
Introduction
Système, Equilibre et Particularités

Analyse et Commande des Systèmes Non Linéaires
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Systèmes avec entrées et sorties

Systèmes avec entrées et sorties

Prinicipe de superposition
Entrée : u1 et u2
Sortie : y1 et y2

La réponse à la somme des deux entrées individuelles particulières
u = u1 + u2 est la somme des réponses individuelles, c.-à-d.
y = y1 + y2.

Système non linéaire
Le prinicipe de superposition n’est pas respecté
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Classe de systèmes

Classe de systèmes

La classe de système est celle décrivant les modèles de systèmes
physiques qui peuvent se représenter par un ensemble d’équations

différentielles ordinaires.

Description (avec entrée)

ẋ = f(x, u)

Description (sans entrée)

ẋ = f(x)

Cas particulier : systèmes linéaires

ẋ = Ax+Bu

x =
(
x1 x2 . . . xn

)T
u =

(
u1, u2, . . . um

)T
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Solution de l’équation différentielle

Solution de l’équation différentielle

Système

ẋ = f(x)

Solution
X (x0, t)

C’est une trajectoire temporelle
Condition initiale x0
Trajectoire unique pour une condition initiale donnée
Instant t indique lorsque x prend la valeur X (x0, t)

Satisfait l’équation différentielle d
dtX (x0, t) = f(X (x0, t))
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Principe de superposition et solution

Prinicipe de superposition et solution

Système (non linéaire et linéaire)

ẋ = f(x)

Principe de superposition (système linéaire)

Solutions : X (x0, t) et X (x̄0, t)

Conditions initiales : x0 et x̄0

Lorsque α ∈ R et β ∈ R, alors

αX (x0, t) + βX (x̄0, t)

est également une solution.
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Equilibre

Equilibre

Système sans entrée

ẋ = f(x)

Equilibre

Toute solution x̄ telle que f(x̄) = 0.
Lorsque l’état x est à l’équilibre x̄, pas de dynamique.
Plusieurs équilibres isolés possibles.
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Particularité I) Réponse indicielle disymétrique

Particularité I) Réponse indicielle disymétrique

A) Système linéaire : Réponse indicielle symétrique
ẋ = −x+ u

B) Système non linéaire particulier : Réponse indicielle disymétrique

ẋ = −|x|x+ u
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Particularité II) Termes d’ordre supérieur

Particularité II) Termes d’ordre supérieur

Système

ẋ = −x+ x2
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FIGURE : x(0) : ±0.2, ±0.4, ±0.6, ±0.8, ±1.01, ±1.1.

Cours NL Ph. Müllhaupt 9 / 14



Particularité II) Termes d’ordre supérieur

Particularité II) Termes d’ordre supérieur

Signe devant ẋ

Pour 0 ≤ x < 1, −x domine x2
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Particularité III) Points d’équilibre isolés multiples

Particularité III) Points d’équilibre isolés multiples

En examinant...

ẋ = −x+ x2

= x(x− 1)

... il y a deux points d’équilbre :
Point d’équilibre x = 0

Point d’équilibre x = 1
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Particularité IV) Explosion en temps fini

Particularité IV) Explosion en temps fini

Système linéaire
Instabilité bornée par une exponentielle.

ẋ = 3x

X (x0, t) = x0e
3t

Exemple précédent ẋ = −x+ x2

X (x0, t) =
x0e

−t

1− x0 + x0e−t

La solution diverge vers l’infini en un temps fini, lorsque :

x0 > 1, t→ − ln

(
x0 − 1

x0

)
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Particularité V) Orbites chaotiques

Orbites chaotiques

Oscillateur de Lorenz

ẋ = −σx+ σy

ẏ = rx− y − zx
ż = −bz + xy,
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Objectif

Objectif

Transformer le système en jouant avec l’entrée
Comprendre et définir la stabilité
Modifier le type et le nombre de points d’équilibre
Construire des lois de commande u = k(x) stabilisante
Modifier les trajectoires du système initial
Obtenir un domaine de stabilité aussi grand que possible
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