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Content - schedule

Organization, introduction and examples
External lecturers

Partial Differential Equations

Solid mechanics in numerical biomechanics
Fluid mechanics in numerical biomechanics
The Finite Element Method (FEM), and its extensions
Midterm project presentations

Midterm evaluation

Multiphysics and coupling

Example 1

Example 2

Example 3

Final project presentation



Partial Differential Equations

Most biomechanical systems can be described by
— A set of Partial Differential Equations (PDEs)
— Completed with constitutive equations
— Boundary conditions
— Initial conditions



PDEs

Solid (deformation) mechanics (stress, strain)
Fluid mechanics (fluid velocity, pressure)

Heat (temperature)

Transport (diffusion, advection, concentration)
Electromagnetism (electric & magnetic potential)
Wave propagations (EM, acoustic)

Coupling in multi-physics



Ordinary Differential Equations (ODE)

Differential equation of 1 dependent (function)
variable y with 1 independent variable t

Linear/nonlinear

Order (highest derivative)
Homogeneous/nonhomogeneous (source term)
Existence, unigueness (Cauchy—Lipschitz theorem)

Yty =y,
dt



Ordinary Differential Equations (ODE)

System of linear ODEs

ODE of order n can reduce to n 1%t order ODEs

Non constant coefficients : A = A(x, t)
Nonhomogeneous ODE (b5 # 0)
Boundary problem (x), or initial value problem (t)

dy

dt

=A-y(t)

b(t), y(tO) = Yo



ODE example: Lotka-Volterra

* Predator-prey model
— Predators’ number rate depend on prey’s number
— Prey’s number rate depend on predators’ number
— With few predators, preys can reproduce
— If predators over-exploit preys, they decrease

* Applied to animals, cells, chemicals
* Typically oscillating solutions

—

Jost et al., The wolves of Isle Royale display scale-invariant satiation and density dependent predation on moose, J. Anim. Ecol., 74(5), 809-816 (2005)



ODE example: Lotka-Volterra

P : predators (concentration) dH
H : prey (concentration) ar (r —aP)H
r : growth rate of H dP

— = (bH — m)P
a : predation rate coefficient dt ( )
b : growth rate of P
m : mortality rate of P

Constants: r=a=b=m=1
Initial condition: H(0) =1, P(0) =2



ODE example: Lotka-Volterra

State variable h
——— State variable p

Try with other initial conditions (stationary point: Hy = Py = 1) or constants




ODE example: bone adaptation

post-surgery

J. D. Bobyn and C. A. Engh, Non-Cemented THA, Raven Press (1988)
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Terrier et al, Clin Biomech, 2005



ODE example: bone adaptation

a = ~B)

p :bone density (dependent variable)

A : mechanical (actual) stimulus (4 = 2)
B : equilibrium stimulus (B = 1)

%

: remodeling rate (v = 1)

Initial value p(0) = 1



ODE example: bone adaptation

Try with other initial conditions or constants



Partial Differential Equation (PDE)
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u; dependent variables (functions)
x; independent variables
o x; =t (time)
o0X,=Xx,X;=Yy,Xx,=z(space)
No time dependency (steady state or equilibrium)

Existence and uniqueness not guaranteed in general,
but usually locally if well-posed



Well-posed PDE

Regular PDE and domain (Cauchy problem)
Constitutive equations
Boundary conditions

Initial conditions

= A unique & stable solution exists (locally)



Boundary conditions

Value of the dependent variable u
derivative) on the boundary for al

(and/or its
time ¢

Dirichlet: # imposed on the boundary

Neumann: du/dn imposed on the
Mixed: Dirichlet and Neumann on

ooundary
boundary parts

Cauchy: Dirichlet and Neumann on boundary

Robin : u + du/dn imposed on the

boundary



Initial conditions

* Value of the dependent variable, and/or its
derivatives, at time ¢ = 0, for the entire domain

* |nitial value problem

u(x,t =0)=u,(x)



Typical PDE operators

Differential operators

| o_ 0. D D,
— Gradient: R Sl e s
: v,  Ov v
— Divergence: divi=—-24+ ¥4+ _v.7

ox Ay 0z

— Rotation (curl):

curl 7 = v, Ovy X + 00, ()v y + 9y _ 0% z=V xv

0 N 0? n 0> V.U = V2
ox? = Oy ' 022 o

— Laplacian: A —




PDE: scalar coefficient form

2

aOu+da2u+V-(—cVu—au+'y)+[3-Vu+au:f in €2
ot> Ot

e

n- (cVu +0ou _'\/) +qQu =g - hTu (Generalized Neumann) on 0Q)

=7 (Generalized Dirichlet) on 6Q

Coefficients (¢, a, v, B, @, h) and f, g, and r can depend on x, y, z, ¢
PDE is linear when coefficients depend only on (x, y, z), or constant
PDE is nonlinear if coefficients depend on u (or its derivatives)
Initial condition is required



Partial Differential Equation (PDE)

Most physical PDE are 2"9 order, with linear coef.

— Elliptic: solid, heat (steady state) O w N 9% w
522 T 5

— Parabolic: heat, diffusion ow 0w

It ( ')JTQ

9> w 9> w

— Hyperbolic: wave, advection
ot? dx?




Example of elliptic PDE

Laplace equation  v.(Vu) = 0
Static solid deformation (displacement u)

Static heat equation (temperature u, heat flux du/dx)

— Dirichlet: Fixed temperature (#) on boundary

— Neumann: Fixed heat flux (insolation) on boundary

Electromagnetism, astronomy, fluid dynamics



Example of elliptic PDE

e 2D Laplace on a square domain with a hole
* U, T u,=0
* Dirichlet conditions
u =1 (int. circle)
u =0 (ext. frame)




Example of elliptic PDE

e 2D Laplace on a square domain with a hole

* U, Tu, =0

* Mixed (Dlrlchlet + Neumann)
u =1 (int. circle)
du/dn = 1 (ext. frame)




Example of parabolic PDE

Equation of heat

oT B
Cp Y = +Q

Convective term Diffusive term

p is the density (SI unit: kg/ ms)
C,, is the specific heat capacity at constant pressure (SI unit: J/(kg-K))
T is absolute temperature (SI unit: K)

u is the velocity vector (SI unit: m/s)
k is the thermal conductivity (SI unit: W/(m-K))

@ contains heat sources other than viscous heating (SI unit: W/ m3)



Example of parabolic PDE

* Parabolic heat equation da%‘—v- (cVu) = f
* Nosourcef=0
* Evolution of u(?), t €[0, 0.1]
u(t)) =0
du/dn = 1 (int. circle)
u =0 (ext. frame)




Well-posed problem

Domain (geometry)

PDE (physics)

Constitutive laws (material)
Initial conditions

Boundary conditions



Summary

Most biomechanical (bioengineering) systems
(problems) can be represented by Partial
Differential Equations (PDEs)

Well-posed PDEs have a unique solution

Most PDEs can’t be solved analytically

Many PDEs can be solved by numerical methods
Some PDEs can’t be solved by numerical methods



Sophus Lie (1842-1899)

"Among all of the mathematical disciplines,

the theory of differential equations is the most important...

It furnishes the explanation of all those elementary
manifestations of nature which involve time."




Campus
Lecture

Steven

Strogatz

“Infinite Powers:
The story of calculus”

https://www.youtube.com/watch?v=3xP19pqUGIw




NEW YORK TIMES BESTSELLER

How CALCULLS Reveals

the Secrets of the Universe

PJWers

STEVEN STROGATZ

BEST-SELLER NEW YORK TIMES

Comment le calcu
infinitésimal révele
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