
Commande non linéaire

STI - Master

Série 0 - corrigé

Dr. Ph. Müllhaupt

Exercice 0.1

1. Soit
ẋ = −3x

Déterminer un intervalle pour la condition initiale x0, c.-à-d. un r > 0, de telle sorte que

|x0| < r

implique
|x(t)| < 5 ∀t > 0

2. Même question pour
ẍ = −2ẋ− x

à savoir, déterminer r > 0, de telle sorte que

‖x0‖ < r

implique
‖X (x0, t)‖ < 5 ∀t > 0

où X (x0, t) désigne la solution x(t). Cette notation est utilisée d’une part pour insister
sur la dépendance de la condition initiale x0, et, d’autre part, pour ne pas confondre la
solution avec le vecteur d’état x.

Corrigé

1. L’équation différentielle ẋ = −3x possède comme solution

X (x0, t) = x0e
−3t

Ainsi, lorsque |x0| < r, il est garantit que |X (x0, t)| < r. En effet, |x0e−3t| < |x0| < r,
∀t > 0 étant donné que

|e−3t| < 1 ∀t > 0

On peut ainsi choisir 0 < r < 5 (cf. fig. 1)
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Figure 1: La condition initiale x0 peut être choisie dans l’intervalle −5 < x0 < 5 pour garantir
|X (x0, t)| < 5, ∀t > 0.

2. L’équation différentielle ẍ + 2ẋ + x = 0 possède un polynôme caractéristique ayant les
deux racines identiques en −1. La solution comporte donc une partie polynômiale (due à
la multiplicité des racines) et une partie exponentielle avec la valeur −1 dans l’exposant.
Autrement dit,

X (x0, t) = (C1 + C2t)e
−t

avec des constantes d’intégration C1 et C2 à déterminer en fonction de conditions ini-
tiales :

X (x0, ẋ0, 0) = x0 = C1

Ẋ (x0, ẋ0, 0) = ẋ0 = C2 − C1

d’où on tire les constantes en fonction des conditions initiales

C1 = x0

C2 = x0 + ẋ0

de telle sorte que x et ẋ sont donés par

X = (x0 + t(x0 + ẋ0)) e
−t

Ẋ = (x0 + ẋ0)e
−t − (x0 + t(x0 + ẋ0)) e

−t

= ẋ(0)e−t − (x(0) + ẋ(0))te−t

Choisissons un ε tel que 0 < ε < 1. A partir de la série de la fonction exponentielle

eεt =
∞∑
k=0

1

k!
(εt)k = 1 + εt+

1

2
ε2t2 + · · ·
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on a la majoration suivante après division par ε

eεt

ε
> t

que l’on peut utiliser dans les expressions de X et Ẋ

X = x0 + t(x0 + ẋ0)e
−t

|X | ≤ |x0|+ t(|x0|+ |ẋ0|)e−t

< |x0|+
eεt

ε
(|x0|+ |ẋ0|)e−t

< |x0|+ (|x0|+ |ẋ0|)
1

ε

avec 0 < ε < 1. Un ε proche de 0 conduit à une estimation conservative. On a donc
tout intérêt à prendre la valeur maximum possible autrement dit une valeur ε = 1−

(juste inférieur à l’unité), et prendre la limite ensuite pour ε → 1. Toutefois, il faut
encore vérifier que la deuxième valeur de l’état (c’est-à-dire ẋ) demeure également bornée
(éventuellement en renforçant la borne)

|Ẋ | ≤ |ẋ(0)|+ 1

ε
|x(0)|+ 1

ε
|ẋ(0)|

< 3 max (|x(0)|, |ẋ(0)|)

(après passage à la limite ε→ 1), de telle sorte que

‖X‖ =
√
X 2 + Ẋ 2 ≤

√
2 max(|X |, |Ẋ |) < 3

√
2 max(|x(0)|, |ẋ(0)|)

En choisissant R = 5 et en voulant garantir ‖X‖ < R = 5, il faudra choisir

r <
R

3
√

2
=

5

3
√

2

Cependant (cf. fig. 4) l’estimation de te−t par 1
ε
eεte−t est très conservative et entrâıne

une surestimation de l’effet de la condition initiale sur la trajectoire du système. La
nature conservative de la borne obtenue n’enlève rien au fait qu’elle est suffisante pour
établir la stabilité de l’équation différentielle sans devoir établir celle-ci par les valeurs
propres. L’objectif de cet exercice est de montrer que l’on peut définir la stabilité par
le fait que l’on peut borner les trajectoires du système en choisissant convenablement
les conditions initiales de telle sorte à permettre une définition de la stabilité qui sera
également valable pour les systèmes non linéaires.
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Figure 2: Trajectoires pour un vecteur de conditions initiales x0 tels que ‖x0‖ = 1. Comme le module
‖X (x0, t)‖ < 1 pour tout t > 0, On constate que l’on aurait pu prendre r = R au lieu du
facteur 1

3
√
2
. L’estimée obtenue est donc conservatrice.
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Figure 3: Représentation dans le plan x, ẋ de la trajectoire (le temps n’apparâıt pas explicitement)
pour un vecteur de conditions initiales x0 tels que ‖x0‖ = 1. Comme le module ‖X (x0, t)‖ <
1 pour tout t > 0, On constate que l’on aurait pu prendre r = R au lieu du facteur 1

3 .
L’estimée obtenue est donc conservatrice.
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Figure 4: Estimer te−t par 1
ε e
εte−t avec ε = 1− est très conservateur.

Exercice 0.2

Soit le système

ẋ =

(
4 −1
16 −4

)
x+

(
2
5

)
u

1. On considère la sortie y = x1. Dériver la sortie y jusqu’à ce que l’entrée u apparaisse.
Est-ce qu’il est possible de stabiliser la sortie en utilisant l’entrée une fois que celle-ci est
apparue ?

2. Même question avec la sortie y = −5x1 + 2x2.

3. Selon vous, quel est l’avantage de la deuxième sortie par rapport à la première ?

Corrigé

En écrivant le système de manière explicite (sans la notation matricielle)

ẋ1 = 4x1 − x2 + 2u

ẋ2 = 16x1 − 4x2 + 5u (1)

1. En prenant y = x1 et en dérivant une fois, l’entrée fait son apparition

ẏ = ẋ1 = 4x1 − x2 + 2u
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de telle sorte que l’on peut stabiliser y en choisissant une équation différentielle stable
du premier ordre pour y, par exemple

ẏ = −ky

avec k > 0 un paramètre (gain) qui définit la vitesse de convergence étant donné que la
solution s’écrit

y(t) = y0e
−kt

La loi de commande associée est

4x1 − x2 + 2u = −ky = −kx1

autrement dit

u = −1

2
(k + 4)x1 +

1

2
x2

Il reste à comprendre ce qui va se passer asymptotiquement une fois que y aura convergé
vers 0. L’équation (1) deviendra alors (avec x1 = y = 0)

ẋ2 = 16x1 − 4x2 −
5

2
(k + 4)x1 +

5

2
x2 = −4x2 +

5

2
x2 = −3

2
x2

qui est une équation stable dont le solution est

x2(t) = x2(0)e−
3
2
t

2. En prenant

y = −5x1 + 2x2 (2)

les dérivées successives jusqu’à l’apparition de l’entrée sont

ẏ = −5ẋ1 + 2ẋ2

= −5(4x1 − x2 + 2u) + 2(16x1 − 4x2 + 5u)

= −20x1 + 5x2 − 10u+ 32x1 − 8x2 + 10u

= 12x1 − 3x2 (3)

ÿ = 12ẋ1 − 3ẋ2

= 12(4x1 − x2 + 2u)− 3(16x1 − 4x2 + 5u)

= 48x1 − 12x2 + 24u− 48x1 + 12x2 − 15u

= 9u (4)

On peut choisir un polynôme ayant des racines à partie réelle négative, par exemple

(s+ λ1)(s+ λ2) = s2 + (λ1 + λ2)s+ λ1λ2

avec λ1 > 0 et λ2 > 0. En multipliant par Y (s) et en prenant la transformée de Laplace
inverse (à condition initiale nulle) pour revenir dans le domaine temporel ‘

ÿ + (λ1 + λ2)ẏ + λ1λ2y = 0
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Finalement, en substituant y, ẏ et ÿ donnés par (2),(3) et (4), il vient

9u+ (λ1 + λ2)(12x1 − 3x2) + λ1λ2(−5x1 + 2x2) = 0

ce qui donne la loi de commande

u =
1

9
(−2λ1 − 12λ2 + 5λ1λ2)x1 +

1

9
(3λ1 + 3λ2 − 2λ1λ2)x2

3. L’avantage de la seconde méthode sur la première est la modification des deux valeurs
propres (que l’on a placé en −λ1 et −λ2). Seul une des deux valeurs propres est assignée
dans la première méthode (placé en−k). L’autre valeur propre est fixe et non influençable
(située en −4). On a eu de la chance car cette dernière est à partie réèlle négative. Mais
cela n’aurait très bien pas eu être le cas.
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