Commande non linéaire

STI - Master

Série I corrigé

Dr. Ph. Miillhaupt

Exercice 1.1

Calculer les points d’équilibre et tracer approximativement les trajectoires x(zo, -) pour les trois

équations différentielles suivantes :

Corrigé :

T=2>4+5x+5

2. &= (x—3)(x+6)(r—12)(x + 24)

i = —sgn(x)y/|z]

la variable z :
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Deux equlhbres

T = 5(—5ﬂ:\/_) et (par
ex.) trois trajectoires
X(—4.5,7), X(=2.5,") et
X(—14,).

Exercice 1.2

Soit le systeme

Systeme 2
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Quatre équilibres
xr=—-24,-6,3,12

. 2
Ty = X1 — X9+ 775

2x1 + 312 + 627 + 675

Dans les graphiques suivants, I’axe horizontal est le temps ¢ [s] et I’axe vertical est

Systeme 3
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Un équilibre z = 0
et (par ex.) deux tra-
jectoires  X(0.7,-) et
X(—0.7, ).



Dessiner les éléments de pentes (portrait de phase type "limaille de fer”) et déterminer ap-
proximativement le portrait de phase. Calculer la matrice issue de la linéarisation aux points
d’équilibre. Calculer les valeurs et vecteurs propres et dessiner approximativement les trajectoirs
proche du point d’équilibre.

Corrigé Il y a deux points d’équilibre :
1. 1 = 211 = —0.550 et Ty = 715 = —0.218;;
2. B4 =T91 =0 et Ty =T = 0.

La matrice

of (12:z;1+2 18x§+3)
A== =

or 1 1420 — 1

est calculée, a partir de laquelle, on déduit la matrice

of [ —460 3.86
T1=T11,L2=T12 B 1 _405

= Oz
dont les valeurs propres sont A;(A1) = A3 = —6.31 et Ay(A11) = A2 = —2.34 (noeud stable)
Ap =2

ainSi que la matrice
z r1=T21,L2=T22

dont les valeurs propres sont Aj(Aj2) = o1 = 2.79 et Ay(A12) = A2 = —1.79 (point selle).
Calcul des vecteurs propres pour A;;. On a que Ay;v; = A\jv;j = 1,2 conduit en posant v;; = 1,
)

All

—4.60 + 3.86 - Vi = —6.31

B 1 B 1
= 044 Y27\ 0.585

2—|—3'U12 = 2.79
2+3‘U22 = —1.79

1 B 1
1=\ 0.26 2= 21,96

En ce qui concerne I'index, pour autant que la matrice A ne dégénere pas (pas de valeur propre
nulle), I'index du point d’équilibre peut se calculer par

ce qui donne

et pour Ay :

et ainsi

sgndet A,
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Figure 1: Portrait de phase, par champ de vecteurs, du systeme planaire. Deux équilibres sont pré-

sents. L’équilibre de gauche est un noeud stable et celui de droite (origine) est un point
selle. I’index du point selle est —1 (que l'on obtient graphiquement) et celui du point
d’équilibre gauche est +1 (que 'on obtient aussi graphiquement). En vert, sont représen-
tées les directions des vecteurs propres. En rouge, une trajectoire solution correspondant a

la condition initiale x1(0) = 0.5 et x2(0) = —1 est dessinée.

sans nécessiter d’avoir recours au calcul topologique. C’est un théoréeme important qui lie la
notion algébrique du déterminant a la notion topologique. On constate, d’une part, sgndet A;; =
+1 et, d’autre part, sgndet A5 = —1, ce qui coincide étrangement avec les index obtenus

graphiquement sur la Figure 1.

Exercice 1.3
Soit la méthode d’intégration numérique de Euler qui consiste a approximer la dérivée par une

différence finie :

. x(t)—x(t—h)
e

Utiliser cette techniques pour intégrer numériquement 1’équation de 1'oscillateur

Répéter la simulation en changeant le systeme en ajoutant une force de frottement proportion-

nelle a la vitesse. La deuxieme équation devient alors

fCQ = —I1 — 0021’2



Changer la constante 0.02 pour la rendre soit plus grande ou plus petite et comparer avec la
solution exacte (solution analytique). Que constatez-vous ?

Corrigé : Dans les deux premiéres simulations, il n’y pas de frottement. La courbe continue
fine représente la vraie trajectoire dans le plan de phase. Les points sont les valeurs obtenues a
chaque période d’échantillonnage. Les conditions initiales ne jouent pas un role important dans
le cas d'un foyer d’un systeme linéaire, et on a choisi z1(0) = 0 et x2(0) = 1.

Période d’intégration : 0.1 [s]. Période d’intégration : 0.01 [s].
La simulation est instable (— oo) La simulation est instable (— 00)
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Pour les deux simulations ci-dessous, le coefficient du frottement est de 0.02; & nouveau la
vraie solution dans le plan de phase est représentée en trait fin et les résultats de la méthode de
Euler constituent un ensemble de points (un point par période d’intégration, conditions initiales
x1(0) =0, 22(0) = 1).



Période d’intégration : 0.01 [s]
La simulation est stable et la précision
est tres bonne.

Période d’intégration : 0.1 [s]
La simulation est instable (— 00)

Pour les deux dernieres simulations le coefficient de frottement est poussé a 1 et les conditions
initiales restent inchangées (x1(0) = 0, 25(0) = 1).

Période d’échantillonnage : 0.1 [s] Période d’échantillonnage : 0.01 [s]
La simulation est stable mais la préci- La simulation est stable et le précision
sion est mauvaise. est tres bonne.
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Voici le code pour la simulation en Mathematica pour le frottement 0.02 et la période d’inté-
gration de 0.01 [s] (La durée de la simulation est fixée a 12 [s]) :

Fosc02 = 0.01 {#2, -#1 - 0.02 #2} + {#1, #2} &
resultats = NestList[Fosc02 @@ # &, {0, 1}, 1200];
plotOscO01ltemp = ListPlot[resultats, AspectRatio -> 1]

5



Pour l'intégration numérique exacte :

solCercle =
NDSolve [{x1’[t] == x2[t], x2’[t] == -x1[t], x1[0] == O,
x2[0] == 1}, {x1[t], x2[t]}, {t, 0, 12}]
pCercle = ParametricPlot[{x1[t], x2[t]} /. solCercle, {t, 0, 12}]

Voici en Matlab, il faut créer la fonction Fosc.m contenant

function xdot = Fosc(x)
xdot = [x(2); -x(1)];

Puis un autre fichier SimulEuler.m avec

x0=[0;1];
resultats=zeros(2,120);
resultats(:,1)=x0;
for 1=2:120
resultats(:,i) = 0.1xFosc(resultats(:,i-1)) + resultats(:,i-1);
end;
plot(resultats(l,:),resultats(2,:))

Finalement taper dans la console : SimulEuler.
Exercice 1.4

Meme question que 1.3 mais en utilisant la méthode de Runge-Kutta a pas fixe pour intégrer
I’équation

T = f(x,t)

La méthode consiste a calculer quatre grandeurs intermédiaires ki, ko, k3 et k4 pour effectuer
un pas d’intégration :
1

Try1 = Tk + é(kl + 2ko + 2k3 + k4) avec kw1 =1+ h

et
kv = hf(xg, t)

1 1
]{ZQ = hf(ﬂfk + —kl, tk + —h>

2 2
1 1

k?4 = hf(l‘k + k’g,tk + h)



Comparer vos résultats avec la commande "ode45” de MATLAB.

Corrigé : Les six figures suivantes sont les figures correspondantes aux six figures de ’exercice
précédant. Il faut constater que les résultats s’améliorent avec 'intégrateur de Runge Kutta.
Cependant il y a toujours de tres grandes différences lorsque le pas d’intégration est choisi de
maniere trop grande (en 'occurrance 0.1). Le pas d’intégration de 0.01 donne de tres bons
résultats mais il subsiste encore un décalage avec l'intégrateur a pas variable utilisé dans les
intégrateurs plus sophistiqués. Le code pour h = 0.1 et b = 0.02 en Mathematica est donné
ci-dessous :

resultats = NestList[Module[{xk, h, Fosc},
xk = #1;
h = #2;
Fosc = {#2, -#1 - 0.02 #2} &;
{xk +

Inner[#1 #2 &, 1/6 {1, 2, 2, 1},
Append [#, Last[Fosc @@ (xk + #) &]] & [
NestList[h Fosc @@ (xk + 1/2 #) &, {0, 0},
2]] , #1 + #2 &], h} ] & @@ # &, {{0, 1}, 0.1}, 500];
Show[ListPlot [Part[#, 1] & /@ resultats, AspectRatio -> 1], pCercle]



h=0.01 b=0

h=001 b=1

En MATLAB :

11 faut sauver le texte suivant dans un fichier nommé SimulRK.m

x0=[0;1];



resultats=zeros(2,1200);
resultats(:,1)=x0;

h =0.01;

for i=2:120
xk = resultats(:,i-1);
k1 = hxFosc(xk);
k2 = h*Fosc(xk+0.5x%k1);
k3 = h*Fosc(xk+0.5%k2) ;
k4 = hxFosc(xk+k3);

resultats(:,1i) = xk + 1/6%(k1+2*¥k2+2%k3+k4) ;
end;
plot(resultats(l,:),resultats(2,:))

et taper dans la console : SimulRK



