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Content - schedule

Organization, introduction and examples
External lecturers

Partial Differential Equations

Solid mechanics in numerical biomechanics
Fluid mechanics in numerical biomechanics
The Finite Element Method (FEM), and its extensions
Midterm project presentations

Midterm evaluation

Multiphysics and coupling

Example 1

Example 2

Example 3

Final project presentation



Solid mechanics in biomechanics

Large strain (soft tissues)
Non-linear continuum mechanics
Strain contains a nonlinear term
Several stress definitions (different)

Stress-strain relationship (constitutive law) build
from thermodynamically admissible potentials



Strain

Lagrangian description F = vy (X,

X:x(X,l‘)
Displacement u of point X

to a position x configuration
P Ko(B)

u(X+dX) = u(X)+du

x=xX,t)=X+ulX,t)
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https://en.wikipedia.org/wiki/Finite_strain_theory



Strain

* Deformation gradient tensor F
F = dx/dX = grad(u) + 1 = u + 1
] = det(F),dv = JdV (Jacobian determinant)

* Right Cauchy-Green deformation tensor C = F'F
* Green-Lagrange straintensorE = 1/2(C- 1)

1
E = E [(VXu)T + VXu + (VXu)TVXu]



Stress

Cauchy’s stress theorem

Stress state at any point P represented by (T,n) or o
Force T;

g :: =
Y surface 1 e

https://en.wikipedia.org/wiki/Cauchy_stress_tensor



Stress

* Spatial or true (Cauchy) stress tensor s = f/a (= ¢)
current force with current area

* Nominal (1%t Piola-Kirchhoff) stress tensor P = f/a,
current force with reference area

* Material (2"9 Piola-Kirchhoff) stress tensor S = f/a,
reference force with reference area

S=F1P
s=J1PF =J'1FSF



Small strain

. 1
* Small strain € = > [(Vxw)! + Vyu + W]

» All strain/stress definitions are equal

* Often associated with linear elasticity



Linear elasticity

* Linear constitutive law (Hook’s law)
oc=D:¢

* Elastic tensor (4 order) D = 21 parameters

* |sotropy = only 2 parameters required

— Young modulus E, Poisson ratio v
— Lamé parameters A, 1
— Bulk modulus K, shear modulus G

https://en.wikipedia.org/wiki/Lamé_parameters



Example: bone sample

Cube 1 cm
E =1 GPa (Young’s modulus)

v = 0.3 (Poisson’s ratio) i

u, =-10 um (imposed displacement)

F. =0.999 (deformation gradient)
e,,=-0.001=-0.1% =-1'000 pe (axial strain)
c,, = E¢, =-1MPa (axial stress)

Force =-100 N (applied force)



Stress & strain invariants

e Strain and stress are symmetric tensor (6 scalars)
Balance of angular momentum (Newton's 2" law)

* Tensor of rank 2 = 3 (independent) invariants
* |nvariants of tensor provide a scalar measure

* |nvariants are used in constitutive laws

* [nvariants are related to failure
— Von Mises stress for ductile (bone, metal)
— Maximum principal stress for brittle material (cement)



Strain invariants

¢ [,=tr(C) (volumetric strain)
* I,= %(tr(C)% - tr(C?)) (deviatoric strain)

I, =det(C) = det(F'F) = det(F?)

= (%)2 = (C;—’;O)Z (volume change)

)

Mass conservation

I, = 1 if the material is incompressible



Stress invariants

o J =tr(s) (hydrostatic pressure: -%4J,)
o J,= %(tr(s?) - tr(s)?) (von Mises: +/3]5)

* J,=det(s)



Principal strain (invariants)

Coordinate system where C becomes diagonal

Eigenvalues of strain tensor C: C,, C,, C;

Maximum principal strain: max(C,)

Minimum principal strain: min(C,)

(tension)

(compression)



Principal stress (invariants)

Coordinate system where s becomes diagonal

Eigenvalues of stress tensor s: A, , A,, A,

Maximum principal stress: max (A))

Minimum principal stress: min(A,)

(tension)

(compression)



Equilibrium equation (PDE)

Equilibrium equation p 22 =fv—

Balance of linear momentum

Displacement u 1s the dependent variable
Constitutive law: s = s(u) < S=D:E(u)

Boundary conditions:
displacement, force, stress, strain

Initial conditions:
reference (material) configuration



Constitutive law

Constitutive law relates stress (S) to strain (C)

Strain energy potential W function of € invariants

(11, Iy, 13)

ow oW
S_Zac_aE

Neo-Hook: W = %u(h —3) — Mlog(l)+%/1[10g(/)]
\

2
J

Y
0ifJ, =J=det(F)=1

Constitutive law thermodynamically admissible



Constitutive law

Nonlinear Elasticity (hyperelasticity)

Plasticity: permanent deformation

Viscosity: time dependent effects

Damage: fracture, failure, cyclic loading
Non-homogeneity: space dependent properties
Non-isotropy: direction dependent properties



2D approximation

e Cylindrical symmetry
= no angular dependency

* Plane stress: out of plane stress is negligible
= thin plate, with in-plate loading

* Plane strain: out of plane strain is negligible
= thick plate, (or axial displacement restricted)



Example: cartilage sample
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Humeral head cartilage sample



Example: cartilage sample

2D axisymmetric

Hook (small strain) vs. hyperelastic (Neo-Hook)
Hook: £ =5 MPa,v=0.4

Neo-hook: W = %,u(]l —3) — ,ulog(])+%/1[10{;(])]2

E
- 2(14+v)
Ev
T A+ - 2v)

U = 1.79 [MPa]

A

= 7.14 [MPa]



Nominal stress [MPa]

Solid mechanics

Stress = Young’s modulus - Strain =5 MPa - 10% = 0.5 MPa
Force = Stress - Surface=0.5-Pi-0.82=1N

— Hook (MPa)
— Neo-Hook (MPa)

5 fﬁ(

Stress [MPa]

0 0.05 0.1 0.15 0.2 025 0.3
Strain

Model predictions Experimental measurements



3D vs. plane stress

Thickness =0.01 m
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Kirsch plate problem
Kirsch, 1898, Die Theorie der Elastizitdt und die Bedirfnisse der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure, 42, 797-807



3D vs. plane stress
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