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Agenda

Few words about Zimmer Biomet and me

The environment for medical devices

Classic use of modeling in the medical device industry

• Finite element analyses

• Anatomical analyses

Emerging applications of modeling

• In silico clinical trials
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• 17,000 Team Members, globally

• In Switzerland: EMEA headquarter in Zug, production 

facility in Winterthur

• Fortune 500 company, 2024 net sales of $7.6 billion

Zimmer Biomet
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Few words about me

Mechanical

engineering

epfl_logo

Biomechanics PhD

Group leader

Clinical Biomech

1998 2003 Today2008

Research

2011 2017

Comput Biomech manager

http://www.epfl.ch/index.en.html
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Environment in the medtech industry
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Introducing a new medical device to market

Ensure safety and effectiveness of product that will be implanted in people

→ Important consequences if we make the wrong decisions

→  Highly regulated industry

Manufacturer

Design Dossier

Design Exam

Certification
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Risk analysis

Risk AnalysisWhat could go wrong?

Mitigate the 

causes of 

failure

Analysis

Tests

Optimization



10

Biomechanical risks

Fatigue
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Model input

Subject created by man, we understand the compexity

VS

Subject created by nature, we try to 

understand as best we can (ethically)
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Sources of uncertainties

• Anatomy

• Bone quality

• In-vivo loading

• Surgery etc.
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Sources of uncertainties as input

• Anatomy

• Bone quality

• In-vivo loading

• Surgery etc.
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And how we deal with uncertainties

Worst case testing:

If that passes, it always will
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And how we deal with uncertainties

Worst case testing:

If that passes, it always will 

Standards (ISO, ASTM)

ASTM-F2996-20. Standard Practice for Finite Element 
Analysis (FEA) of Non-Modular Metallic Orthopaedic 
Hip Femoral Stems, 2020.

ASTM-F3161-16. Standard Test Method for Finite Element 
Analysis (FEA) of Metallic Orthopaedic Total Knee Femoral 
Components under Closing Conditions, 2016.

ASTM-F-3334-19. Standard Practice for Finite 
Element Analysis (FEA) of Metallic Orthopaedic 
Total Knee Tibial Components, 2019.
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And how we deal with uncertainties

Worst case testing:

If that passes, it always will 

Standards (ISO, ASTM)

Compare with successful implants (equivalency to predicate)

Final assessment comes only ~10 years after implantation! ≥

New device
Existing device with

long and good clinical

results
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New product development 
support
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Establish product safety and efficacy

Clinical follow up

Post market surveillance

Pre clinical testing

Product

launch

The classic use of modeling at Zimmer Biomet
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Typical risks that we investigate

Clinical

Aseptic loosening

Implant subsidence

Bony atrophy/hypertrophy

Intra/post OP bone fracture 

Implant fracture

Impingement/dislocation

Micromotion and interface strain

Range of motion

Permanent displacement

Change in bone stress

Implant fatigue stress

Bone ultimate/fatigue stress 

In silico
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Worst-case identification 
FEA - Finite element analysis

1 physical test 

of worst-case

> 100 FEA simulations

of combinations
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Design optimization using statistical methods

42 days 6 days
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Enrich physical testing

Combined approach to get a better representation of 
primary stability

•Full micromotion distribution

•All micromotion components

•Realistic loading conditions 



23

MR interaction
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Database of

bone models

3D CAD models of 

implants

Anatomical studies - virtual surgery

Distance
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Support new design 
Persona tibial baseplate

Generate design inputs Fit quality of the designs Support claims
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Range of motion analysis
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Patient-Matched Implants

Shoulder 

Knee
Elbow

Wrist

Hip
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Model validation

Benchtop test In vitro test
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In silico clinical trials
ISCT



30

Establish product safety and efficacy

Clinical follow up

Post market surveillance

Pre clinical testing

Product

launch
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Concept of in silico clinical trials (ISCT)

Demographics

Use conditions

Morphology

Surgery

Real patients

Virtual patients
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Technical approach

Surgical variability

- Component combinations

- Sizing

- Stem alignment

Patient variability

Anatomy

Patient variability

Load

Patient variability

Bone density

CT Segmentation Virtual surgery Meshing

Material 

assignment Loading Post processing
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Technical approach for virtual population

45 unique anatomies
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Technical approach for virtual population

45 unique anatomies

(PMCF: n=47 in TSA, n= 58 in hemi)

Include surgical variability

→Total of n=521 unique surgical interventions
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Technical approach for virtual population

45 unique anatomies 3000 solved models

Humeral 

loosening

Stress 

shielding

3 load cases

≥

(PMCF: n=47 in TSA, n= 58 in hemi)

Include surgical variability

→Total of n=521 unique surgical interventions
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Clinical trial

Model validation strategy

Increasing consideration of in vivo variability

Well controlled and characterized data

Benchtop test In vitro test
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Benchtop comparator:
- Ensure physics are modeled correctly

- Best addressed with tight control over 

test conditions

ISCT model validation1

Clinical comparator:
- Ensure aspect of clinical performance, including 

survivorship, can be predicted appropriately

- Reproduce clinically significant differentiation in 

outcomes b/w different designs, variants, sizes, etc

[1] Bischoff J et al. A risk and credibility framework for in silico clinical trials of medical devices. Comput Methods Programs Biomed 2023 
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Clinical validation – Stress shielding

Nagels et al., JSES 2003

Statistically significant increased proximal lateral 

humeral cortical thinning for greater relative stem 

size patients (N=70, Biomodular stems) 

Comparator Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No stress shielding Stress shielding

R
SS

Clinical study 

Sensitivity 

Mesh size

Stem alignment

Stem size

Loading

Material properties

N=35 bones

Biomodular stem

*

Change in strain 

energy density 

→ Bone resorption

Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

No stress shielding Stress shielding

R
SS

Model

Statistically significant increased proximal lateral humeral 

stress-shielding for greater relative stem size patients

*

N=188
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Regulatory uncertainty

39

Risk of rejection by the regulator reduced by:

• Following guidelines for clinical studies and computational 
modelling

• Open and regular communication with the regulator

• Publish the approach

[ISO 14155. Clinical investigation of medical devices for human subjects — Good clinical 

practice, 2011.]

[Guidance for Industry and Food and Drug Administration Staff. Reporting of Computational 

Modeling Studies in Medical Device Submissions, 2016.]
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Conclusions

• Computer modeling is heavily leveraged at ZB (but it may not be representative of the 

orthopedic industry)

• Worst-case identification for physical testing is the standard, accepted use

• Allows us to have better implants, while having shorter and more efficient 

development and testing phases

• V&V work should not be underestimated, but model credibility is priceless

• Further standardization in emerging applications (ISCT) is greatly needed
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