_ (Z(ai - &i)q_Hl) B¢+ (ZB(bz - Bz‘)q_Hl) Alg™)
natnp—1
( > aiq_i> u(k) =0 (A.47)

i=0
with:

Qp = Abl <A48>

g - .anA+nB_1 — Abl[al . .anA70. . 0]

+[Aby - - Aby, —Aay,, - — Aar|R(a;, b) (A.49)
and condition (4) assures the desired persistence of excitation. ]

A.3 Stability of Direct Adaptive Control

The fact that the PAA of (3.165), (3.166) and (3.169) assures that (3.164) holds, does
not guarantee that the objective of the adaptive control scheme defined by (3.152) will
be achieved (i.e., the a priori adaptation error should goes to zero) and that {u(k)} and
{y(k)} will be bounded. This is related to the boundedness of ¢c(k). Effectively from
(3.169), one can see that e(k + d) can go to zero without that €°(k + d) goes to zero if
¢c (k) becomes unbounded. Since ¢c(k) contains the input and the output of the plant,
it is necessary to show that the PAA achieves the objective of (3.152) while assuring that
¢c (k) remains bounded for all .

An important preliminary remark is that the plant model in (3.150) is a difference
equation with constant coefficients and therefore y(k + 1) cannot become unbounded for
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finite k if u(k) is bounded. Therefore if u(k) is bounded, y(k) and respectively ¢c(k) can
become unbounded only asymptotically.

Bearing in mind the form of (3.159), it is also clear that in order to avoid u(k) becoming
unbounded the adjustable parameters must be bounded and §o(k) = by(k) # 0 for all k.
This will assure ¢¢(k) can become eventually unbounded only asymptotically.

In order to assure that ?)d(k) # 0 for any k, knowing that b; cannot be zero and its
sign is assumed to be known, one fixes a minimum value |by(k)| > & > 0. If |by(k)| < &
for some k, one either simply uses the value ¢ (with the appropriate sign), or one takes
advantage of the weighting sequences A;(k), Ao(k) and recomputes 6c (k) for different
values of \j(k —d — 1), \o(k —d — 1) (for example: \] = A\; + Ay, A = Ay + A)\y) such
that |bg(k)| > 6.

After these preliminary considerations, the next step is to show that (3.152) is true
and ¢¢(k) is bounded. To proceed, we will use the “bounded growth” lemma.

Lemma A.1. Assume that:

lo(k) |y = (97 (k) F(k)o(k)]? < Cr+ Cy _max [e°(k))|

0<k<t+d+1

0<Ch, Oy < o0, F(k?) >0 (A50)

and . )
lim [e°(k + d)2]
A T 00 2

Then: ||¢(k)|| is bounded and klim e€(k+d)=0
—00

=0 (A51)

Proof. The proof is trivial if €°(k) is bounded for all k. Assume now that €°(k+d) is asymp-
totically unbounded. Then there is a particular subsequence such that: limy, ., € (k) =
oo and |€°(k + d)| < |€°(k,)| ; k+ d < k,. For this sequence one has:

le°(k + d)| - e (k +d) S le°(k + d)|
(L+llo(R)I3)2 = 1+ llo()lpwy — 1+ Cr + Cylec(k + )|

but: o(k 4 d .
L etk a)

k—oo 1 +C1 + OQ|€O(I€ + d)’ - 52
which contradicts (A.51) and proves that neither €°(k + d) nor ||¢(k)|| can become un-
bounded and that limy_,, €°(k + d) = 0. O

>0

The application of this lemma is straightforward in our case. From Eq. (3.161) one
has:

P(g Yy(k+d) = P(gHy*(k +d) + ¢ (k + d) (A.52)

Since P(q~') has bounded coefficients and y* is bounded, one gets immediately from
Eq. (A.52) that:
ly(k)| < O + C; max |e°(k)| (A.53)

0<k<t+d
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Using the assumption that B*(z~!) has all its zeros inside the unit circle, the inverse of
the system is asymptotically stable and one has:

lu(k)| < CY+C) max |y(k+d)| (A.54)

0<k<t+d+1

From Egs. (A.53) and (A.54), one concludes that:

lec(B)lrwy < Cr 4+ Cp _max [ (k)] (A.55)

0<k<t+d+1

and, on the other hand, one has (A.51). Therefore the assumptions of Lemma A.1 are
satisfied allowing to conclude that (3.152) is satisfied and that {u(k)} and {y(k)} are
bounded. The results of the previous analysis can be summarized under the following
form:

Theorem A.3. : Consider a plant model of the form (3.150) controlled by the adjustable
controller (3.153) whose parameters are updated by the PAA of Eqs. (3.165), (3.166) and
(8.170) where:

€’(k+d) = Py(k+d) — Py*(k + d)

Assume that: the integer delay d is known; upper bounds on the degrees of the polynomaials
A and B* are known; for all possible values of the plant parameters, the polynomial B*
has all its zeros inside the unit circle and the sign of by s known. Then:

o limy o e’(k+d) =0
o The sequences {u(k)} and {y(k)} are bounded.

Remarks:

e Various choices can be made for A\ (k) and A\y(k) as indicated in Section 3.4.2. This
will influence the properties and the performance of the scheme. In particular for
A1(k) = 1 and Ay(k) > 0, one will obtain a PAA with decreasing adaptation gain.
The constant trace algorithm is probably the most used algorithm for obtaining an
adaptive control scheme which is continuously active.

e Monitoring the eigenvalues of F'(k) is recommended in order to assure 0 < § <
| F'(k)|| < oo for all k.

e The choice of P(¢g~!) which influences the robustness of the linear design also influ-
ences the adaptation transients. Taking P(q~') = 1, one gets oscillatory adaptation
transients (and the linear design will be very sensitive to parameters change) while
P(g™') in the range of the band pass of the plant will both improve the robustness
of the linear design and the smoothness of the adaptation transient.
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