., Série V
Commande non linéaire

STT - Master Dr. Ph. Miillhaupt

Exercice V.1

Commencons par résoudre directement le systemes d’équations A’ P + PA = —1 avec

P — ( P11 P12 )
P12 D22

et les matrices A obtenues dans la série précédante

1 1
(4
L L

Dans le premier cas,

(— —%><p11 pm) (pn plz)(—% %)_(-1 0)
_& + T R )= _
o] I P12 D22 P12 D22 T T 0 1

ce qui donne trois équations

-

1 1
—2—p11 — 2— = —1
chn me
1 1 n 1 R _ 0
chm Lp22 Cpll Lp12 =
1 R
2—p1g —2— = —1
Op12 Lp22
que l'on peut arranger matriciellement
_% _% 0 P11 —1
M 1 TR 1 e | = 0
C RC, L L, 12
0 C —QZ P22 —1
ce qui conduit a la solution
_ CR(CR*+C+2L)
b= 1(CR?¥ L)
CL(R?-1)
P12 = AT Ty
4(CR*+ L)
 L(2CR*+ LR*+1L)
b2 AR(CR?+ L)

1

—~



et en valeurs numériques

p_ 8.25026 - 1075 2.49992 - 10~ 7
0\ 2499921077 8.07552-107°

De maniere similaire, la solution du systeme masse-ressort est

 km R4V
P = — omp
_m
P12 = ok
_ km+ m?
P22 = ok

avec comme application numérique

p_ 5010 0.001
~\ 0.001 10.02

Il est intéressant de remarquer que le fait de forcer V < 0, Va # 0, par le choix de —Q = —1I,
entraine une fonction de Lyapunov V = ¥ Pz qui n’a plus de relation directe avec 1’énergie du
systeme mécanique. (Rappel : si la fonction de Lyapunov est la somme de I’énergie potentielle
et cinétique, nous avions vu que V <0aulieude V < 0.)

Pour le point 2, et pour le systéme masse ressort, calculons I @ AT + AT ® 1 :

1 _1
AT—( T T4
c L
1 1 1 1
B SO T B R R
= —= 0 0 0 —% 0 —+
[®AT—|—AT®I — 8 OL 1 1 + 1 6%0 R OL
“RC T c L
o o Lt £ 0 L 0 -z
c L c L
2 1 1
R 1 1 0
I _rR 1 0 _1
= §  Pe™ o _k (2)
C RC ~ L I
0 1 1 _2R
c c L
L’inverse de cette matrice est
CR(CR2+2L) C2R2 C2R2 C2R
T T 4(CR?2+L) 4CR2+H4L 4CR2+4L T 4(CR%+L)
___CLR? __3CLR CLR CL
4(CR?+L) 4(CR2+L) ACR2+44L 4CR?4+4L
__ CLR? CLR __3CLR CL
4(CR?+L) 4CR?+4L 4(CR?+L) ACR2+4L
__L°R R % L2 _ L%242CR2L
4(CR*+L) 4(CR?+L) 1(CR?*+1L) 4CRSYALR
ce qui conduit ainsi, en considérant p = —(I ® AT + AT ® I)71q, a la solution précédemment

calculée. On pourrait tout aussi bien remarquer quune des colonnes 2 et 3 de la matrice (2)

2



est redondante étant donné que p1o = po;. Ainsi, en additionnant les coefficients respectifs des
colonnes 2 et 3 de la matrice (2), et en supprimant la ligne 3 de la matrice qui en résulte, on
obtient la matrice apparaissant dans I'expression (1), ce qui confirme le développement effectué
par 'entremise du produit de Kronecker.

En ce qui concerne le systeme masse-ressort, les calculs sont analogues, et on confirme la solution
donnée plus haut.

Dans les deux cas, une ligne Matlab pour le calcul de P est :
P=-inv(kron(eye(2),A’)+kron(A’,eye(2)))*[1;0;0;1]

Exercice V.2 . )
E, = 5Ma';% + §m:t§

Vérifions que 'expression de 1’énergie potentielle donne le bon résultat lorsqu’elle est appliquée
au ressort classique. Pour celui-ci, on a une caractéristique linéaire

o(xg —x1) = k(xg — 21 — L)

de telle sorte que

o—L
= —k (w2 —&—L)d¢
xo—L
2 1
— K {xgg - Lf]
2 L
2
2 . 2
= —k (xlxg — % — Lxy — x9(xg — L) + (22 5 ) + L(zy — L))
2 2 2
= —k? —ﬂ—ﬁ———kxlxg—Lxl—f—LxQ
2 2
1
= ik (l‘% + LU% + L2 — 21‘15(?2 + 2.[/.171 — 2L.§L’2)
1
= 5]6(272 — T — L)2

ce qui donne bien le potentiel d’un ressort linéaire qui atteint son minimum lorsqu’il est au
repos avec ro — xr1 = L.



Les forces extérieures suivantes sont appliquées

Fea:t2 = _b(xl - xQ)

Fextl =Uu= _kpxl - k’d-ijl

Le lagrangien est £ = E, — E, et les forces généralisées

Frl - Femtl + Feth
sz _Feth

; - - d (oc L _ d (oL _ oL _
Les deux équations de la dynamiques = (8_901) — g0 =P et g ( a@) 52, = L, donnent

Mi‘l = +U(ZE2 — 371) — b(l’l — ZL‘Q) — k’pQ?l — k’dI'l

TTLfE"Q = —O'(JIQ — xl) + b(l’l — CL’Q)

Remarque : Les deux dérivées partielles du potentiel s’écrivent

OE
8_1'13 = —o(ry — 1)
et
OF o
e R R ACRRL
T3 zo—L

= U(L) — (U($2 —1'1) _U(L_J’? +x1))

= +o(xe — 11)

En ce qui concerne la deuxieme expression, il faut remarquer que non seulement la borne de
I'intégrale
1
Ep:—/ o(zy —§)d§
zo—L

varie (car elle dépend de x9) mais également la fonction a intégrer varie car I’argument contient
xo. Lorsque on fait varier 'argument x5 de la fonction a intégrer, on obtient une différence finie
o(xg + Axg — &) — o(xg — £) qui lorsque divisée par l'accroissement Az, donne pour de petit
Azxy la dérivée o' (z9 — §).



Le candidat de Lyapunov est

1 1 “ 1
V = -Mi}+ ~mi3 — o(zy — E)dE + ~kya]
2 2 ) 2
On constate que lorsque o appartient aux cadrants I et I1I, le candidat de Lyapunov V est une
fonction positive définie de z; et 29 lorsque on pose z; = x1 et 2o = x9 — L, ce qui correspond
bien au point d’équilibre 1 = 0 et x5 = L. En posant

Byfova) == [ olea— €

xo—L
il s’en suit
: OE oF
V = MCClZL‘l + m[igi'g + —pi’l + —pi'g + k’p{[‘lj}l
81‘1 8:752

= O'(IQ — .xl).jfl — 0'(332 — l’l)i'g — 0'(33'2 — .fCl)jfl + O'(I‘Q — xl)j?Q
—k’p$1i'B1 + k’p$1i‘1 - l{dZE% - b(l‘l — 9;"2)2

= —kg? — b(dy — d9)*

On constate que V = 0 implique & la fois @3 = 0 et @ = 0 car la somme de deux termes
négatifs ne peut devenir nul que lorsque les deux termes sont nuls simultanément (a savoir
—kqi? = 0 et —b(&; — 13)* = 0 simultanément et donc #; = 0 et &5 = 0). En posant 1'état
r=(x1 &1 X2 @9y )T, on associe le champ de vecteurs

Ty
o | drotan ) = - ) - S - B
T2

a la dynamique & = f(z). Dans I'ensemble, V = {x1, &9, T2, To|z1 € R, 290 € R, &1 = 0,39 = 0},
le champ de vecteur f s’écrit

0'(1‘2 — Zﬂl) — %Il

—
I
cgl- <

—%a(mg — 1)

L’ensemble V représente un hyper-espace qui est aussi une sous-variété. Pour que les trajectoires
restent piégées dans cet ensemble V), il faut que la dynamique n’ait pas de composante le long
des vecteurs normaux a la sous-variété (vecteurs normaux a '’hyper-espace). Or, les vecteurs
normaux sont

ni = (010 0)

n, = (000 1)



ce qui entraine que nif; = 0 et nyf = 0 que lorsque

1 S
MO’(.TQ — 1’1) — Ml'l =0 (3)
%a(xg —x) = 0 (4)

qui n’est rien d’autre que la définition du point d’équilibre ((4) entraine zo—x1 = L et (3) donne
alors z; = 0 ce qui conduit finalement & xo = L et x; = 0, ce qui donne le point d’équilibre).
Ainsi, toutes les trajectoires convergeront vers cet unique point d’équilibre. Remarquons que si
la caractéristique o n’est pas monotone, plusieurs points d’équilibre pourraient exister, tout en
garantissant la stabilité de I'un de ceux-ci (celui pour lequel V' demeure une forme localement
positive définie). Par contre, si V' n’est pas positive définie, alors on ne peut pas garantir la
stabilité (par exemple, si la caractéristique o n’appartient pas aux bons cadrants).



