., érie 111
Commande non linéaire S

STT - Semestre Master I Dr. Ph. Miillhaupt

Exercice I11.1

Au cours, nous avons vu que la sortie d’une non linéarité statique y(t) = ¢(u(t)) lorsque
u(t) = Asin(wt) peut s’approximer par le premier harmonique :

y(t) =~ a; cos(wt) + by sin(wt)

Démontrer que le gain équivalent N est dans ce cas donné par

1

N = 1 (by + jaz)

en procédant de la maniere suivante :
. Jwt _ ,—jwt Jwt —Jjwt
— Poser sin(wt) = &S5 et cos(wt) = —E—
J ) 2 )
— Factoriser les termes devant e/“! et ceux devant e 7!, Les deux expressions résultantes
doivent étre nulles.

— Expliquer I'apparente contradiction.

Corrigé :
La relation entre la sortie y et 'entrée de la non-linéarité u = Asin(wt) est approximée par un
gain équivalent étant donné que ’on considére que la premiere harmonique. Ainsi

ay cos(wt) + by sin(wt) = N Asin(wt)

Ce qui conduit a
ejwt + e—jwt ejwt . e—jwt ejwt _ e—jwt
ay + by , =AN———M
2 27 27

En factorisant les termes devant le facteur e/“* nous obtenons

1 .
(N = 5 (b + jar))e™ =0

mais en factorisant ceux devant le facteur e /“*, nous obtenons

(N = (b= jan))e " = 0 (1)

ce qui semble une contradiction. Or, nous avons commis une erreur, car en considérant e 7**, on
consideére une pulsation négative —w et toute relation de transfert harmonique, disons G(jw),



possede la propriété que G(—jw) = G(jw)* ou * désigne le complexe conjugué. Ainsi, I’équation
(1) devient

1 . .
(N* = (b1 = jar))e =0

ce qui leve la contradiction et conduit au résultat escompté

1

N
A

(b1 + jay)

étant donné que e/“! # 0 tout comme e+t £ (.

Exercice II1.2

Soit la non-linéarité statique

o(u) = u+ (1 - u) (1 arctan(y(u — 1)) + %) (et 1) (1 arctan(—~(u + 1)) + %)

™ ™

pour v = 1,2, 3, 10. Dessiner la caractéristique pour ces quatre cas.

Evaluer le gain équivalent en approximant les intégrales par des sommes. Par exemple pour by,
I’expression

by = — /Tr y(t) sin(wt)d(wt)

—T

N—-1
2 1 2w . 2w
Y (a (—”W)) sin (—”W)

=

devient

Représenter le gain équivalent N = % en fonction de 'amplitude A, pour différentes valeurs
de N = 2,10,20,100,1000. Comparer les résultats obtenus avec ceux d’une saturation pour
laquelle k =1 et a = 1.

Quel est I'avantage de la fonction ¢ proposée par rapport a la saturation ?

Voici la représentation graphique de la fonction donnée pour les quatre valeurs du parametre
v=1,2,3,10:
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En ce qui concerne I'approximation de l'intégrale, la chose essentielle est de bien poser la
grandeur

y(t) = ¢(Asin(wt))

ce qui conduit pour le gain équivalent aux représentations suivantes (a gauche, v = 10 et a
droite 7 = 1, et les valeurs de la discrétisation sont de 3,10, 20, 100) :

L’axe horizontal représente 'amplitude A et 1’axe vertical représente le gain équivalent (réel).

Lorsque v — o0, la non-linéarité statique proposée ¢ tend vers la saturation tout en restant
toujours différentiable (lisse), ce qui est un avantage.



Exercice I1I1.3
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a) Modéliser le circuit électronique représenté ci-dessus. Toutes les capacités ont la méme
valeur, ainsi que les résistances. Une seule résistance est variable afin de modifier le
comportement du circuit. Les valeurs numériques sont a = 2.9, b = 1.8, ¢ = 1.1, d €
[1;2.5], R =1 [kQ] et C' = 33 [nF].
) Isoler la non-linéarité statique et la partie dynamique linéaire.
¢) Analyser le comportement par la méthode du premier harmonique.

) Déterminer la pulsation w et 'amplitude A d’une éventuelle oscillation.

e) Simuler le circuit.

Le premier amplificateur opérationnel joue le role d'un intégrateur sommateur-inverseur. Quatre

tensions wuq, us, us et uy correspondent aux tensions appliquées aux résistances respectives
Rlle RgleethleetR4:dR.
c b a

o

oL

Comme l'impédance a 'entrée ’-> du premier amplificateur opérationnel est infinie, la somme
, . s yd

des quatre courants 1, 15, 15, et gf, est ¢gale au courant qui circule dans la capacité C'=z*

c c c

du premier ampli-op.

Les tensions de sortie des ampli-ops qui contiennent des capacités sont dénomées respectivement,
y1 (sortie du premier ampli-op depuis la gauche), ys (sortie du troisieme ampli-op), ys (sortie
due 5 eme ampli op du haut ; le dernier et sixieme ampli-op est celui du bas qui joue le role du
relais).

Ainsi, en boucle ouverte (toutes les quatres boucles sont ouvertes, celles provenant de y1, ys3, ys
et de la sortie du relais —V'sgn(ys), ou V' désigne la tension maximale symétrique), on obtient
la relation (y; est la tension a la sortie du ler ampli-op) :



1 1 1 1

Yi=——U, — — _
! R1 Cs Ul RQCS U2 Rch U3 R4CS

Us. (2)

Cette formule se justifie de la maniere suivante :
1.
U + —Rll =0
c
1.
U + ERZQ =0
I,
us + —ng = 0
a
Uy + dRZ4 =0

O+u. =y
Cdum iy e
11+ + i3+
i 1221131+

En effet, les quatres premieres relations d’égalité proviennent de la propriété d’avoir une tension
nulle entre les deux bornes d’entrées (du premier ampli-op) et la derniere égalité est la consé-
quence d’une impédance infinie (du premier ampli-op). Finalement, en appliquant la transfor-
mée de Laplace, nous avons (condition initiale stationnaire nulle) sCUqgy = I + I + I3 + 1, et
0+ Ue1 =Y, ce qui donne (2).

Le deuxieme ampli-op est en montage inverseur. En désignant sa sortie par ys, on a Y; = =Y,
qui se justifie par les tensions nulles aux bornes d’entrée du deuxieme ampli-op. En effet,

Yo+ Ri =0

0+ Ri=ys
ce qui confirme y, = —y; et donc Yo = —Y;. De maniere similaire, nous déduisons Y3 = —ﬁYQ,
Y, =-Ys;et Y5 = —ﬁﬁ, ce qui acheve I'analyse et la modélisation en boucle ouverte.

Pour obtenir la fonction de transfert, qui sera utilisée dans I’analyse du premier harmonique, on
ouvre la boucle simplement au niveau du relais en laissant u4 non défini (entrée de la fonction
de transfert en boucle fermée) et on impose u; = y1, uz = ys3, et ug = ys. Ceci transforme (2)
en une nouvelle relation

1 1
RCs)*Ys = — RCs)*Ys — RCsYs — +——Y5 — U 3
(ROSPYs = =1 (ROSIYs = TRas ROSYs = Tpac¥s = JpasUn 3)
laquelle, apres réduction en fraction rationnelle en s, donne
R2C? R 1 1
(R2C’353 + %—RSQ + %—RCS + %—R) Y; = _EUZL
Y: 1/d
Gls) = 22 = - / (@)

U, (RCs)3 4 ¢(RCs)? +b(RCs) +a

La premiere chose que 'on va faire est de considérer une dilatation de ’échelle du temps qui
force RC's = s’ ou s joue le role d’une nouvelle variable de Laplace associée a la dérivation



selon la nouvelle échelle du temps % = RC % et donc t' = RC't. Dorénavant on désigne par i

la dérivée %xl. Pour construire une représentation d’état, on pose comme variables d’état x;

= Y5, To = U5, T3 = U5, de telle sorte, qu’en boucle fermée (avec le relais uy = —ngn(y5)), on
ait

jjl = X2

Z"Q = I3

. I

T3 = C—ingn(zl) —ax; — bxy — cxs

avec comme parametres numériques a = 2.9, b = 1.8, ¢ = 1.1 et d pouvant varier entre 1 et 2.5.
Pour la simulation, on approxime la fonction sgn(z) par
2
sgn(z) ~ — arctan(20x),
s
avec le facteur 20 pouvant augmenter afin de mieux en mieux approximer la fonction en question.

En faisant varier d entre les valeurs 0.4 et 1.3, nous obtenons divers cas de simulation qui sont
représentés ci-dessous, pour la méme condition initiale x1(0) = 0.1, x5 = 0.01 et x3(0) = 0.1 :




Pour I'analyse par la méthode du premier harmonique, on revient a la fonction de transfert
dans I’échelle temporelle ¢’ :

1/d

— 5
$3+cs2+bs+a (5)

G(s) =

avec les valeurs numériques mentionnées précédemment. En remplagant s par jw, on obtient la
réponse harmonique
1/d

Gljw) = Ca— aw? + (bw — w3)j

(6)

que nous pouvons représenter dans un plan complexe (d = 1) :
1.5

On constate que G(jw) intersecte 1’axe réel en trois points : 1) a l'origine correspondant & une
pulsation w infinie (phénomene passe-bas) et en un autre point correspondant a ’annulation de
la partie imaginaire de (6), et par conséquent aux deux pulsations :

w= :l:\/l_);
ce qui correspond au point sur ’axe réel négatif en

G(jvb) — % _ —ﬁ.



Comme le gain équivalent du relais est donné par

A4V

N(A) = —

on obtient 'estimée de I'amplitude prédite par la méthode du premier harmonique

4V

A 7 (a—bec)d

Pour d = 2 et V = Z on obtient les valeurs numériques w = 1.34164 et A = 1.08696. Ceci est

2
représenté ci dessous :

L L L L A L L A L L /\ L L L L
r 5 10 15 20
-0.5 L
-1.0 L

et on peut comparer avec la simulation :

75 80 85 90

pour remarquer que la pulsation est tres bien prédite mais que 'amplitude n’est pas terrible.
Bien évidemment, pour les autres valeurs de d qui sont inférieures, la méthode du premier
harmonique n’est pas capable de prédire le comportement chaotique. En effet, pour d = 1, la
simulation donne pour y; :



alors que la méthode du premier harmonique ne prédit qu’'une seule fondamentale a la méme
fréquence que celle pour d = 0.5, a savoir, w = 1.34164.

Une expérience avec le circuit électronique confirme la présence d’une solution chaotique (Figure
1). Trois circuits TLO82 (contenant deux amplificateurs opérationnels chacun) sont alimentés
a partir d’une source de tension continue 9V et un pont diviseur de tension pour créer le OV.
Un oscilloscope a deux canaux permet de tracer une projection similaire a un portrait de phase
(le systeme possede trois états et seul une projection permet d’avoir les deux dimensions du
portrait de phase). L’entrée X (signal jaune) est la sortie du dernier amplificateur du haut (5
eme amplificateur) et 'entrée Y (signal bleu) est la sortie du 3 éme amplificateur.



@D 500mV J[ M 250us

& 500mV [ M 250us

Figure 1: Un montage électronique confirme la présence d’un attracteur chaotique. Un oscilloscope a
deux canaux permet de visualiser un pseudo-plan de phase (une projection des trajectoires
de l'espace d’états tridimensionnel dans un espace bidimensionnel).
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