
Commande non linéaire

STI - Master

Série V

Dr. Ph. Müllhaupt

Exercice V.1

Commençons par résoudre directement le systèmes d’équations ATP + PA = −I avec

P =

(
p11 p12
p12 p22

)
et les matrices A obtenues dans la série précédante

A =

(
− 1

RC
1
C

− 1
L
−R

L

)
et

A =

(
0 1
− k

m
− b

m

)
Dans le premier cas,(

− 1
RC

− 1
L

1
C

−R
L

)(
p11 p12
p12 p22

)
+

(
p11 p12
p12 p22

)(
− 1

RC
1
C

− 1
L
−R

L

)
=

(
−1 0
0 −1

)
ce qui donne trois équations

−2
1

RC
p11 − 2

1

L
p12 = −1

− 1

RC
p12 −

1

L
p22 +

1

C
p11 −

R

L
p12 = 0

2
1

C
p12 − 2

R

L
p22 = −1

que l’on peut arranger matriciellement − 2
RC

− 2
L

0
1
C

− 1
RC
− R

L
− 1

L

0 2
C

−2R
L

 p11
p12
p22

 =

 −1
0
−1

 (1)

ce qui conduit à la solution

p11 =
CR (CR2 + C + 2L)

4 (CR2 + L)

p12 =
CL (R2 − 1)

4 (CR2 + L)

p22 =
L (2CR2 + LR2 + L)

4R (CR2 + L)
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et en valeurs numériques

P =

(
8.25026 · 10−6 2.49992 · 10−7

2.49992 · 10−7 8.07552 · 10−9

)

De manière similaire, la solution du système masse-ressort est

p11 =
km+ k2 + b2

2kb

p12 =
m

2k

p22 =
km+m2

2bk

avec comme application numérique

P =

(
5010 0.001
0.001 10.02

)
Il est intéressant de remarquer que le fait de forcer V̇ < 0, ∀x 6= 0, par le choix de −Q = −I,
entrâıne une fonction de Lyapunov V = xTPx qui n’a plus de relation directe avec l’énergie du
système mécanique. (Rappel : si la fonction de Lyapunov est la somme de l’énergie potentielle
et cinétique, nous avions vu que V̇ ≤ 0 au lieu de V̇ < 0.)
Pour le point 2, et pour le système masse ressort, calculons I ⊗ AT + AT ⊗ I :

AT =

(
− 1

RC
− 1

L
1
C

−R
L

)

I ⊗ AT + AT ⊗ I =


− 1

RC
− 1

L
0 0

1
C

−R
L

0 0
0 0 − 1

RC
− 1

L

0 0 1
C

−R
L

+


− 1

RC
0 − 1

L
0

0 − 1
RC

0 − 1
L

1
C

0 −R
L

0
0 1

C
0 −R

L



=


− 2

RC
− 1

L
− 1

L
0

1
C

−R
L
− 1

RC
0 − 1

L
1
C

0 − 1
RC
− R

L
− 1

L

0 1
C

1
C

−2R
L

 (2)

L’inverse de cette matrice est
−CR(CR2+2L)

4(CR2+L)
C2R2

4CR2+4L
C2R2

4CR2+4L
− C2R

4(CR2+L)

− CLR2

4(CR2+L)
− 3CLR

4(CR2+L)
CLR

4CR2+4L
CL

4CR2+4L

− CLR2

4(CR2+L)
CLR

4CR2+4L
− 3CLR

4(CR2+L)
CL

4CR2+4L

− L2R
4(CR2+L)

− L2

4(CR2+L)
− L2

4(CR2+L)
−L2+2CR2L

4CR3+4LR


ce qui conduit ainsi, en considérant p = −(I ⊗ AT + AT ⊗ I)−1q, à la solution précédemment
calculée. On pourrait tout aussi bien remarquer qu’une des colonnes 2 et 3 de la matrice (2)
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est redondante étant donné que p12 = p21. Ainsi, en additionnant les coefficients respectifs des
colonnes 2 et 3 de la matrice (2), et en supprimant la ligne 3 de la matrice qui en résulte, on
obtient la matrice apparaissant dans l’expression (1), ce qui confirme le développement effectué
par l’entremise du produit de Kronecker.

En ce qui concerne le système masse-ressort, les calculs sont analogues, et on confirme la solution
donnée plus haut.

Dans les deux cas, une ligne Matlab pour le calcul de P est :

P=-inv(kron(eye(2),A’)+kron(A’,eye(2)))*[1;0;0;1]

Exercice V.2

Ec =
1

2
Mẋ21 +

1

2
mẋ22

Ep = −
∫ x1

x2−L
σ(x2 − ξ)dξ

Vérifions que l’expression de l’énergie potentielle donne le bon résultat lorsqu’elle est appliquée
au ressort classique. Pour celui-ci, on a une caractéristique linéaire

σ(x2 − x1) = k(x2 − x1 − L)

de telle sorte que

Ep = −
∫ x1

x2−L
σ(x2 − ξ) dξ

= −k
∫ x1

x2−L
(x2 − ξ − L) dξ

= −k
[
x2ξ −

ξ2

2
− Lξ

]x1

x2−L

= −k
(
x1x2 −

x21
2
− Lx1 − x2(x2 − L) +

(x2 − L)2

2
+ L(x2 − L)

)
= −k

(
−x

2
1

2
− x22

2
− L2

2
+ x1x2 − Lx1 + Lx2

)
=

1

2
k
(
x21 + x22 + L2 − 2x1x2 + 2Lx1 − 2Lx2

)
=

1

2
k(x2 − x1 − L)2

ce qui donne bien le potentiel d’un ressort linéaire qui atteint son minimum lorsqu’il est au
repos avec x2 − x1 = L.
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Les forces extérieures suivantes sont appliquées

Fext2 = −b(ẋ1 − ẋ2)

Fext1 = u = −kpx1 − kdẋ1

Le lagrangien est L = Ec − Ep et les forces généralisées

Fx1 = Fext1 + Fext2

Fx2 = −Fext2

Les deux équations de la dynamiques d
dt

(
∂L
∂ẋ1

)
− ∂L

∂x1
= Fx1 et d

dt

(
∂L
∂ẋ2

)
− ∂L

∂x2
= Fx2 donnent

Mẍ1 = +σ(x2 − x1)− b(ẋ1 − ẋ2)− kpx1 − kdẋ1
mẍ2 = −σ(x2 − x1) + b(ẋ1 − ẋ2)

Remarque : Les deux dérivées partielles du potentiel s’écrivent

∂Ep

∂x1
= −σ(x2 − x1)

et

∂Ep

∂x2
= σ(L)−

∫ x1

x2−L
σ

′
(x2 − ξ) dξ

= σ(L)− (σ(x2 − x1)− σ(L− x2 + x1))

= +σ(x2 − x1)

En ce qui concerne la deuxième expression, il faut remarquer que non seulement la borne de
l’intégrale

Ep = −
∫ x1

x2−L
σ(x2 − ξ) dξ

varie (car elle dépend de x2) mais également la fonction à intégrer varie car l’argument contient
x2. Lorsque on fait varier l’argument x2 de la fonction à intégrer, on obtient une différence finie
σ(x2 + ∆x2 − ξ) − σ(x2 − ξ) qui lorsque divisée par l’accroissement ∆x2 donne pour de petit
∆x2 la dérivée σ′(x2 − ξ).
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Le candidat de Lyapunov est

V =
1

2
Mẋ21 +

1

2
mẋ22 −

∫ x1

x2−L
σ(x2 − ξ)dξ +

1

2
kpx

2
1

On constate que lorsque σ appartient aux cadrants I et III, le candidat de Lyapunov V est une
fonction positive définie de z1 et z2 lorsque on pose z1 = x1 et z2 = x2 − L, ce qui correspond
bien au point d’équilibre x1 = 0 et x2 = L. En posant

Ep(x1, x2) = −
∫ x1

x2−L
σ(x2 − ξ)dξ

il s’en suit

V̇ = Mẍ1ẋ1 +mẍ2ẋ2 +
∂Ep

∂x1
ẋ1 +

∂Ep

∂x2
ẋ2 + kpx1ẋ1

= σ(x2 − x1)ẋ1 − σ(x2 − x1)ẋ2 − σ(x2 − x1)ẋ1 + σ(x2 − x1)ẋ2
−kpx1ẋ1 + kpx1ẋ1 − kdẋ21 − b(ẋ1 − ẋ2)2

= −kdẋ21 − b(ẋ1 − ẋ2)2

On constate que V̇ = 0 implique à la fois ẋ1 = 0 et ẋ2 = 0 car la somme de deux termes
négatifs ne peut devenir nul que lorsque les deux termes sont nuls simultanément (à savoir
−kdẋ21 = 0 et −b(ẋ1 − ẋ2)

2 = 0 simultanément et donc ẋ1 = 0 et ẋ2 = 0). En posant l’état
x = ( x1 ẋ1 x2 ẋ2 )T , on associe le champ de vecteurs

f =


ẋ1
1
M
σ(x2 − x1)− b

M
(ẋ1 − ẋ2)− kp

M
x1 − kd

M
ẋ1

ẋ2
− 1

m
σ(x2 − x1) + b

m
(ẋ1 − ẋ2)


à la dynamique ẋ = f(x). Dans l’ensemble, V = {x1, ẋ2, x2, ẋ2|x1 ∈ R, x2 ∈ R, ẋ1 = 0, ẋ2 = 0},
le champ de vecteur f s’écrit

f =


0
1
M
σ(x2 − x1)− kp

M
x1

0
− 1

m
σ(x2 − x1)


L’ensemble V représente un hyper-espace qui est aussi une sous-variété. Pour que les trajectoires
restent piégées dans cet ensemble V , il faut que la dynamique n’ait pas de composante le long
des vecteurs normaux à la sous-variété (vecteurs normaux à l’hyper-espace). Or, les vecteurs
normaux sont

n1 =
(

0 1 0 0
)

n2 =
(

0 0 0 1
)
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ce qui entrâıne que n1f1 = 0 et n2f = 0 que lorsque

1

M
σ(x2 − x1)−

kp
M
x1 = 0 (3)

1

m
σ(x2 − x1) = 0 (4)

qui n’est rien d’autre que la définition du point d’équilibre ((4) entrâıne x2−x1 = L et (3) donne
alors x1 = 0 ce qui conduit finalement à x2 = L et x1 = 0, ce qui donne le point d’équilibre).
Ainsi, toutes les trajectoires convergeront vers cet unique point d’équilibre. Remarquons que si
la caractéristique σ n’est pas monotone, plusieurs points d’équilibre pourraient exister, tout en
garantissant la stabilité de l’un de ceux-ci (celui pour lequel V demeure une forme localement
positive définie). Par contre, si V n’est pas positive définie, alors on ne peut pas garantir la
stabilité (par exemple, si la caractéristique σ n’appartient pas aux bons cadrants).
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