
Commande non linéaire

STI - Semestre Master I

Série III

Dr. Ph. Müllhaupt

Exercice III.1

Au cours, nous avons vu que la sortie d’une non linéarité statique y(t) = φ(u(t)) lorsque
u(t) = A sin(ωt) peut s’approximer par le premier harmonique :

y(t) ≈ a1 cos(ωt) + b1 sin(ωt)

Démontrer que le gain équivalent N est dans ce cas donné par

N =
1

A
(b1 + ja1)

en procédant de la manière suivante :
— Poser sin(ωt) = ejωt−e−jωt

2j
et cos(ωt) = ejωt+e−jωt

2
.

— Factoriser les termes devant ejωt et ceux devant e−jωt. Les deux expressions résultantes
doivent être nulles.

— Expliquer l’apparente contradiction.

Corrigé :
La relation entre la sortie y et l’entrée de la non-linéarité u = A sin(ωt) est approximée par un
gain équivalent étant donné que l’on considère que la première harmonique. Ainsi

a1 cos(ωt) + b1 sin(ωt) = NA sin(ωt)

Ce qui conduit à

a1
ejωt + e−jωt

2
+ b1

ejωt − e−jωt

2j
= AN

ejωt − e−jωt

2j

En factorisant les termes devant le facteur ejωt nous obtenons

(N − 1

A
(b1 + ja1))e

jωt = 0

mais en factorisant ceux devant le facteur e−jωt, nous obtenons

(N − 1

A
(b1 − ja1))e−jωt = 0 (1)

ce qui semble une contradiction. Or, nous avons commis une erreur, car en considérant e−jωt, on
considère une pulsation négative −ω et toute relation de transfert harmonique, disons G(jω),
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possède la propriété que G(−jω) = G(jω)∗ où ∗ désigne le complexe conjugué. Ainsi, l’équation
(1) devient

(N∗ − 1

A
(b1 − ja1))e−jωt = 0

ce qui lève la contradiction et conduit au résultat escompté

N =
1

A
(b1 + ja1)

étant donné que ejωt 6≡ 0 tout comme e−jωt 6≡ 0.

Exercice III.2

Soit la non-linéarité statique

φ(u) = u+ (1− u)

(
1

π
arctan(γ(u− 1)) +

1

2

)
− (u+ 1)

(
1

π
arctan(−γ(u+ 1)) +

1

2

)
pour γ = 1, 2, 3, 10. Dessiner la caractéristique pour ces quatre cas.

Evaluer le gain équivalent en approximant les intégrales par des sommes. Par exemple pour b1,
l’expression

b1 =
1

π

∫ π

−π
y(t) sin(ωt)d(ωt)

devient

b1 ≈
2

N

N−1∑
l=0

y

(
1

ω

(
−π +

2lπ

N

))
sin

(
−π +

2lπ

N

)

Représenter le gain équivalent N = b1
A

en fonction de l’amplitude A, pour différentes valeurs
de N = 2, 10, 20, 100, 1000. Comparer les résultats obtenus avec ceux d’une saturation pour
laquelle k = 1 et a = 1.

Quel est l’avantage de la fonction φ proposée par rapport à la saturation ?

Voici la représentation graphique de la fonction donnée pour les quatre valeurs du paramètre
γ = 1, 2, 3, 10 :
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En ce qui concerne l’approximation de l’intégrale, la chose essentielle est de bien poser la
grandeur

y(t) = φ(A sin(ωt))

ce qui conduit pour le gain équivalent aux représentations suivantes (à gauche, γ = 10 et à
droite γ = 1, et les valeurs de la discrétisation sont de 3, 10, 20, 100) :

2 4 6 8 10

0.4

0.6

0.8

1.0

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

L’axe horizontal représente l’amplitude A et l’axe vertical représente le gain équivalent (réel).

Lorsque γ → ∞, la non-linéarité statique proposée φ tend vers la saturation tout en restant
toujours différentiable (lisse), ce qui est un avantage.
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Exercice III.3
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1/a R

a) Modéliser le circuit électronique représenté ci-dessus. Toutes les capacités ont la même
valeur, ainsi que les résistances. Une seule résistance est variable afin de modifier le
comportement du circuit. Les valeurs numériques sont a = 2.9, b = 1.8, c = 1.1, d ∈
[1; 2.5], R = 1 [kΩ] et C = 33 [nF].

b) Isoler la non-linéarité statique et la partie dynamique linéaire.
c) Analyser le comportement par la méthode du premier harmonique.
d) Déterminer la pulsation ω et l’amplitude A d’une éventuelle oscillation.
e) Simuler le circuit.

Le premier amplificateur opérationnel joue le rôle d’un intégrateur sommateur-inverseur. Quatre
tensions u1, u2, u3 et u4 correspondent aux tensions appliquées aux résistances respectives
R1 = 1

c
R, R2 = 1

b
R et R3 = 1

a
R et R4 = dR.

Comme l’impédance à l’entrée ’-’ du premier amplificateur opérationnel est infinie, la somme

des quatre courants u1
1
c
R

, u1
1
c
R

, u1
1
c
R

, et u4
dR

, est égale au courant qui circule dans la capacité C
duC1

dt

du premier ampli-op.

Les tensions de sortie des ampli-ops qui contiennent des capacités sont dénomées respectivement,
y1 (sortie du premier ampli-op depuis la gauche), y3 (sortie du troisième ampli-op), y5 (sortie
due 5 ème ampli op du haut ; le dernier et sixième ampli-op est celui du bas qui joue le rôle du
relais).

Ainsi, en boucle ouverte (toutes les quatres boucles sont ouvertes, celles provenant de y1, y3, y5
et de la sortie du relais −V̂ sgn(y5), où V̂ désigne la tension maximale symétrique), on obtient
la relation (y1 est la tension à la sortie du 1er ampli-op) :
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Y1 = − 1

R1Cs
U1 −

1

R2Cs
U2 −

1

R3Cs
U3 −

1

R4Cs
U4. (2)

Cette formule se justifie de la manière suivante :

u1 +
1

c
Ri1 = 0

u2 +
1

b
Ri2 = 0

u3 +
1

a
Ri3 = 0

u4 + dRi4 = 0

0 + uc = y

C
duC1

dt
= i1 + i2 + i3 + i4

En effet, les quatres premières relations d’égalité proviennent de la propriété d’avoir une tension
nulle entre les deux bornes d’entrées (du premier ampli-op) et la dernière égalité est la consé-
quence d’une impédance infinie (du premier ampli-op). Finalement, en appliquant la transfor-
mée de Laplace, nous avons (condition initiale stationnaire nulle) sCUC1 = I1 + I2 + I3 + I4 et
0 + UC1 = Y1, ce qui donne (2).

Le deuxième ampli-op est en montage inverseur. En désignant sa sortie par y2, on a Y1 = −Y2
qui se justifie par les tensions nulles aux bornes d’entrée du deuxième ampli-op. En effet,

y2 +Ri = 0

0 +Ri = y3

ce qui confirme y2 = −y1 et donc Y2 = −Y1. De manière similaire, nous déduisons Y3 = − 1
RCs

Y2,
Y4 = −Y3 et Y5 = − 1

RCs
Y4, ce qui achève l’analyse et la modélisation en boucle ouverte.

Pour obtenir la fonction de transfert, qui sera utilisée dans l’analyse du premier harmonique, on
ouvre la boucle simplement au niveau du relais en laissant u4 non défini (entrée de la fonction
de transfert en boucle fermée) et on impose u1 = y1, u2 = y3, et u3 = y5. Ceci transforme (2)
en une nouvelle relation

(RCs)2Y5 = − 1
1
c
RCs

(RCs)2Y5 −
1

1
b
RCs

RCsY5 −
1

1
a
RCs

Y5 −
1

dRCs
U4, (3)

laquelle, après réduction en fraction rationnelle en s, donne(
R2C3s3 +

R2C2

1
c
R

s2 +
R
1
b
R
Cs+

1
1
a
R

)
Y5 = − 1

dR
U4

G(s) =
Y5
U4

= − 1/d

(RCs)3 + c(RCs)2 + b(RCs) + a
(4)

La première chose que l’on va faire est de considérer une dilatation de l’échelle du temps qui
force RCs = s′ ou s′ joue le rôle d’une nouvelle variable de Laplace associée à la dérivation
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selon la nouvelle échelle du temps d
dt′

= RC d
dt

et donc t′ = RCt. Dorénavant on désigne par ẋ1
la dérivée d

dt′
x1. Pour construire une représentation d’état, on pose comme variables d’état x1

= y5, x2 = ẏ5, x3 = ÿ5, de telle sorte, qu’en boucle fermée (avec le relais u4 = −V̂ sgn(y5)), on
ait

ẋ1 = x2

ẋ2 = x3

ẋ3 =
1

d
V̂ sgn(x1)− ax1 − bx2 − cx3

avec comme paramètres numériques a = 2.9, b = 1.8, c = 1.1 et d pouvant varier entre 1 et 2.5.

Pour la simulation, on approxime la fonction sgn(x) par

sgn(x) ≈ 2

π
arctan(20x),

avec le facteur 20 pouvant augmenter afin de mieux en mieux approximer la fonction en question.
En faisant varier d entre les valeurs 0.4 et 1.3, nous obtenons divers cas de simulation qui sont
représentés ci-dessous, pour la même condition initiale x1(0) = 0.1, x2 = 0.01 et x3(0) = 0.1 :
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Pour l’analyse par la méthode du premier harmonique, on revient à la fonction de transfert
dans l’échelle temporelle t′ :

G(s) = − 1/d

s3 + cs2 + bs+ a
(5)

avec les valeurs numériques mentionnées précédemment. En remplaçant s par jω, on obtient la
réponse harmonique

G(jω) = − 1/d

a− cω2 + (bω − ω3)j
(6)

que nous pouvons représenter dans un plan complexe (d = 1) :
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On constate que G(jω) intersecte l’axe réel en trois points : 1) à l’origine correspondant à une
pulsation ω infinie (phénomène passe-bas) et en un autre point correspondant à l’annulation de
la partie imaginaire de (6), et par conséquent aux deux pulsations :

ω = ±
√
b;

ce qui correspond au point sur l’axe réel négatif en

G(j
√
b) =

1/d

bc− a
= − 1

N(A)
.
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Comme le gain équivalent du relais est donné par

N(A) =
4V̂

πA

on obtient l’estimée de l’amplitude prédite par la méthode du premier harmonique

A =
4V̂

π

1

(a− bc)d
.

Pour d = 2 et V̂ = π
2

on obtient les valeurs numériques ω = 1.34164 et A = 1.08696. Ceci est
représenté ci dessous :
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et on peut comparer avec la simulation :
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pour remarquer que la pulsation est très bien prédite mais que l’amplitude n’est pas terrible.
Bien évidemment, pour les autres valeurs de d qui sont inférieures, la méthode du premier
harmonique n’est pas capable de prédire le comportement chaotique. En effet, pour d = 1, la
simulation donne pour y5 :
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alors que la méthode du premier harmonique ne prédit qu’une seule fondamentale à la même
fréquence que celle pour d = 0.5, à savoir, ω = 1.34164.

Une expérience avec le circuit électronique confirme la présence d’une solution chaotique (Figure
1). Trois circuits TLO82 (contenant deux amplificateurs opérationnels chacun) sont alimentés
à partir d’une source de tension continue 9V et un pont diviseur de tension pour créer le 0V.
Un oscilloscope à deux canaux permet de tracer une projection similaire à un portrait de phase
(le système possède trois états et seul une projection permet d’avoir les deux dimensions du
portrait de phase). L’entrée X (signal jaune) est la sortie du dernier amplificateur du haut (5
ème amplificateur) et l’entrée Y (signal bleu) est la sortie du 3 ème amplificateur.
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Figure 1: Un montage électronique confirme la présence d’un attracteur chaotique. Un oscilloscope à
deux canaux permet de visualiser un pseudo-plan de phase (une projection des trajectoires
de l’espace d’états tridimensionnel dans un espace bidimensionnel).
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