
Commande non linéaire

STI - Master

Série VII

Dr. Ph. Müllhaupt

Exercice VII.1

Soit le système en représentation d’état

ẋ1 = x2

ẋ2 = (x3 − x1)3 + cos(x1 + x3)u

ẋ3 = x4

ẋ4 = (x1 − x3)3

1. Linéariser entrée-sortie le système en choisissant la sortie y = x1.

2. Vérifier si le schéma est stable (utiliser la théorie de Lyapunov, et, éventuellement, la
dynamique des zéros).

3. Est-ce que le schéma est stable de manière globale ?

Pour linéariser le système entrée-sortie, il suffit de dériver la sortie jusqu’à ce que l’entrée
apparaisse.

ẏ = ẋ1 = x2

ÿ = ẋ2 = (x3 − x1)3 + cos(x1 + x3)u

On pose alors ÿ = v où v représente une nouvelle entrée. En choisissant l’erreur e = yc− y avec
la consigne yc = 0 on peut imposer le polynôme caractéristique

λ(s) = s2 + 2ks+ k2

avec les deux racines en −k avec k > 0 le gain, et donc λ(s)E(s) = 0, autrement dit

(s2 + 2ks+ k2)E(s) = 0

ë+ 2kė+ k2e = 0

ÿ + 2kẏ + k2y = 0

v + 2kx2 + k2x1 = 0

Ainsi, en utilisant v = (x3 − x1)3 + cos(x1 + x3)u, la loi de commande suivante est obtenue

u =
1

cos(x1 + x3)

(
−(x3 − x1)3 − 2kx2 − k2x1

)
On constate que celle-ci n’est valable que lorsque x1−x3 6= π

2
+ lπ, l ∈ Z. La stabilité en boucle

fermée n’est donc pas globale.
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La dynamique des zeros est obtenue lorsqu’on particularise la dynamique sous les conditions
y = ẏ = ÿ = 0. Ainsi,

ẋ3 = x4

ẋ4 = −x33

Pour montrer que cette dynamique est stable considérons le candidat de Lyapunov

V =
1

4
x43 +

1

2
x24

que l’on constate immédiatement être une fonction définie positive. Calculons la dérivée

V̇ = x33ẋ3 + x4ẋ4 = x33x4 − x4x33 = 0

Ainsi, la fonction V est conservée. Le système suit les lignes de niveau V = C. En effet, la
quantité

C =
1

4
x3(0)4 +

1

2
x4(0)2 =

1

4
x3(t)

4 +
1

2
x4(t)

4

est constante puisque déterminée par les conditions initiales et que V̇ = 0. La dynamique est
stable mais pas asympototiquement. Pour que la linéarisation entrée-sortie soit applicable, il
est nécessaire de vérifier que le transitoire vers la dynamique des zéros demeure borné et que
la dynamique des zéros soit stable. En d’autres termes, il s’agit de vérifier la stabilité de

ẋ3 = x4

ẋ4 = (C1e
−kt − x3)3

ce qui est confirmé par simulation, et l’on remarque bien que les trajectoires convergent vers
un cycle limite. La démonstration formelle sort toutefois du cadre de l’exercice proposé.

Exercice VII.2

Soit les fonctions de transfert

G1(s) =
s+ 1

s2 − 2s+ 1
G2(s) =

s− 2

s2 − 2s+ 1

1. Construire des représentations d’état.

2. Utiliser la méthodologie de la linéarisation entrée-sortie pour contrôler les deux systèmes.

3. Est-ce que cela conduit à des schémas de commande stable ?

Pour construire une représentation d’état, une technique consiste à isoler le numérateur et le
dénominateur

G1(s) =
Y1(s)

U(s)
=

1

s2 − 2s+ 1
· (s+ 1) =

X(s)

U(s)

Y1(s)

X(s)
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Ensuite on pose x1 = L−1X(s). On aboutit donc aux équations

ẋ1 = x2

ẋ2 = 2x2 − x1 + u

Ensuite on traite la sortie en utilisant la relation s + 1 = Y (s)
X(s)

. Ainsi, Y1(s) = (s + 1)X(s),
autrement dit

y1 = ẋ1 + x1 = x2 + x1

Pour la représentation d’état associée à G2(s), seule l’équation de la sortie change, Y2(s) =
(s− 2)X(s), et donc

y2 = ẋ1 − 2x1 = x2 − 2x1.

Appliquons la méthode de linéarisation entrée-sortie. Prenons la réalisation de G1(s) et dérivons
la sortie y1 jusqu’à ce que l’entrée apparaisse. Celle-ci apparâıt après une dérivée seulement :

ẏ1 = ẋ2 + ẋ1 = 2x2 − x1 + u+ x2 = 3x2 − x1 + u

On pose alors λ(s) = s + k avec k > 0 et e = yc1 − y1 = −y1 (consigne nulle). Ensuite, en
posant λ(s)E(s) = 0, ce qui donne ė+ ke = 0, on obtient

3x2 − x1 + u = −ky1 = −k(x2 + x1)

En d’autres termes,
u = (1− k)x1 − (3 + k)x2

Vérifions la dynamique des zéros. On pose pour cela y1 = 0 = ẏ1 ce qui conduit à

x2 + x1 = 0

et l’équation de la dynamique ẋ1 = x2 devient une équation différentielle stable

ẋ1 = −x1.

On pourra donc appliquer le schéma de commande. Par contre, en ce qui concerne le deuxième
système, la contrainte y2 = x2 − 2x1 = 0 conduit à 2x1 = x2 et donc la première équation
dynamique de la représentation d’état donne

ẋ1 = 2x1

qui est instable. On ne peut donc pas appliquer la méthode de linéarisation entrée-sortie sur le
second système. On remarque également que la procédure de linéarisation entrée-sortie appli-
quée à une fonction de transfert quelconque conduit aux remarques suivantes :

1. Le nombre d’intégrateurs équivalent r est égal au degré relatif de la fonction de transfert,
à savoir la différence entre le nombre de pôles et le nombre de zéros.

2. Les valeurs propres de la dynamique des zéros sont identiques aux zéros de la fonction
de transfert.
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Exercice VII.3

Pour le problème VII.1, calculer les conditions de linéarisation exacte :

1. Involutivité de la famille de champs de vecteurs

{ g , adfg , ad2
fg }.

2. Plein rang de la matrice [
g adfg ad2

fg ad3
fg
]
.

Construire la sortie linéarisante et le bouclage stabilisant complet. Est-ce que le schéma assure
la stabilité globale ?

Le premier crochet donne

[f, g] =


− cos(x1 + x3)

− sin(x1 + x3)(x2 + x4)
0
0


Le crochet suivant

[f, [f, g]] = ad2fg =


2 sin(x1 + x3)(x2 + x4)

− cos(x1 + x3)(3x
2
1 + x22 − 6x1x3 + 3x23 + 2x2x4 + x24)

0
3 cos(x1 + x3)(x1 − x3)2


Ceci conduit au vecteur ligne annulateur (0, 0, 1, 0). En effet(

0 0 1 0
) (

g [f, g] [f, [f, g]]
)

= 0

Ainsi la sortie y = x3 semble être un bon candidat pour la sortie linéarisante. Vérifions la
seconde condition dite d’accessibilité.∣∣ g [f, g] [f, [f, g]] [f, [f, [f, g]]]

∣∣ = 9 cos(x1 + x3)
4(x1 − x4)4

et cette condition devient nulle (et donc non satisfaite) lorsque le système aura convergé au
point d’équilibre. Ainsi, on ne pourra pas forcer une équation d’erreur exponentiellement stable.
Dérivons tout de même la sortie y = x3 :

ẏ = x4

ÿ = (x1 − x3)3 (1)

y(3) = 3(x1 − x3)2(x2 − x4) (2)

y(4) = 6(x1 − x3)(x2 − x4)2 + 3(x1 − x3)2(2(x3 − x1)3 + cos(x1 + x3))u (3)
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et c’est lorsqu’on force y(4) à obéir à une équation différentielle linéaire stable — (par exemple
en forçant y(4) = −4ky(3) − 6k2ÿ − 4k3ẏ − k4y) — que se pose le problème de la division par
zéro. Le schéma de commande résultant ne conduit pas à la stabilité globale.

Exercice VII.4

On considère la cinématique commandée de la roue qui roule sans glisser dans le plan. Les
équations cinématiques sont

ẋ = u cos θ

ẏ = u sin θ

θ̇ = v

avec x et y qui désignent la position dans le plan et θ l’angle de la roue. Les entrées sont la
vitesse tangentielle u et la vitesse angulaire v.

1. Déterminer les champs de vecteurs associés aux entrées u et v, autrement dit mettre la
cinématique sous la forme

ẋ = g1(x)u+ g2(x)v

où x désigne cette fois l’état du système.

2. Déterminer si la famille {g1, g2} est involutive.

3. Déterminer une 1-forme ω qui annule la distribution {g1, g2} (un co-champ perpendicu-
laire aux deux champs de vecteurs g1 et g2 en tout point de l’espace d’état).

4. Calculer dω et dω ∧ ω.

5. Que signifie la forme ω au niveau physique ? Déduire qu’il n’est pas possible de réduire
les coordonnées x, y et θ pour obtenir que deux coordonnées généralisées.

1. Champs de vecteurs g1 et g2
En comparant la cinématique avec la formulation ẋ = g1(x)u + g2(x)v on obtient avec x =(
x y θ

)T
g1(x) =

 cos θ
sin θ

0

 g2(x) =

 0
0
1


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2. Involutivité de {g1, g2}
Calculons le crochet

[g1, g2] =
∂g2
∂x

g1 −
∂g1
∂x

g2 = 0−

 0 0 − sin θ
0 0 cos θ
0 0 0

 0
0
1

 =

 − sin θ
cos θ

0


Calculons le déterminant

∣∣ g1 g2 [g1, g2]
∣∣ =

∣∣∣∣∣∣
cos θ 0 − sin θ
sin θ 0 cos θ

0 1 0

∣∣∣∣∣∣ = −
∣∣∣∣ cos θ − sin θ

sin θ cos θ

∣∣∣∣ = −(cos2 θ + sin2 θ) = −1

La famille n’est donc pas involutive. La bonne nouvelle est que l’on peut générer toutes les
directions et donc accéder à tout l’espace d’état x, y et θ.

3. La 1-forme ω annulante
Il faut déterminer un vecteur ligne qui annule la matrice (g1 g2). On trouve par inspection et

sans trop de difficulté la ligne suivante

(
sin θ − cos θ 0

) cos θ 0
sin θ 0

0 1

 = 0

En écrivant le vecteur ligne sous la forme d’une 1-forme, on obtient la 1-forme

ω = sin θ dx− cos θ dy

4. Intégrabilité de la 1-forme ω
Calculons

dω = cos θdθ ∧ dx+ sin θ dθ ∧ dy 6= 0

et ω n’est pas exacte. De plus

dω ∧ ω = (cos θ dθ ∧ dx+ sin θ dθ ∧ dy) ∧ (sin θdx− cos θdy)

= − cos2 θ dθ ∧ dx ∧ dy + sin2 θ dθ ∧ dy ∧ dx
= −dθ ∧ dx ∧ dy 6= 0

et ω n’est pas intégrable, ce qui correspond au fait que la famille {g1, g2} n’est pas involutive.

La signification de cette perte d’intégrabilité est qu’il n’existe aucune paire de fonctions α(x, y, θ)
et h(x, y, θ) telles que

α(x)ω = α(x, y, θ) sin θ dx− α(x, y, θ) cos θ dy

=
∂h

∂x
dx+

∂h

∂y
dy +

∂h

∂θ
dθ

6



5. Signification physique
En divisant ω par dt on obtient une expression avec l’angle et les vitesses ẋ et ẏ

ω
1

dt
= sin θ

dx

dt
− cos θ

dy

dt
= sin θ ẋ− cos θ ẏ

qui représente la composante perpendiculaire de la vitesse lors du déplacement de la roue.
Cette composante est nulle si la roue ne glisse pas le long de la direction perpendiculaire à son
déplacement. C’est en effet le cas, car en remplaçant ẋ et ẏ par la cinématique du départ on a
bien la contrainte cinématique

sin θ ẋ− cos θ ẏ = sin θ cos θu− cos θ sin θu = 0

La contrainte cinématique sin θẋ − cos θẏ = 0 est une contrainte sur les vitesses ẋ et ẏ qui
comporte la coordonnée θ mais qui ne s’intègre pas pour donner une contrainte uniquement sur
les coordonnées

h(x, y, θ) = 0

Si la famille {g1, g2} avait été involutive, alors cela aurait été le cas.

On fait ainsi la distinction entre contrainte holonome (lorsque ω est intégrable) et non-homolonome
(lorsque ω n’est pas intégrable).
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