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Plan de phase pour les systeme du second ordre

Plan de phase pour les systemes du second ordre

Variables de phase q et ¢ ; équation différentielle :

qg= C(Qa Q)a (1)

Définition des variables d’état

Tro =
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Plan de phase pour les systemes du second ordre

Solution, variables ¢, ¢

q = Q(t)
q = Q4(t)
A9,
d_tq:f(Q(qu) )
Solution, variables =1, x>
rT = Xl(t)
Tr9 = Xg(t)

d
dt

—Xy = f(&1,Ay)
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Techniques de représentation du plan de phase

Techniques de représentation du plan de phase

@ Méthodes informatiques
@ Solutions numériques pour diverses conditions initiales
o Graphe des pentes

©@ Méthodes papier crayon
@ Solution explicite des équations

@ en éliminant le temps explicitement
@ en éliminant le temps implicitement

© Méthodes mixtes
@ Méthode des isoclines



Systemes linéaires du second ordre

Systémes linéaires du second ordre

T1 = a117T1 + a1272

T2 = a12T2 + a22T2

Caractéristique des valeurs propres

@ Les valeurs propres sont toutes les deux réelles et de méme
signe. C’est un noeud.

© Elles sont réelles mais de signe opposé. C’est un point selle.
© Elles sont purement imaginaires. C’est un centre.
© Elles sont complexes conjuguées. C’est un foyer.




Systeme masse ressort

Systéme masse ressort

Mécanique analytique de Lagrange

1. 1
E. = §q2:§$%
1 1
Ep = 5]?(]2:5]?55?
L = E.-E,
d oLy _oc _
dt \ 9 qg
d
—qd+kg = 0
g 41 ka )
Equations i o= a9
i‘Q = —kl‘l




Graphe des pentes

Graphe des pentes
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FIGURE : Graphique des éléments de pente pour le systéme masse-ressort.



Graphe des pentes Elimination du temps explicitement

Elimination du temps explicitement

xz(t) = zpcost+ dpsint

#(t) = —zpsint+ &gcost

cos’t +sin’t =1

o? +i% =2k 4 43,

cercle centré en (0,0) de rayon \/x3 + @3



Graphe des pentes Elimination du temps implicitement

Elimination du temps implicitement

de‘l
T = X = —_—
1 2 dt
. dxo
T2 = —T1=——
2 1 dt
dx dx
e e A 7
X9 1
/$2d$2 = —/.%'1d$1
x%—l—x%z c :x%O—i—w%O

La relation avec le paramétrage temporel est perdue



Graphe des pentes Méthode des isoclines

Méthode des isoclines

En variant la pente, il est alors possible d’'obtenir un ensemble de lieux.
Ainsi, en partant de I'équation I'équation différentielle ©1 = f1(x1,x2) et
&9 = fa(z1,22), €t en éliminant la différentielle du temps dt :

@ — o= fo(z1, z2)
dxy Ji(x1,22)

Pour le systéme masse ressort :
—21
« = _—
2
1
Tro = ——XT1
«




Graphe des pentes Méthode des isoclines

Méthode des isoclines

©

FIGURE : La méthode des isoclines respecte mieux la symétrie du cercle et
donne un aspect plus naturel que la grille grille uniformément espacée.



Graphe des pentes Exemple : oscillateur de Van der Pol

Exemple : oscillateur de Van der Pol

i4e(@? —1)i+a=0,

FIGURE : 21(0) = 1 etx2(0) =1;€e=0.5.



Exemple : oscillateur de Van der Pol

Graphe des pentes

Exemple : oscillateur de Van der Pol

Graphe des pentes

avantageux lors d’'un grand nombre de conditions initiales
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Graphe des pentes Exemple : oscillateur de Van der Pol

Exemple : oscillateur de Van der Pol

Méthode des isoclines
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FIGURE : Méthode des isoclines appliquée a l'oscillateur de van der Pol.



Cycle limite

Cycles limites

Definition
Un systéme & = f(z) possédent un cycle limite C s'il existe un interval
de temps [to; to + T'[ et un point de départ z( € C, tel que en désignant
par X (zo,t) la solution de systéme avec pour condition initiale
.%'(t()) =xp = X(.’L‘o,to) on ait :

@ X(zp,t) €C Vit € [tosto + T,

(*] X(.CC(),T) = Xg.




Cycle limite Classification des cycles limites

Classification des cycles limites

Definition

Un cycle limite C est dit :
@ stable : si toutes les trajectoires dans un voisinage du cycle — C.
@ instable : si toutes les trajectoires divergent de C.

© semi-stable : si certaines trajectoires convergent vers C.




Index topologique

Index topologique

Index en un point du plan de phase
@ Une courbe autour du point auquel I'index est évalué.
© Une paramétrisation de la courbe dans le sens trig. +.
© Une suite arbitraire de points de la courbe, (z;,i = 1,...,n), avec
Ty = T1.
© On calcule la suite (f(x1), f(z2),. .., f(zn))-
© On représente ces vecteurs avec une origine commune.

Definition
Lindex mesure alors I'angle modulo 27 que I'extrémité des vecteurs f;
parcourent dans le sens trigonométrique positif.




Index topologique

Index ; exemple 1

Index +1




Index topologique

Index ; exemple 2

Index —1




Index topologique

Index ; exemple 3

Index 0




Index topologique Théoréme de l'index

Théoréme de I’'index

Theorem

(Th. de l'index de Poincaré) Soit N le nombre de noeuds, centres et de
foyers et S le nombre de points selles. Si un cycle limite existe, les

points singuliers (points z tels que f(z) = 0) que le cycle encercle sont
telsque N=5 + 1.

Theorem

(Sommation des index) Soit une courbe particuliére donnée. Lindex de
cette courbe est la somme des index de tous les points d’équilibre
compris a l'intérieur de cette courbe.




Théoréme de Bendixson

Théoréme de Bendixson

Ty = fi(zy,22)

Ty = fo(wy, )

Theorem

Pour un tel systeme, aucun cycle limite ne peut exister dans une
région Q du plan de phase dans laquelle 5 + 32 ne s’annule pas ni
ne change de signe.




Théoréme de Bendixson

Théoréme de Bendixson (Démonstration)

C’est une conséquence du théoréme de Stokes. L = f; et @2 = f,,

N

d$1 N dl‘g
w = —fidxzo + fodz, S’annule le long du cycle.

fo- if o

0= f_f1d$2+f2dxl =

dt =

// —%dah A dxy — g;jdxg A dxo

—f—%d:cl ANdxri + a—hd:cg A dxq
€2

dft | Ofs
= // (81‘1 ax2> dri N dxo



Impossibilité du chaos planaire

Impossibilité du chaos planaire

Theorem

Si une trajectoire demeure dans une région finie Q2 alors une des trois
propositions suivantes est vraie :

@ La trajectoire va vers un équilibre.

@ La trajectoire tend asymptotiquement vers un cycle limite.
© La trajectoire est elle méme un cycle limite.
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