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Plan de phase pour les système du second ordre

Plan de phase pour les systèmes du second ordre

Variables de phase q et q̇ ; équation différentielle :

q̈ = c(q, q̇), (1)

Définition des variables d’état

x1 = q

x2 = q̇
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Plan de phase pour les système du second ordre

Plan de phase pour les systèmes du second ordre

Solution, variables q, q̇

q = Qq(t)

q̇ = Qq̇(t)

dQq̇

dt
= f(Qq̇,Qq)

Solution, variables x1, x2

x1 = X1(t)

x2 = X2(t)

d

dt
X2 = f(X1,X2)
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Techniques de représentation du plan de phase

Techniques de représentation du plan de phase

1 Méthodes informatiques
Solutions numériques pour diverses conditions initiales
Graphe des pentes

2 Méthodes papier crayon
Solution explicite des équations

1 en éliminant le temps explicitement
2 en éliminant le temps implicitement

3 Méthodes mixtes
Méthode des isoclines
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Systèmes linéaires du second ordre

Systèmes linéaires du second ordre

ẋ1 = a11x1 + a12x2

ẋ2 = a12x2 + a22x2

A =

(
a11 a12
a21 a22

)
Caractéristique des valeurs propres

1 Les valeurs propres sont toutes les deux réelles et de même
signe. C’est un noeud.

2 Elles sont réelles mais de signe opposé. C’est un point selle.
3 Elles sont purement imaginaires. C’est un centre.
4 Elles sont complexes conjuguées. C’est un foyer.
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Système masse ressort

Système masse ressort

Mécanique analytique de Lagrange

Ec =
1

2
q̇2 =

1

2
x22

Ep =
1

2
kq2 =

1

2
kx21

L = Ec − Ep

d

dt

(
∂L
∂q̇

)
− ∂L

q
= 0

d

dt
q̇ + kq = 0

Equations ẋ1 = x2

ẋ2 = −kx1

Cours NL Ph. Müllhaupt 7 / 25



Graphe des pentes

Graphe des pentes

x =
(

x1 x2
)T

f(x) =

(

f1(x1, x2)
f2(x1, x2)

)

FIGURE : Graphique des éléments de pente pour le système masse-ressort.

Cours NL Ph. Müllhaupt 8 / 25



Graphe des pentes Elimination du temps explicitement

Elimination du temps explicitement

x(t) = x0 cos t+ ẋ0 sin t

ẋ(t) = −x0 sin t+ ẋ0 cos t

cos2 t+ sin2 t = 1

x2 + ẋ2 = x20 + ẋ20,

cercle centré en (0, 0) de rayon
√
x20 + ẋ20
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Graphe des pentes Elimination du temps implicitement

Elimination du temps implicitement

ẋ1 = x2 =
dx1
dt

ẋ2 = −x1 =
dx2
dt

dx1
x2

= −dx2
x1

= dt

∫
x2dx2 = −

∫
x1dx1

x21 + x22 = c = x210 + x220

La relation avec le paramétrage temporel est perdue
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Graphe des pentes Méthode des isoclines

Méthode des isoclines

En variant la pente, il est alors possible d’obtenir un ensemble de lieux.
Ainsi, en partant de l’équation l’équation différentielle ẋ1 = f1(x1, x2) et
ẋ2 = f2(x1, x2), et en éliminant la différentielle du temps dt :

dx2
dx1

= α =
f2(x1, x2)

f1(x1, x2)

Pour le système masse ressort :

α =
−x1
x2

x2 = −1

α
x1.
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Graphe des pentes Méthode des isoclines

Méthode des isoclines

FIGURE : La méthode des isoclines respecte mieux la symétrie du cercle et
donne un aspect plus naturel que la grille grille uniformément espacée.
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Graphe des pentes Exemple : oscillateur de Van der Pol

Exemple : oscillateur de Van der Pol

ẍ+ ε(x2 − 1)ẋ+ x = 0,
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FIGURE : x1(0) = 1 et x2(0) = 1 ; ε = 0.5.
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Graphe des pentes Exemple : oscillateur de Van der Pol

Exemple : oscillateur de Van der Pol

Graphe des pentes
avantageux lors d’un grand nombre de conditions initiales
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Graphe des pentes Exemple : oscillateur de Van der Pol

Exemple : oscillateur de Van der Pol

Méthode des isoclines

α =
ẍ

ẋ
= −ε(x2 − 1)− x

ẋ

FIGURE : Méthode des isoclines appliquée à l’oscillateur de van der Pol.
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Cycle limite

Cycles limites

Definition
Un système ẋ = f(x) possèdent un cycle limite C s’il existe un interval
de temps [t0; t0 + T [ et un point de départ x0 ∈ C, tel que en désignant
par X (x0, t) la solution de système avec pour condition initiale
x(t0) = x0 = X (x0, t0) on ait :
X (x0, t) ∈ C ∀t ∈ [t0; t0 + T [,
X (x0, T ) = x0.
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Cycle limite Classification des cycles limites

Classification des cycles limites

Definition
Un cycle limite C est dit :

1 stable : si toutes les trajectoires dans un voisinage du cycle→ C.
2 instable : si toutes les trajectoires divergent de C.
3 semi-stable : si certaines trajectoires convergent vers C.
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Index topologique

Index topologique

Index en un point du plan de phase
1 Une courbe autour du point auquel l’index est évalué.
2 Une paramétrisation de la courbe dans le sens trig. +.
3 Une suite arbitraire de points de la courbe, (xi, i = 1, . . . , n), avec
xn = x1.

4 On calcule la suite (f(x1), f(x2), . . . , f(xn)).
5 On représente ces vecteurs avec une origine commune.

Definition
L’index mesure alors l’angle modulo 2π que l’extrémité des vecteurs fi
parcourent dans le sens trigonométrique positif.
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Index topologique

Index ; exemple 1
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Index topologique

Index ; exemple 2
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Index topologique

Index ; exemple 3

Index 0

1

2

3
45

6

7

8

1

2 4 8

6

3 5 7

Cours NL Ph. Müllhaupt 21 / 25



Index topologique Théorème de l’index

Théorème de l’index

Theorem
(Th. de l’index de Poincaré) Soit N le nombre de noeuds, centres et de
foyers et S le nombre de points selles. Si un cycle limite existe, les
points singuliers (points x̄ tels que f(x̄) = 0) que le cycle encercle sont
tels que N = S + 1.

Theorem
(Sommation des index) Soit une courbe particulière donnée. L’index de
cette courbe est la somme des index de tous les points d’équilibre
compris à l’intérieur de cette courbe.
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Théorème de Bendixson

Théorème de Bendixson

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Theorem
Pour un tel système, aucun cycle limite ne peut exister dans une
région Ω du plan de phase dans laquelle ∂f1

∂x1
+ ∂f2

∂x2
ne s’annule pas ni

ne change de signe.
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Théorème de Bendixson

Théorème de Bendixson (Démonstration)

C’est une conséquence du théorème de Stokes. dx1
dt = f1 et dx2

dt = f2,

dt =
f1
dx1

=
f2
dx2

ω = −f1dx2 + f2dx1 s’annule le long du cycle.∮
ω =

∫ ∫
dω

0 =

∮
−f1dx2 + f2dx1 = ∫ ∫

−∂f1
∂x1

dx1 ∧ dx2 −
∂f1
∂x2

dx2 ∧ dx2

+
∂f2
∂x1

dx1 ∧ dx1 +
∂f2
∂x2

dx2 ∧ dx1

= −
∫ ∫ (

∂f1
∂x1

+
∂f2
∂x2

)
dx1 ∧ dx2

1 L’intégrant, s’il est non nul, puisse changer de signe à l’intérieur de
la surface d’intégration

2 L’intégrant soit nul en tout point. Vérifier que l’intégrant ne s’annule
pas et ne change pas de signe garantit donc la non existence d’un
cycle limite autour de la surface considérée.
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Impossibilité du chaos planaire

Impossibilité du chaos planaire

Theorem
Si une trajectoire demeure dans une région finie Ω alors une des trois
propositions suivantes est vraie :

1 La trajectoire va vers un équilibre.
2 La trajectoire tend asymptotiquement vers un cycle limite.
3 La trajectoire est elle même un cycle limite.

Cours NL Ph. Müllhaupt 25 / 25


	Plan de phase pour les système du second ordre
	Techniques de représentation du plan de phase
	Systèmes linéaires du second ordre
	Système masse ressort

