
Commande non linéaire

STI - Master

Série I corrigé

Dr. Ph. Müllhaupt

Exercice I.1

Calculer les points d’équilibre et tracer approximativement les trajectoires χ(x0, ·) pour les trois
équations différentielles suivantes :

1. ẋ = x2 + 5x+ 5

2. ẋ = (x− 3)(x+ 6)(x− 12)(x+ 24)

3. ẋ = −sgn(x)
√
|x|

Corrigé : Dans les graphiques suivants, l’axe horizontal est le temps t [s] et l’axe vertical est
la variable x :
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Deux equilibres
x̄ = 1

2

(
−5±

√
5
)

et (par
ex.) trois trajectoires
X (−4.5, ·), X (−2.5, ·) et
X (−1.4, ·).

Quatre équilibres
x̄ = −24,−6, 3, 12

Un équilibre x̄ = 0
et (par ex.) deux tra-
jectoires X (0.7, ·) et
X (−0.7, ·).

Exercice I.2

Soit le système

ẋ1 = 2x1 + 3x2 + 6x2
1 + 6x3

2

ẋ2 = x1 − x2 + 7x2
2
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Dessiner les éléments de pentes (portrait de phase type ”limaille de fer”) et déterminer ap-
proximativement le portrait de phase. Calculer la matrice issue de la linéarisation aux points
d’équilibre. Calculer les valeurs et vecteurs propres et dessiner approximativement les trajectoirs
proche du point d’équilibre.

Corrigé Il y a deux points d’équilibre :

1. x̄1 = x̄11 = −0.550 et x̄2 = x̄12 = −0.218 ;

2. x̄1 = x̄21 = 0 et x̄2 = x̄22 = 0.

La matrice

A1 =
∂f

∂x
=

(
12x1 + 2 18x2

2 + 3
1 14x2 − 1

)
est calculée, à partir de laquelle, on déduit la matrice

A11 =
∂f

∂x

∣∣∣∣
x1=x̄11,x2=x̄12

=

(
−4.60 3.86

1 −4.05

)
dont les valeurs propres sont λ1(A11) = λ11 = −6.31 et λ2(A11) = λ12 = −2.34 (noeud stable)
ainsi que la matrice

A12 =
∂f

∂x

∣∣∣∣
x1=x̄21,x2=x̄22

=

(
2 3
1 −1

)
dont les valeurs propres sont λ1(A12) = λ21 = 2.79 et λ2(A12) = λ22 = −1.79 (point selle).
Calcul des vecteurs propres pour A11. On a que A11vj = λjvjj = 1, 2 conduit en posant vj1 = 1,
à

−4.60 + 3.86 · v12 = −6.31

−4.60 + 3.86 · v22 = −2.34

ce qui donne

v1 =

(
1

−0.44

)
v2 =

(
1

0.585

)
et pour A12 :

2 + 3 · v12 = 2.79

2 + 3 · v22 = −1.79

et ainsi

v1 =

(
1

0.26

)
v2 =

(
1

−1.26

)
En ce qui concerne l’index, pour autant que la matrice A ne dégénère pas (pas de valeur propre
nulle), l’index du point d’équilibre peut se calculer par

sgn detA,
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Système.

Figure 1: Portrait de phase, par champ de vecteurs, du système planaire. Deux équilibres sont pré-
sents. L’équilibre de gauche est un noeud stable et celui de droite (origine) est un point
selle. L’index du point selle est −1 (que l’on obtient graphiquement) et celui du point
d’équilibre gauche est +1 (que l’on obtient aussi graphiquement). En vert, sont représen-
tées les directions des vecteurs propres. En rouge, une trajectoire solution correspondant à
la condition initiale x1(0) = 0.5 et x2(0) = −1 est dessinée.

sans nécessiter d’avoir recours au calcul topologique. C’est un théorème important qui lie la
notion algébrique du déterminant à la notion topologique. On constate, d’une part, sgn detA11 =
+1 et, d’autre part, sgn detA12 = −1, ce qui cöıncide étrangement avec les index obtenus
graphiquement sur la Figure 1.

Exercice I.3
Soit la méthode d’intégration numérique de Euler qui consiste à approximer la dérivée par une
différence finie :

ẋ ≈ x(t)−x(t−h)
h

Utiliser cette techniques pour intégrer numériquement l’équation de l’oscillateur

ẋ1 = x2

ẋ2 = −x1

Répéter la simulation en changeant le système en ajoutant une force de frottement proportion-
nelle à la vitesse. La deuxième équation devient alors

ẋ2 = −x1 − 0.02x2
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Changer la constante 0.02 pour la rendre soit plus grande ou plus petite et comparer avec la
solution exacte (solution analytique). Que constatez-vous ?

Corrigé : Dans les deux premiéres simulations, il n’y pas de frottement. La courbe continue
fine représente la vraie trajectoire dans le plan de phase. Les points sont les valeurs obtenues à
chaque période d’échantillonnage. Les conditions initiales ne jouent pas un rôle important dans
le cas d’un foyer d’un système linéaire, et on a choisi x1(0) = 0 et x2(0) = 1.

Période d’intégration : 0.1 [s].
La simulation est instable (→∞)

Période d’intégration : 0.01 [s].
La simulation est instable (→∞)
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Pour les deux simulations ci-dessous, le coefficient du frottement est de 0.02 ; à nouveau la
vraie solution dans le plan de phase est représentée en trait fin et les résultats de la méthode de
Euler constituent un ensemble de points (un point par période d’intégration, conditions initiales
x1(0) = 0, x2(0) = 1).
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Période d’intégration : 0.1 [s]
La simulation est instable (→∞)

Période d’intégration : 0.01 [s]
La simulation est stable et la précision
est très bonne.

-1.5 -1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Pour les deux dernières simulations le coefficient de frottement est poussé à 1 et les conditions
initiales restent inchangées (x1(0) = 0, x2(0) = 1).

Période d’échantillonnage : 0.1 [s]
La simulation est stable mais la préci-
sion est mauvaise.

Période d’échantillonnage : 0.01 [s]
La simulation est stable et le précision
est très bonne.
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Voici le code pour la simulation en Mathematica pour le frottement 0.02 et la période d’inté-
gration de 0.01 [s] (La durée de la simulation est fixée à 12 [s]) :

Fosc02 = 0.01 {#2, -#1 - 0.02 #2} + {#1, #2} &

resultats = NestList[Fosc02 @@ # &, {0, 1}, 1200];

plotOsc001temp = ListPlot[resultats, AspectRatio -> 1]
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Pour l’intégration numérique exacte :

solCercle =

NDSolve[{x1’[t] == x2[t], x2’[t] == -x1[t], x1[0] == 0,

x2[0] == 1}, {x1[t], x2[t]}, {t, 0, 12}]

pCercle = ParametricPlot[{x1[t], x2[t]} /. solCercle, {t, 0, 12}]

Voici en Matlab, il faut créer la fonction Fosc.m contenant

function xdot = Fosc(x)

xdot = [x(2); -x(1)];

Puis un autre fichier SimulEuler.m avec

x0=[0;1];

resultats=zeros(2,120);

resultats(:,1)=x0;

for i=2:120

resultats(:,i) = 0.1*Fosc(resultats(:,i-1)) + resultats(:,i-1);

end;

plot(resultats(1,:),resultats(2,:))

Finalement taper dans la console : SimulEuler.

Exercice 1.4

Même question que I.3 mais en utilisant la méthode de Runge-Kutta à pas fixe pour intégrer
l’équation

ẋ = f(x, t)

La méthode consiste à calculer quatre grandeurs intermédiaires k1, k2, k3 et k4 pour effectuer
un pas d’intégration :

xk+1 = xk +
1

6
(k1 + 2k2 + 2k3 + k4) avec tk+1 = tk + h

et

k1 = hf(xk, tk)

k2 = hf(xk +
1

2
k1, tk +

1

2
h)

k3 = hf(xk +
1

2
k2, tk +

1

2
h)

k4 = hf(xk + k3, tk + h)
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Comparer vos résultats avec la commande ’ode45’ de MATLAB.

Corrigé : Les six figures suivantes sont les figures correspondantes aux six figures de l’exercice
précédant. Il faut constater que les résultats s’améliorent avec l’intégrateur de Runge Kutta.
Cependant il y a toujours de très grandes différences lorsque le pas d’intégration est choisi de
manière trop grande (en l’occurrance 0.1). Le pas d’intégration de 0.01 donne de très bons
résultats mais il subsiste encore un décalage avec l’intégrateur à pas variable utilisé dans les
intégrateurs plus sophistiqués. Le code pour h = 0.1 et b = 0.02 en Mathematica est donné
ci-dessous :

resultats = NestList[Module[{xk, h, Fosc},

xk = #1;

h = #2;

Fosc = {#2, -#1 - 0.02 #2} &;

{xk +

Inner[#1 #2 &, 1/6 {1, 2, 2, 1},

Append[#, Last[Fosc @@ (xk + #) &]] & [

NestList[h Fosc @@ (xk + 1/2 #) &, {0, 0},

2]] , #1 + #2 &], h} ] & @@ # &, {{0, 1}, 0.1}, 500];

Show[ListPlot[Part[#, 1] & /@ resultats, AspectRatio -> 1], pCercle]
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h = 0.1 b = 0 h = 0.01 b = 0
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h = 0.1 b = 0.02 h = 0.01 b = 0.02
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h = 0.1 b = 1 h = 0.01 b = 1

En MATLAB :

Il faut sauver le texte suivant dans un fichier nommé SimulRK.m

x0=[0;1];
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resultats=zeros(2,1200);

resultats(:,1)=x0;

h = 0.01;

for i=2:120

xk = resultats(:,i-1);

k1 = h*Fosc(xk);

k2 = h*Fosc(xk+0.5*k1);

k3 = h*Fosc(xk+0.5*k2);

k4 = h*Fosc(xk+k3);

resultats(:,i) = xk + 1/6*(k1+2*k2+2*k3+k4);

end;

plot(resultats(1,:),resultats(2,:))

et taper dans la console : SimulRK
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