., Série VII
Commande non linéaire

STT - Master Dr. Ph. Miillhaupt

Exercice VII.1

Soit le systeme en représentation d’état

T = X9

9y = (z3—21)% + cos(x; + z3)u
T3 = X4

gy = (1] —a3)?

1. Linéariser entrée-sortie le systeme en choisissant la sortie y = xy.

2. Vérifier si le schéma est stable (utiliser la théorie de Lyapunov, et, éventuellement, la
dynamique des zéros).

3. Est-ce que le schéma est stable de maniere globale ?

Pour linéariser le systeme entrée-sortie, il suffit de dériver la sortie jusqu’a ce que l'entrée
apparaisse.

y pr ‘i.l g ZCQ

.. . 3

J = d9=(v3— 1) +cos(zy + x3)u

On pose alors §j = v ol v représente une nouvelle entrée. En choisissant 'erreur e = y. — y avec
la consigne y. = 0 on peut imposer le polynome caractéristique

A(s) = s + 2ks + k?

avec les deux racines en —k avec k > 0 le gain, et donc A(s)E(s) = 0, autrement dit
(s* + 2ks + k) E(s) =

é+2ké+ ke =

J+2ky+ iy =
v+ 2kxy + K2z, =

o O O O

Ainsi, en utilisant v = (23 — ;)3 + cos(x; + x3)u, la loi de commande suivante est obtenue

1 3
= — (— (23 — — 2kxy — K
“ cos(z1 + x3) ( (w2 =) . xl)
On constate que celle-ci n’est valable que lorsque z; — x5 # 5+, [ € Z. La stabilité en boucle
fermée n’est donc pas globale.



La dynamique des zeros est obtenue lorsqu’on particularise la dynamique sous les conditions
y =1y =9y = 0. Ainsi,

T3 = @4
i’4 = —QT%

Pour montrer que cette dynamique est stable considérons le candidat de Lyapunov
1 1
que l'on constate immédiatement étre une fonction définie positive. Calculons la dérivée
V= l’gi‘g 4+ x4Ty = x§x4 — x4x§ =0

Ainsi, la fonction V' est conservée. Le systeme suit les lignes de niveau V' = C. En effet, la

quantité

1 1 1 1
C = 211’3(0)4 + 51’4(0)2 = leg(t>4 -+ 51‘4@)4

est constante puisque déterminée par les conditions initiales et que V' = 0. La dynamique est
stable mais pas asympototiquement. Pour que la linéarisation entrée-sortie soit applicable, il
est nécessaire de vérifier que le transitoire vers la dynamique des zéros demeure borné et que
la dynamique des zéros soit stable. En d’autres termes, il s’agit de vérifier la stabilité de

T3 = @4
$'4 = (C’le_kt—xg)g

ce qui est confirmé par simulation, et 'on remarque bien que les trajectoires convergent vers
un cycle limite. La démonstration formelle sort toutefois du cadre de ’exercice proposé.

Exercice VII.2

Soit les fonctions de transfert
s+ 1 s—2

Gi(s) = 52 —2s54+1

1. Construire des représentations d’état.
2. Utiliser la méthodologie de la linéarisation entrée-sortie pour controler les deux systemes.

3. Est-ce que cela conduit a des schémas de commande stable ?

Pour construire une représentation d’état, une technique consiste a isoler le numérateur et le
dénominateur

X(s) Ya(s)
U(s) X(s)

1
O = ) T st BTUS

2



Ensuite on pose z; = £L7'X(s). On aboutit donc aux équations
T = T
Ztg = 2[L‘2 — T+ u

Ensuite on traite la sortie en utilisant la relation s + 1 = E/(((Z)) Ainsi, Yi(s) = (s + 1)X(s),
autrement dit

y1:$1+l’12$2+$1

Pour la représentation d’état associée a G(s), seule I’équation de la sortie change, Ya(s) =
(s —2)X(s), et donc
Y2 :Ztl —2£L'1 = T3 —21}1.

Appliquons la méthode de linéarisation entrée-sortie. Prenons la réalisation de G (s) et dérivons
la sortie y; jusqu’a ce que 'entrée apparaisse. Celle-ci apparait apres une dérivée seulement :

P =To+ 21 =209 — 21+ U+ 23 =313 — 21 +u

On pose alors A(s) = s+ k avec k > 0 et e = y.g — 1 = —y1 (consigne nulle). Ensuite, en
posant A(s)E(s) =0, ce qui donne é + ke = 0, on obtient

3132 — T t+u= —kyl = —]{7(1’2 -+ 1‘1)

En d’autres termes,
u=(1—k)xy — (3+ k)

Vérifions la dynamique des zéros. On pose pour cela y; = 0 = 3; ce qui conduit a
To+x21=0

et I’équation de la dynamique @; = x5 devient une équation différentielle stable
I, = —I1.

On pourra donc appliquer le schéma de commande. Par contre, en ce qui concerne le deuxieme
systeme, la contrainte yo = x5 — 227 = 0 conduit a 2z; = x5 et donc la premiere équation
dynamique de la représentation d’état donne

.Ctl = 2.1'1

qui est instable. On ne peut donc pas appliquer la méthode de linéarisation entrée-sortie sur le
second systeme. On remarque également que la procédure de linéarisation entrée-sortie appli-
quée a une fonction de transfert quelconque conduit aux remarques suivantes :

1. Le nombre d’intégrateurs équivalent r est égal au degré relatif de la fonction de transfert,
a savoir la différence entre le nombre de poles et le nombre de zéros.

2. Les valeurs propres de la dynamique des zéros sont identiques aux zéros de la fonction
de transfert.



Exercice VII.3

Pour le probleme VII.1, calculer les conditions de linéarisation exacte :

1. Involutivité de la famille de champs de vecteurs
{g. adpg, adjg}.

2. Plein rang de la matrice
[g adrg adfcg ad?}g }

Construire la sortie linéarisante et le bouclage stabilisant complet. Est-ce que le schéma assure
la stabilité globale ?

Le premier crochet donne

—cos(z1 + x3)
—sin(zy + z3) (22 + 4)

[f. 9] = 0
0
Le crochet suivant
2 sin(x1 + .1'3)(1’2 + $4)

—cos(xy + x3) (322 + 22 — 62173 + 372 4 2294 + 22
(£, 1f. g]] = adig = (1 + x3) (327 + 73 . 123 3 24 + T7)

3cos(zy + x3) (21 — x3)*
Ceci conduit au vecteur ligne annulateur (0,0, 1,0). En effet

(001 0)(g [figl [f:[fig]])=0

Ainsi la sortie y = x3 semble étre un bon candidat pour la sortie linéarisante. Vérifions la
seconde condition dite d’accessibilité.

| g [fogl (LU0l LA 0ll] | = 9cos(an + 23)* (21 — 2a)*

et cette condition devient nulle (et donc non satisfaite) lorsque le systéeme aura convergé au
point d’équilibre. Ainsi, on ne pourra pas forcer une équation d’erreur exponentiellement stable.
Dérivons tout de méme la sortie y = x3 :

y = 4

j o= (r1—mz3)° (1)
y® = 31— x3)* (s — w4) (2)
yW = 6(x1 — x3) (2 — 24)” + 3(1 — 33)°(2(w5 — 21)° + cos(zy + 23))u (3)
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et c’est lorsqu’on force y® & obéir & une équation différentielle linéaire stable — (par exemple
en forcant y® = —4ky® — 6k%j — 4k3y — k*y) — que se pose le probleme de la division par
zéro. Le schéma de commande résultant ne conduit pas a la stabilité globale.

Exercice VII.4

On considere la cinématique commandée de la roue qui roule sans glisser dans le plan. Les
équations cinématiques sont

T = wucosl
= wusinf
0 = v

avec r et y qui désignent la position dans le plan et 6 I'angle de la roue. Les entrées sont la
vitesse tangentielle u et la vitesse angulaire v.

1. Déterminer les champs de vecteurs associés aux entrées u et v, autrement dit mettre la
cinématique sous la forme

&= gi(x)u+ ga(x)v
ou x désigne cette fois I’état du systeme.
2. Déterminer si la famille {g;, g2} est involutive.

3. Déterminer une 1-forme w qui annule la distribution {g;, g2} (un co-champ perpendicu-
laire aux deux champs de vecteurs g; et go en tout point de 'espace d’état).

4. Calculer dw et dw A w.

5. Que signifie la forme w au niveau physique ? Déduire qu’il n’est pas possible de réduire
les coordonnées x, y et € pour obtenir que deux coordonnées généralisées.

1. Champs de vecteurs g; et g,
En comparant la cinématique avec la formulation & = g1(z)u + g2(x)v on obtient avec x =

(v y6)

cos 6 0
gi(x) = sinfb g(x)y=10
0 1



2. Involutivité de {g1, go}
Calculons le crochet

dg dg 0 0 —sinéd 0 —sin6
(91, 92] = 0_291 - 8_192 =0—1 0 0 cosf 0 = cos
v v 00 0 1 0

Calculons le déterminant

cos@ 0 —sinf

|91 92 (91,90 ‘: sinf 0 cosf |=—
0 1 0

cosf@ —sinf
sinf cosf

‘ = —(cos?# +sin?f) = —1

La famille n’est donc pas involutive. La bonne nouvelle est que 'on peut générer toutes les
directions et donc accéder a tout 1'espace d’état x, y et 6.

3. La 1-forme w annulante
11 faut déterminer un vecteur ligne qui annule la matrice (g1 g2). On trouve par inspection et
sans trop de difficulté la ligne suivante

cosf 0
(sin@ —cosf 0) sinf 0 | =0
0 1

En écrivant le vecteur ligne sous la forme d’'une 1-forme, on obtient la 1-forme

w = sinfdx — cos O dy

4. Intégrabilité de la 1-forme w
Calculons

dw = cos0df Adx +sinf dd Ndy # 0
et w n’est pas exacte. De plus

dwNw = (cosOdf Adr+sinfdf Ady) A (sinfdx — cos 0dy)
—cos® 6 dO A dx A dy +sin® 0 d A dy A dx
—dO Ndx Ndy #0

et w n’est pas intégrable, ce qui correspond au fait que la famille {g, go} n’est pas involutive.

La signification de cette perte d’intégrabilité est qu’il n’existe aucune paire de fonctions a(x, y, 6)
et h(z,y,0) telles que

a(x)w = ax,y,0)sinfdr — a(z,y,0) cosb dy
oh oh oh

= %dﬂ? + a—ydy + %de



5. Signification physique
En divisant w par dt on obtient une expression avec I’angle et les vitesses = et y

1 dx dy
w— =sinf— — cos— =sinf 1z — cos by

dt dt dt Y
qui représente la composante perpendiculaire de la vitesse lors du déplacement de la roue.
Cette composante est nulle si la roue ne glisse pas le long de la direction perpendiculaire a son
déplacement. C’est en effet le cas, car en remplacant 2 et y par la cinématique du départ on a
bien la contrainte cinématique

sinf) © — cos@ y = sinf cosbu — cosf sinfu =0

La contrainte cinématique sin 2 — cosfy = 0 est une contrainte sur les vitesses & et y qui
comporte la coordonnée # mais qui ne s’integre pas pour donner une contrainte uniquement sur
les coordonnées

hx,y,0) =0

Si la famille {g1, g2} avait été involutive, alors cela aurait été le cas.

On fait ainsi la distinction entre contrainte holonome (lorsque w est intégrable) et non-homolonome
(lorsque w n’est pas intégrable).




