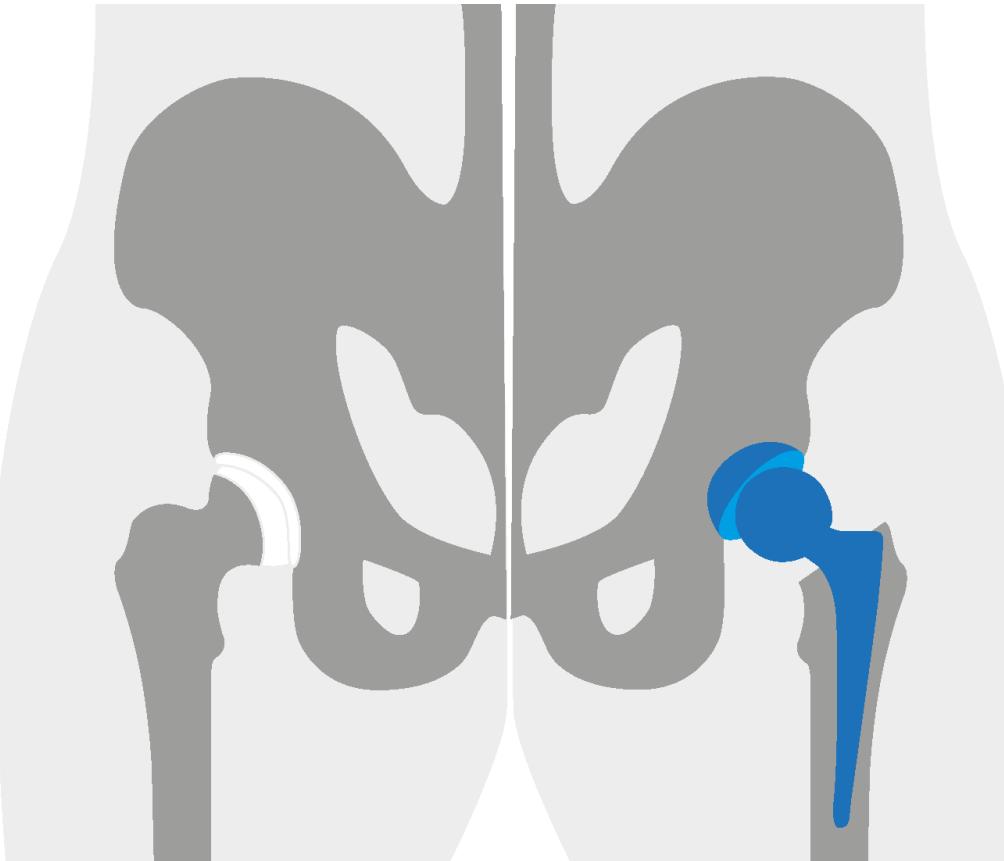


Numerical Methods in Biomechanics

Alexandre Terrier, PhD

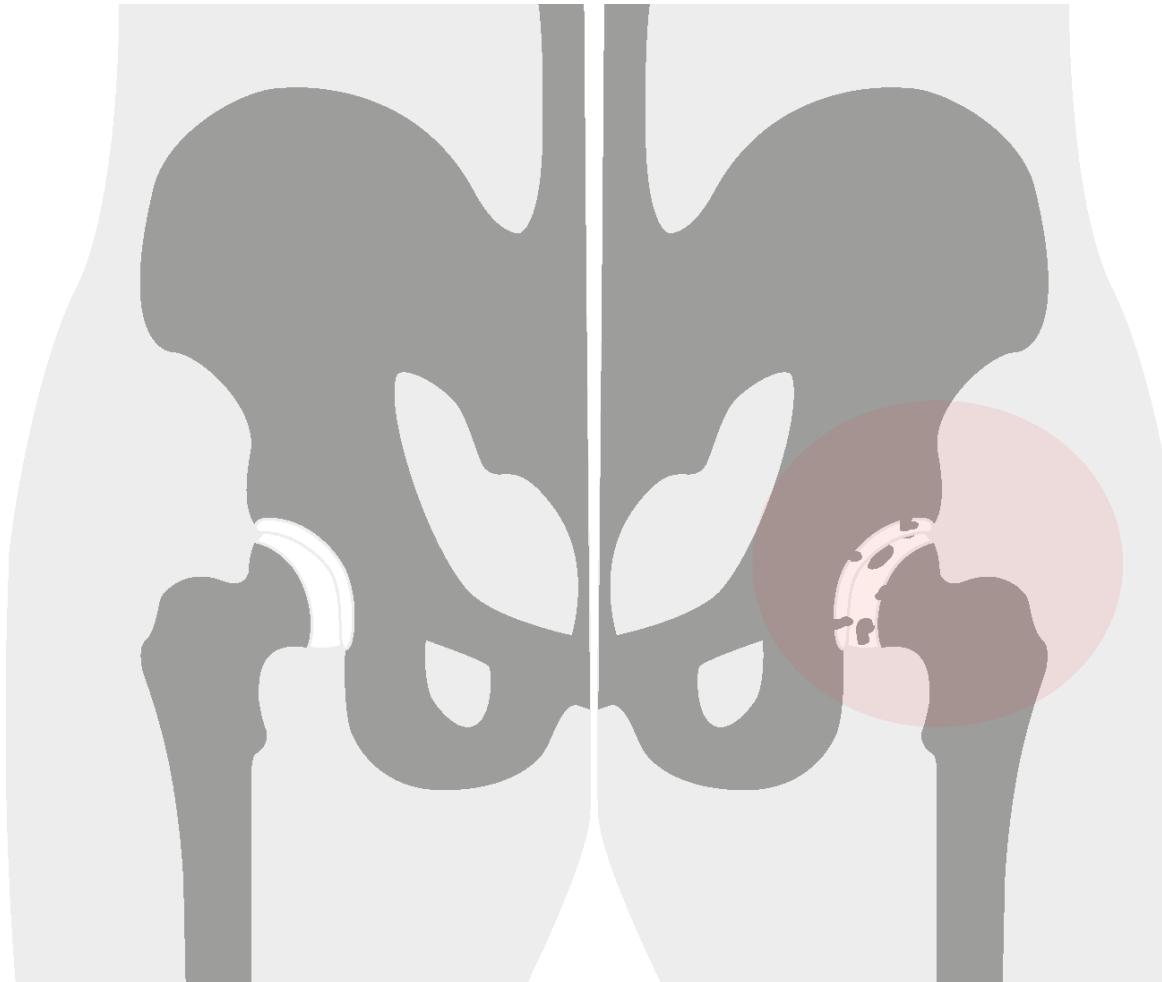
EPFL - Laboratory of Biomechanical Orthopedics



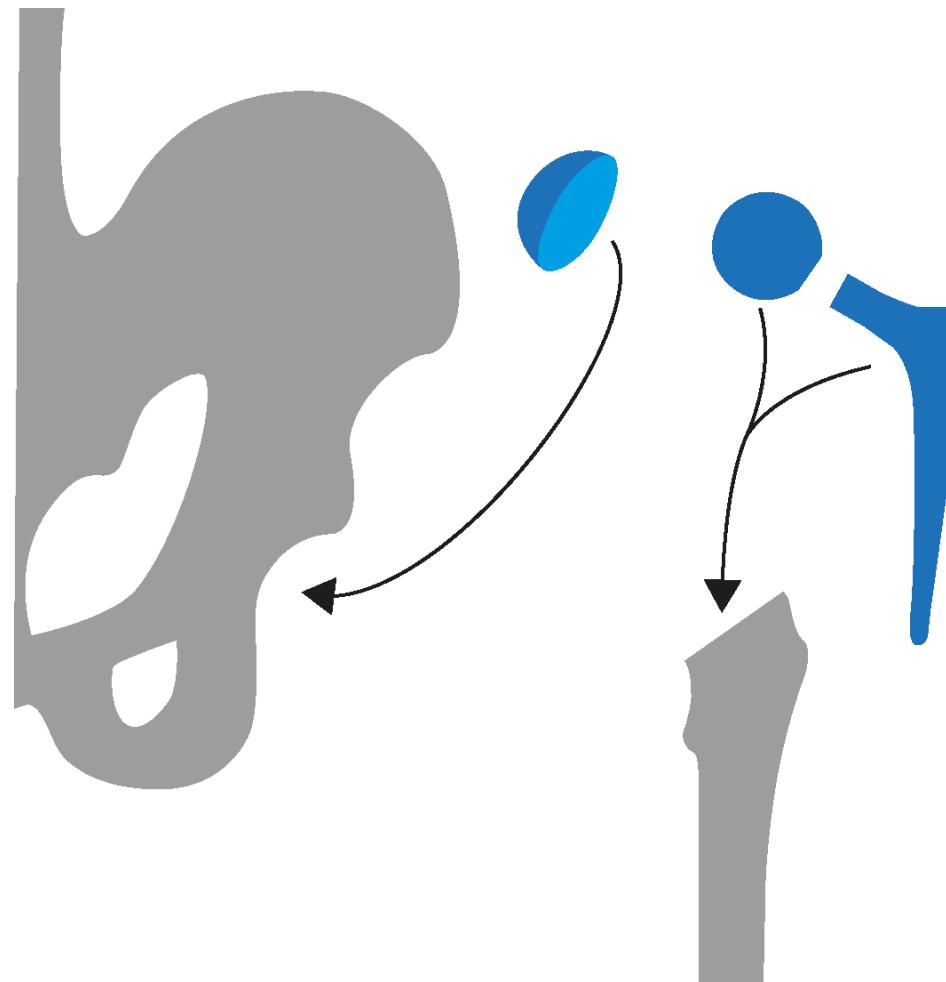
Numerical modeling
to investigate
aseptic loosening of
hip implants

Valérie Malfroy Camine

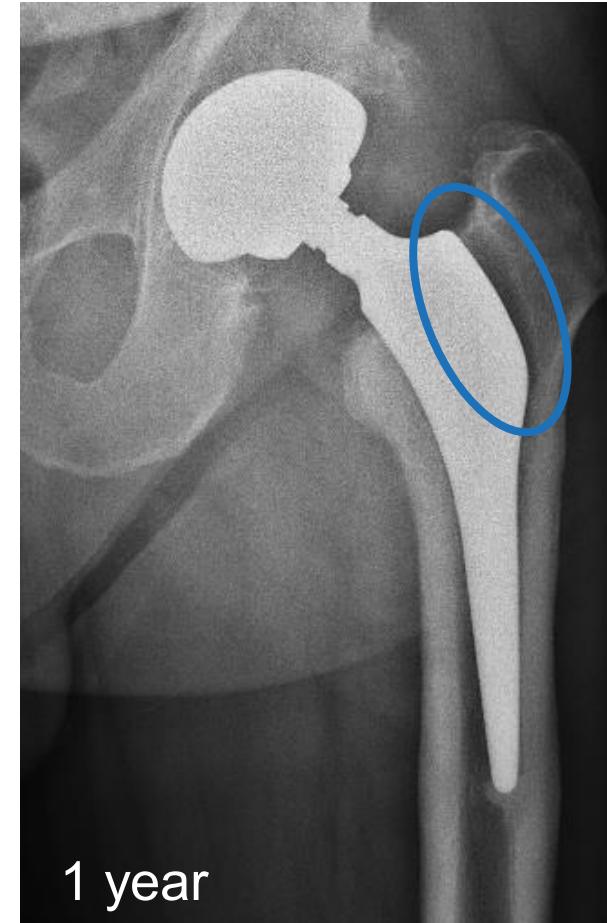
Osteoarthritis



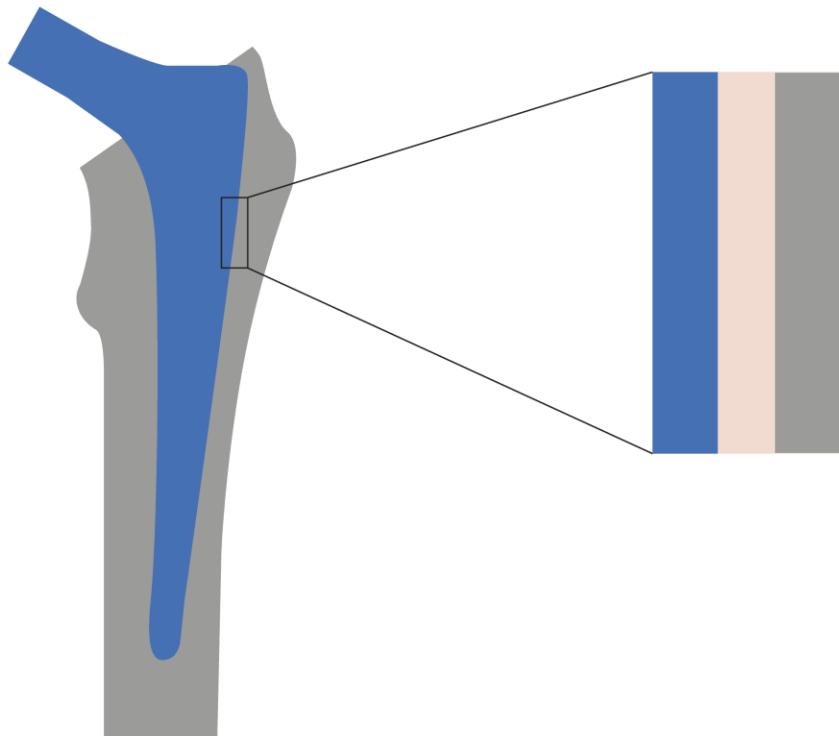
Total Hip Replacement



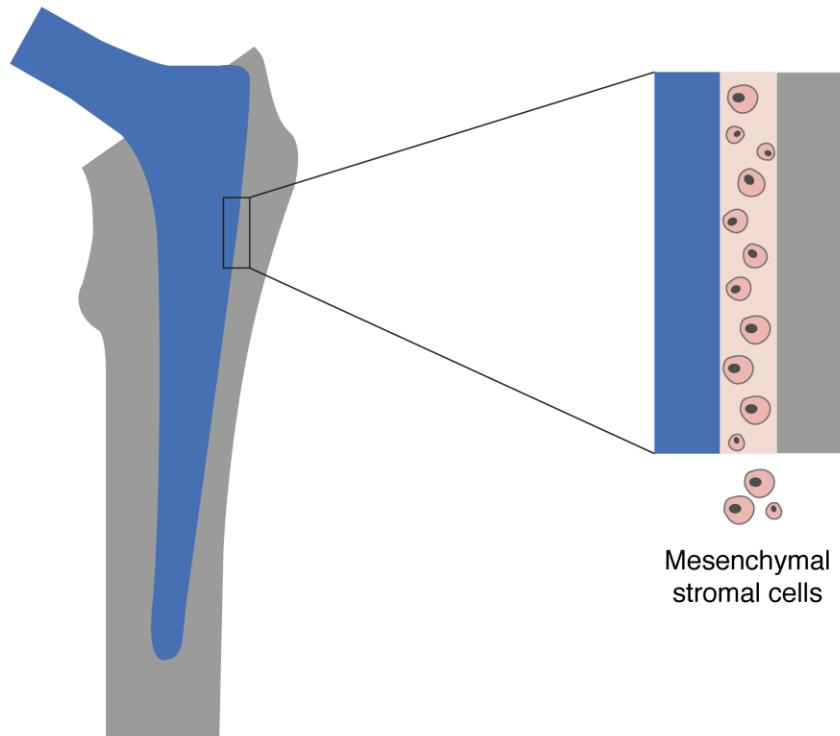
Aseptic Loosening



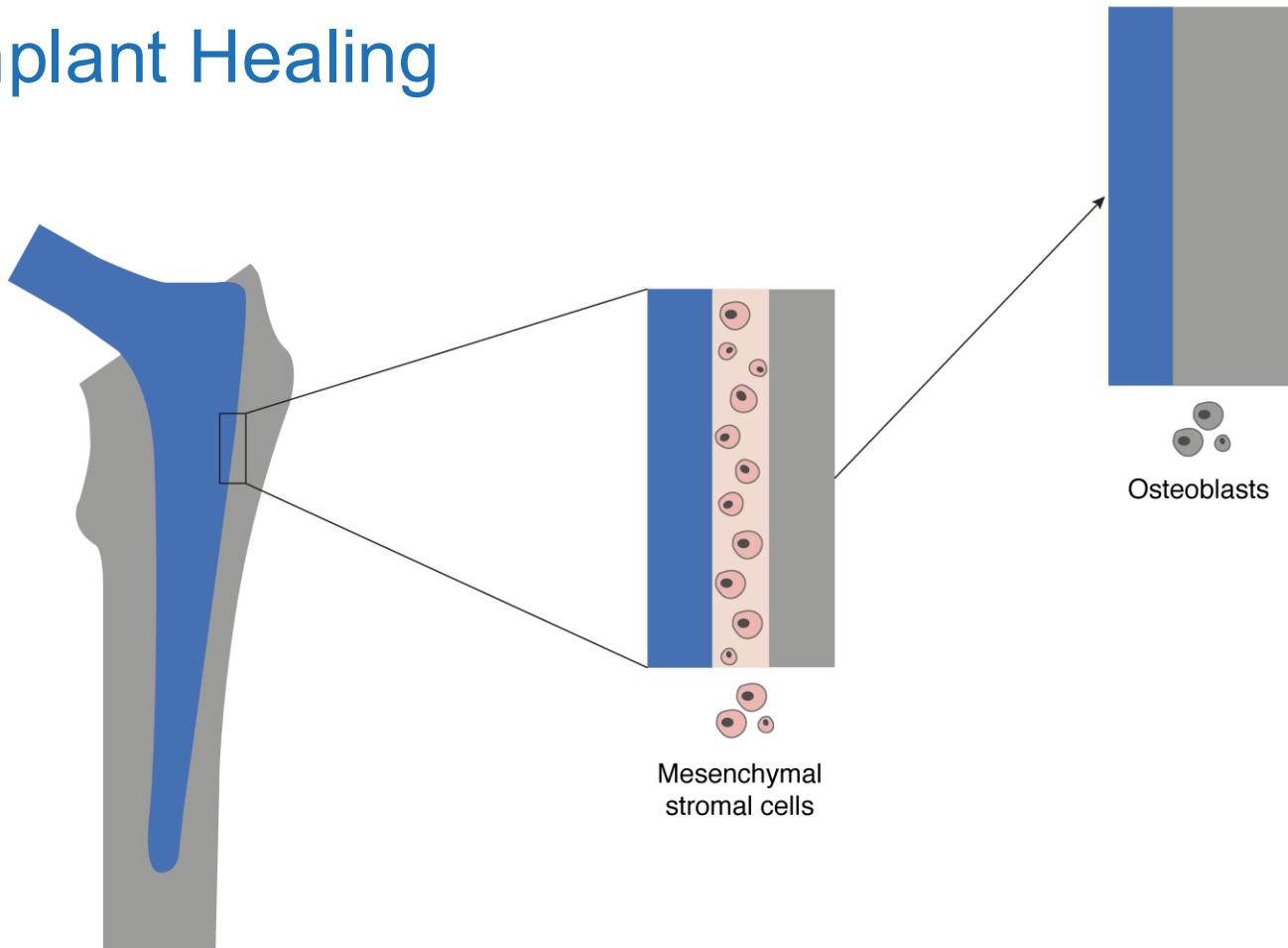
Peri-implant Healing



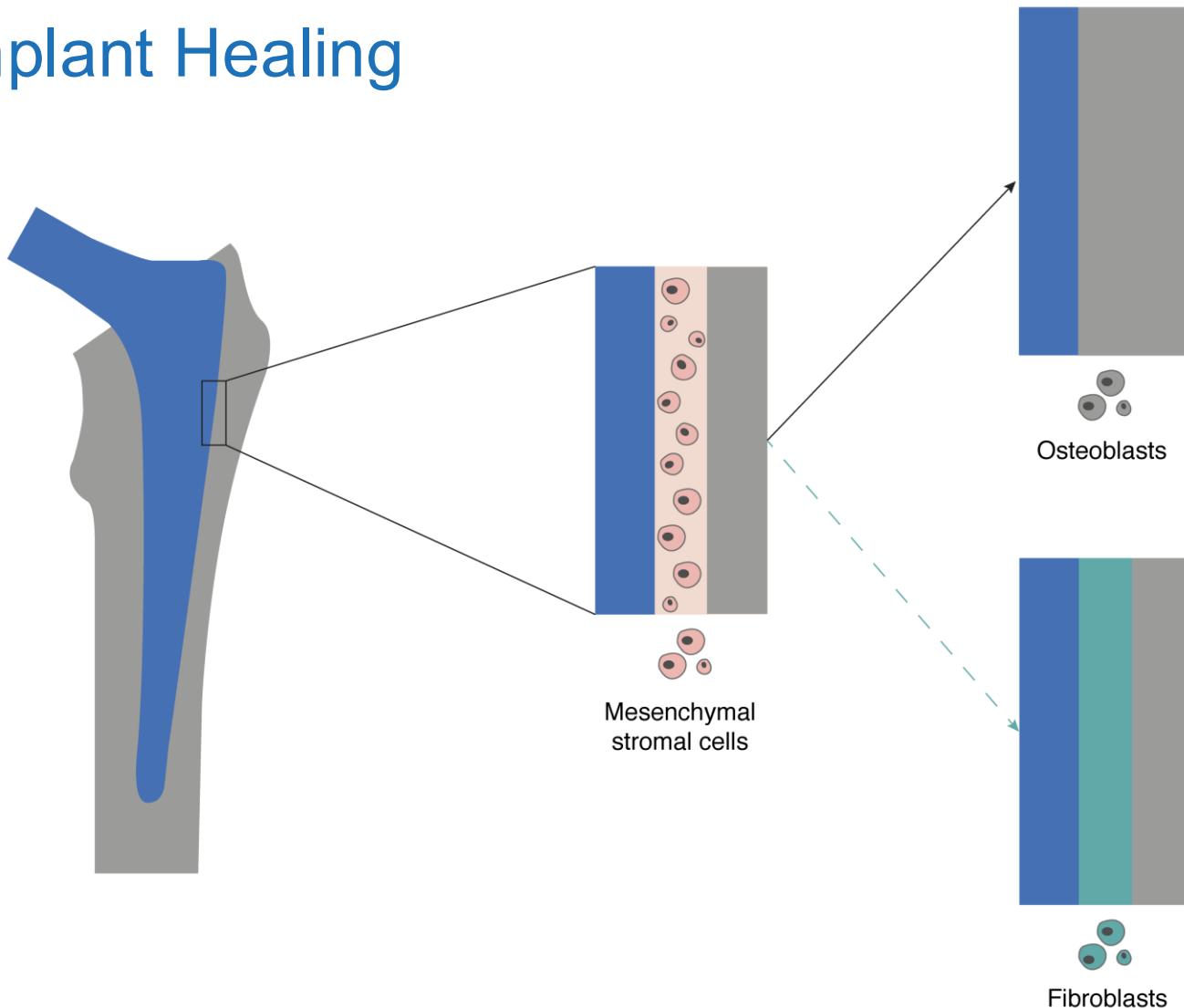
Peri-implant Healing



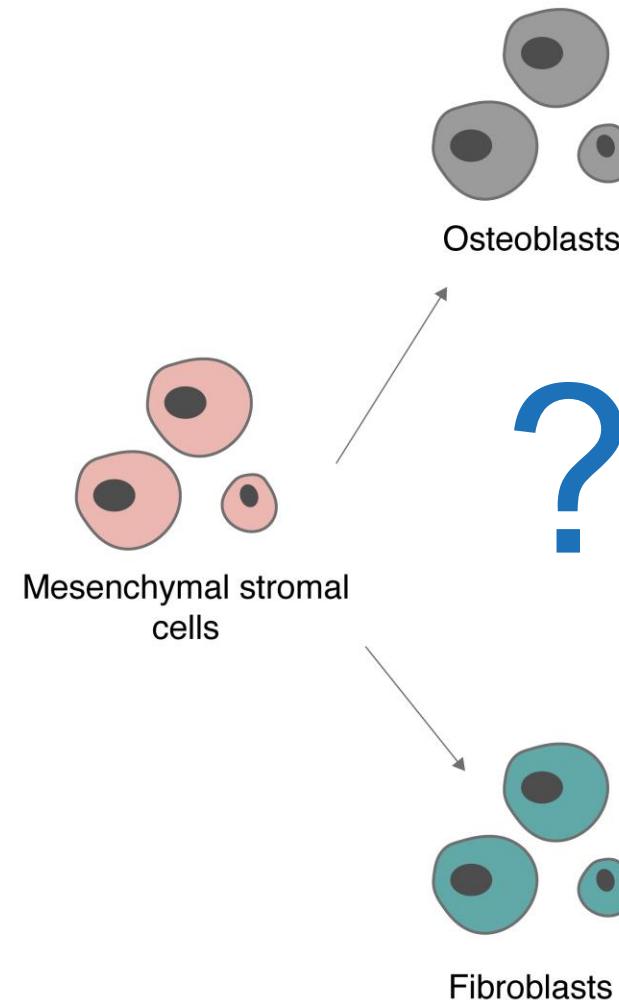
Peri-implant Healing



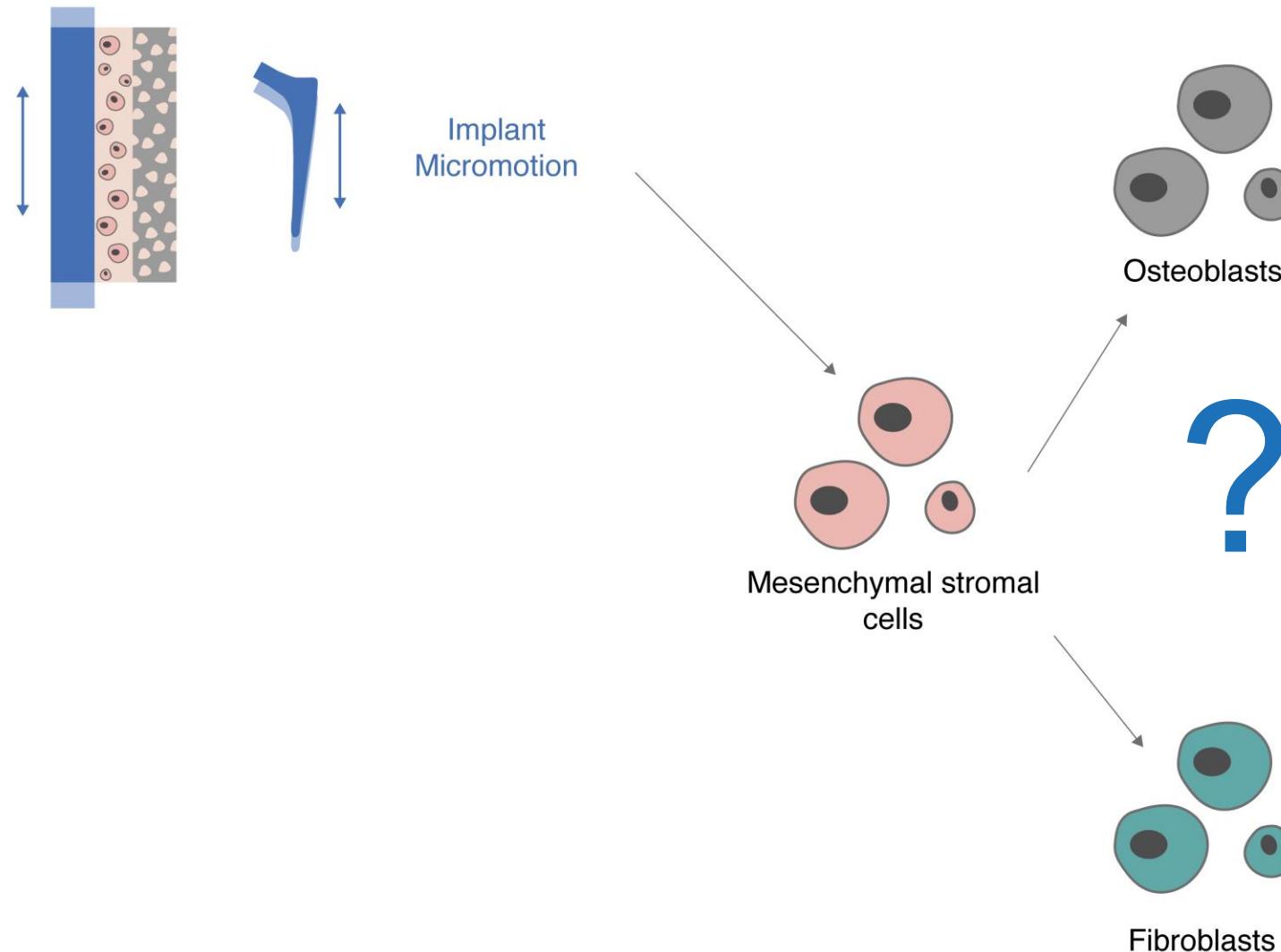
Peri-implant Healing



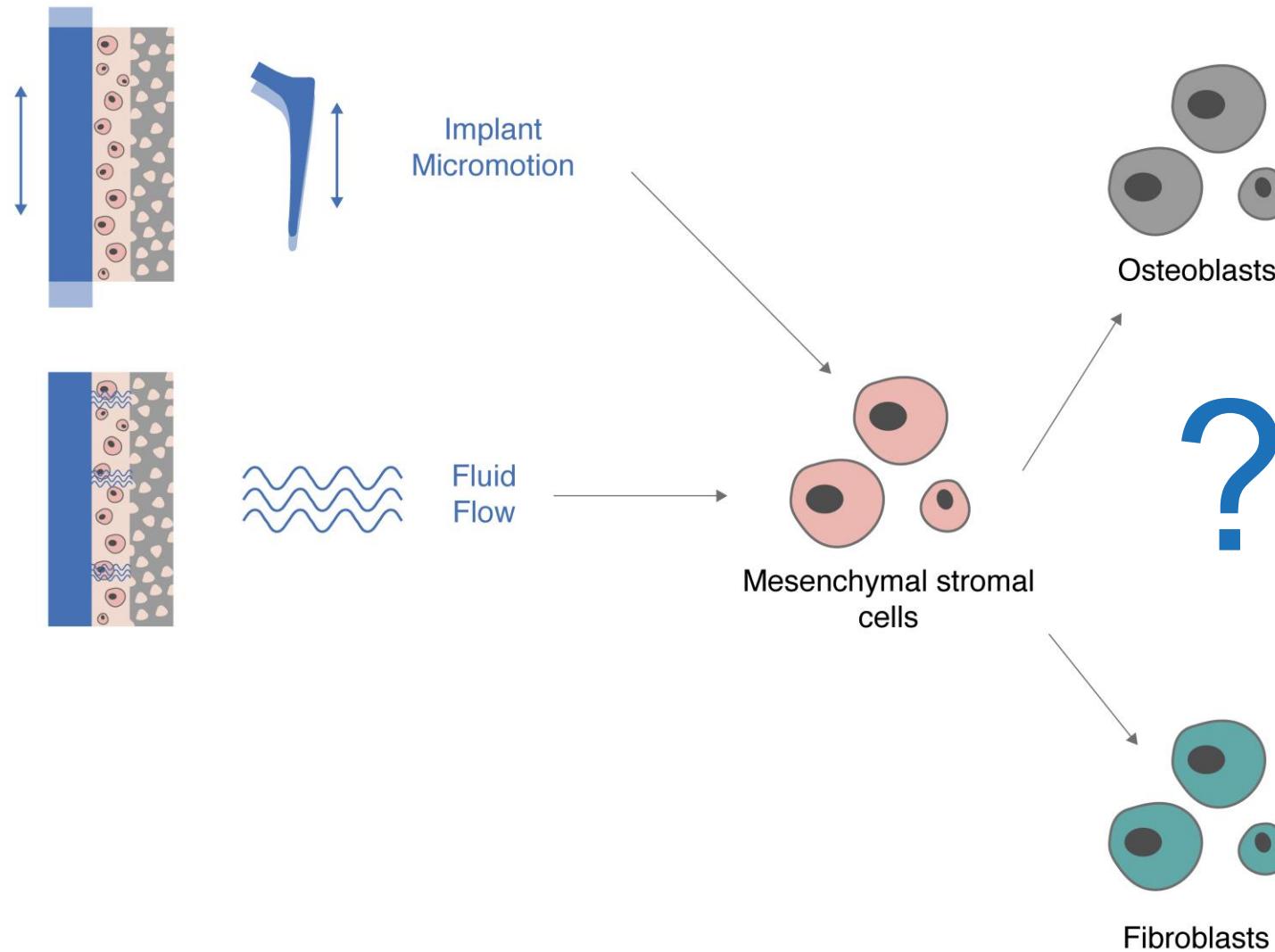
MSCs Differentiation



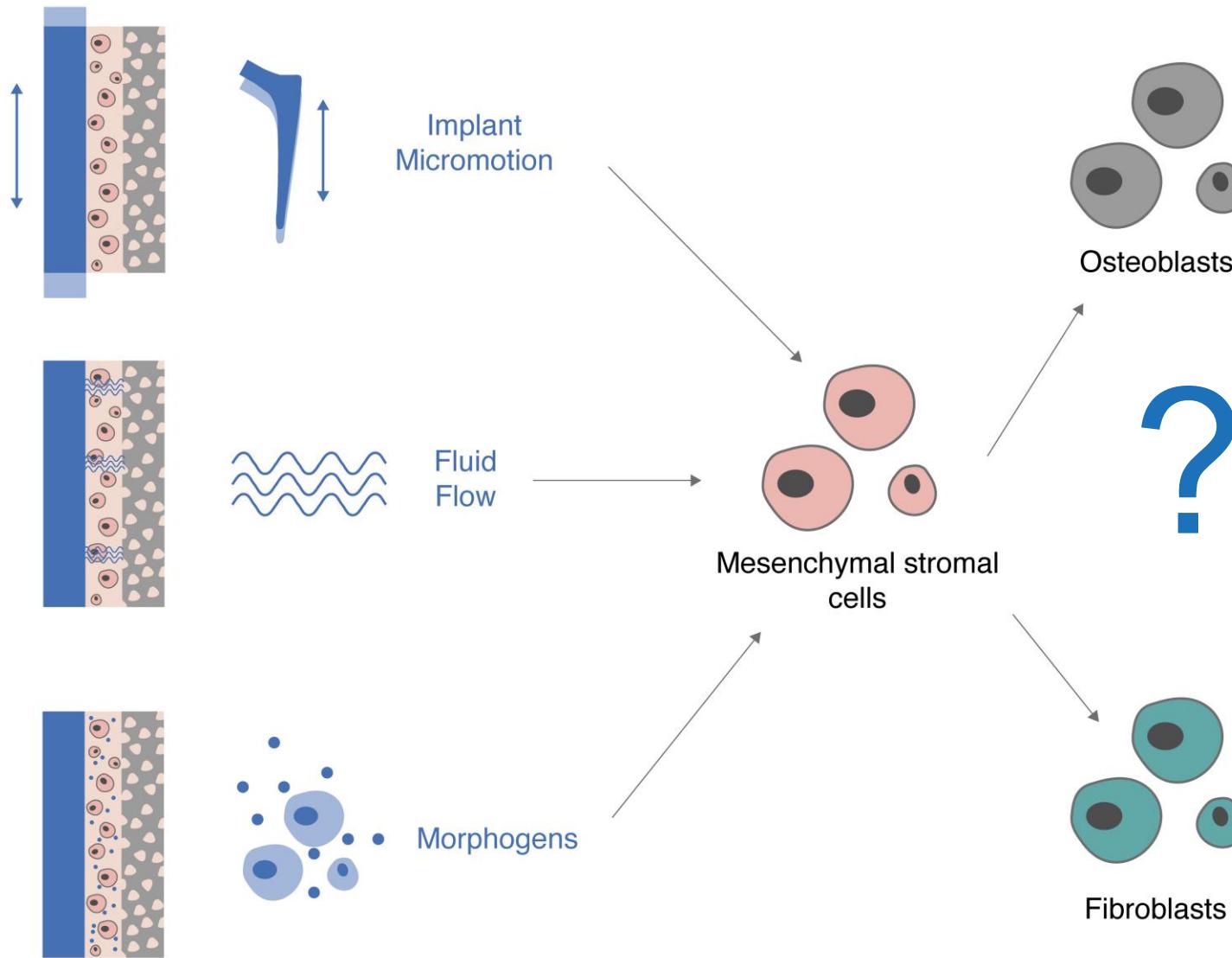
MSCs Differentiation



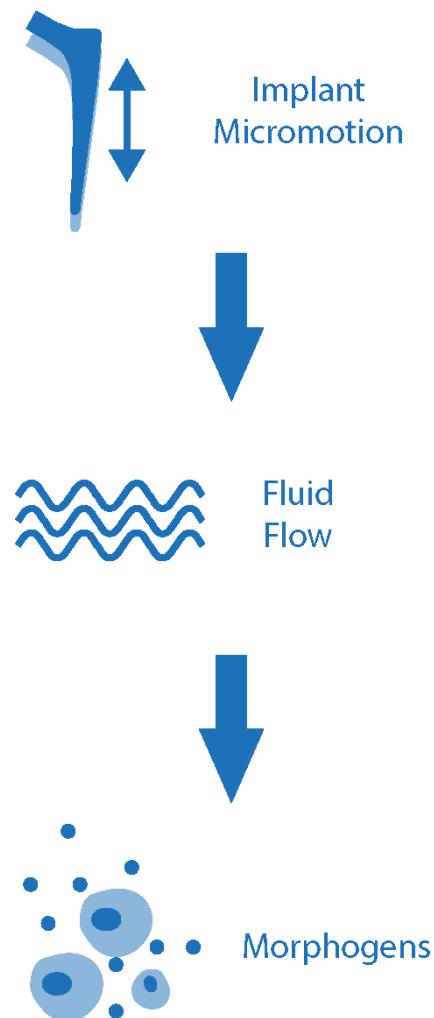
MSCs Differentiation



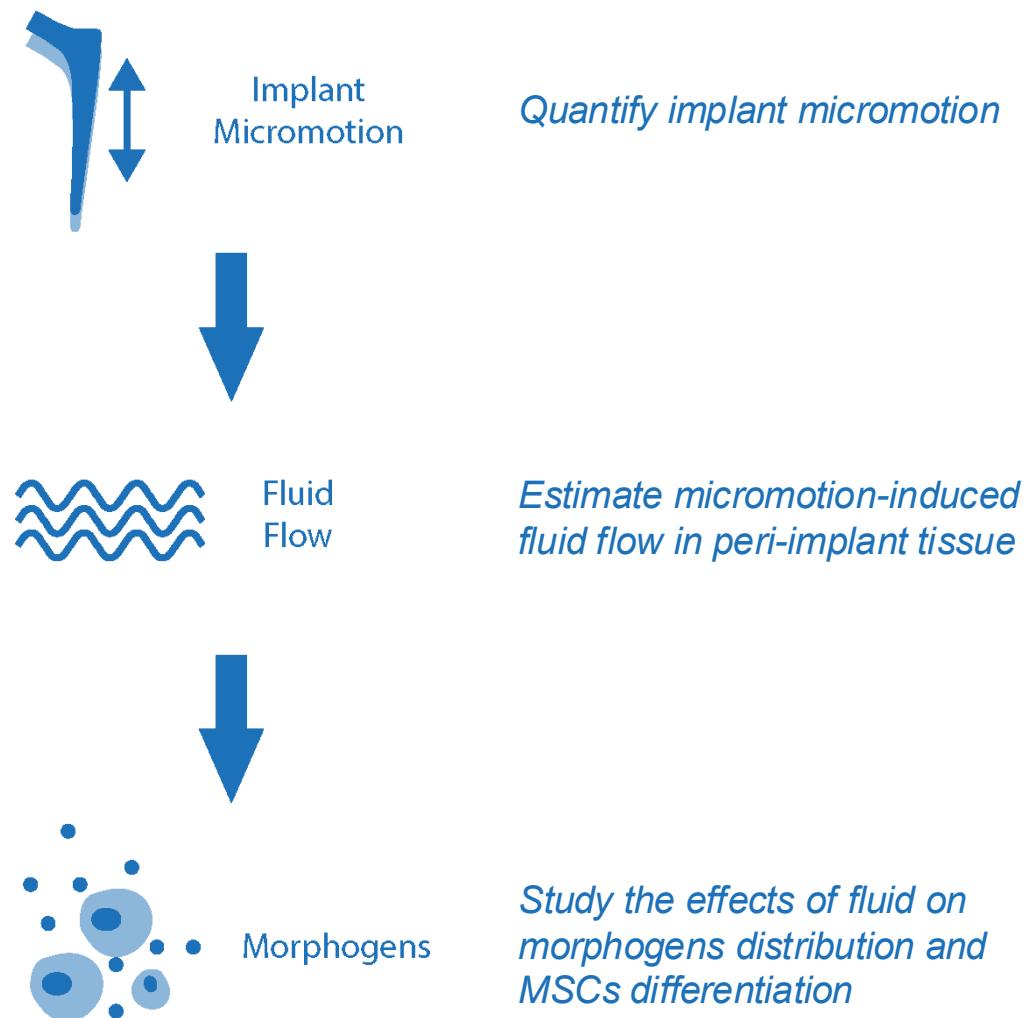
MSCs Differentiation

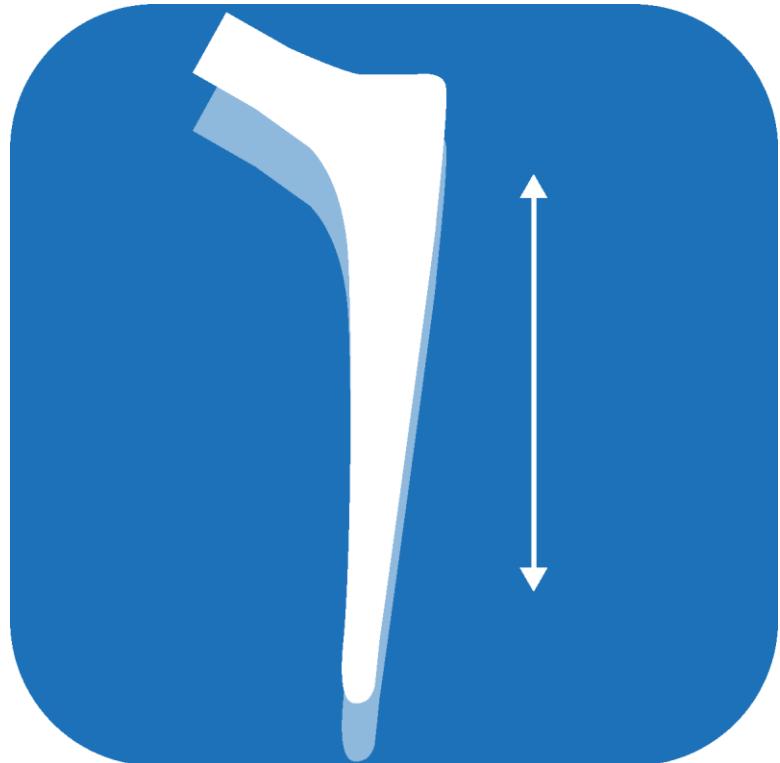


Hypothesis



Modeling Strategy





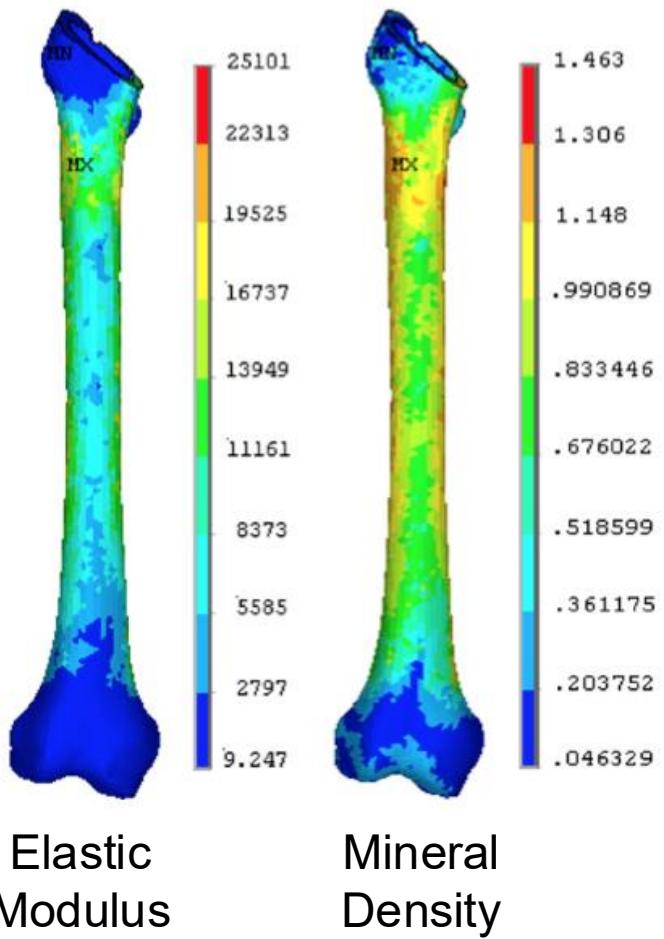
Quantify
implant micromotion

Geometry

Bone: From patients CT-scans

Implant: From CAD file

Material



Bone: Linear elastic with an elastic modulus dependent on mineral density obtained from the CT scan

Implant: Linear elastic (titanium alloy)

Governing Equations

Solid Mechanics

Navier's equation for solid:

$$-\nabla \sigma = F$$

Hooke's law constitutive equation for linear elastic material:

$$\sigma = C : \varepsilon$$

Boundary Conditions



Loads and constraints:

- Experimental measurements in instrumented prostheses
- ISO standards for implant testing

Results



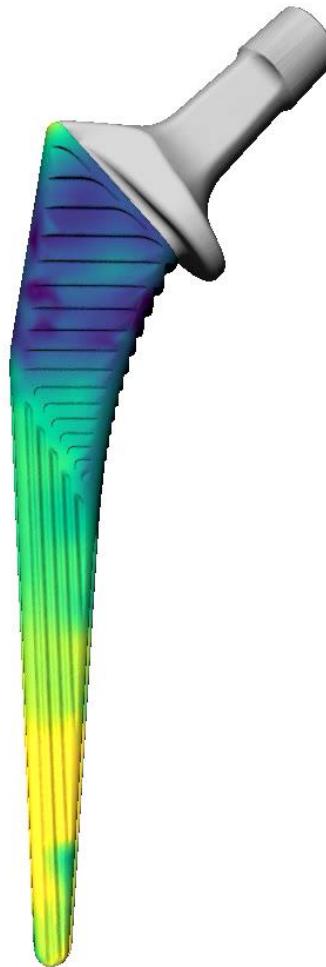
Micromotion extends locally from a few μm to 100 μm

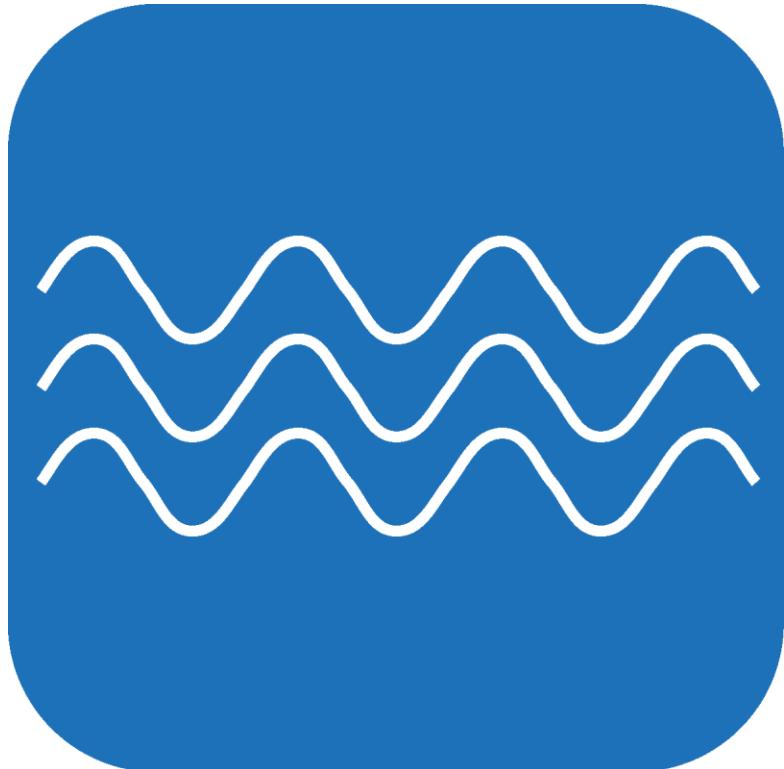
Experimental Validation



Experimental loading of implanted cadaveric femur

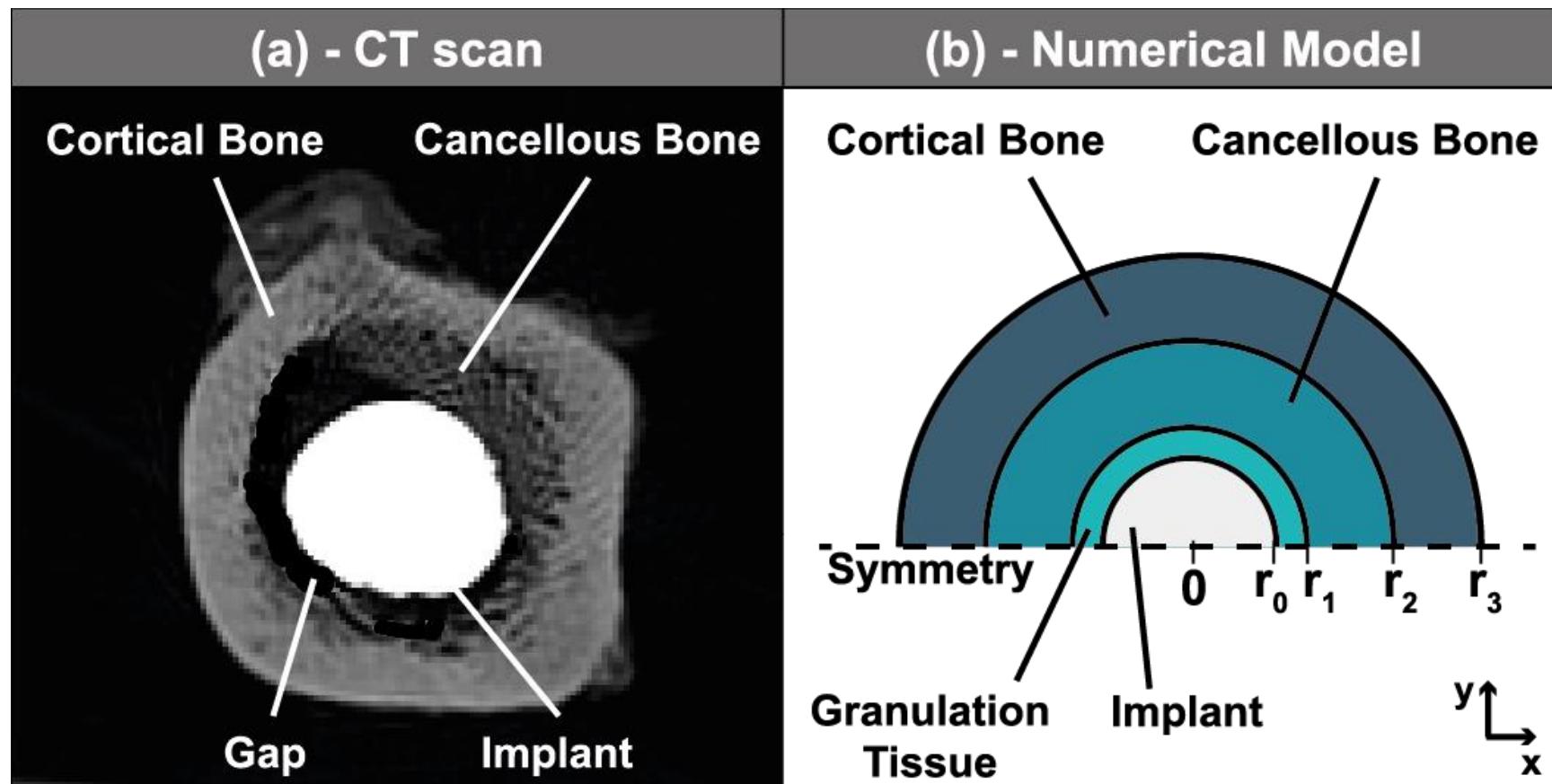
Analyze the displacements of radiopaque markers in a μ -CT scan





Quantify
micromotion-induced
fluid flow with a
poroelastic FE model

Geometry



Governing Equations

Biot's poroelasticity

Navier's equation for solid:

Darcy's law combined with continuity equation:

Coupled through Biot's constitutive relations:

σ : stress tensor

ε : strain tensor

ε_{vol} : volumetric strain

C : elastic tensor

E : Young modulus

ν : Poisson ratio

Darcy's (fluid) velocity

$$-\nabla \sigma = 0$$

$$S \frac{\partial p_f}{\partial t} + \nabla \cdot \left[-\frac{\kappa}{\mu} \nabla p_f \right] = -\alpha_B \frac{\partial \varepsilon_{vol}}{\partial t}$$

$$\sigma = \mathbf{C}(E, \nu) \varepsilon(\mathbf{u}) - \alpha_B p_f$$

$$p_f = \frac{1}{S} (\zeta - \alpha_B \varepsilon_{vol})$$

p_f : fluid (pore) pressure

κ : permeability

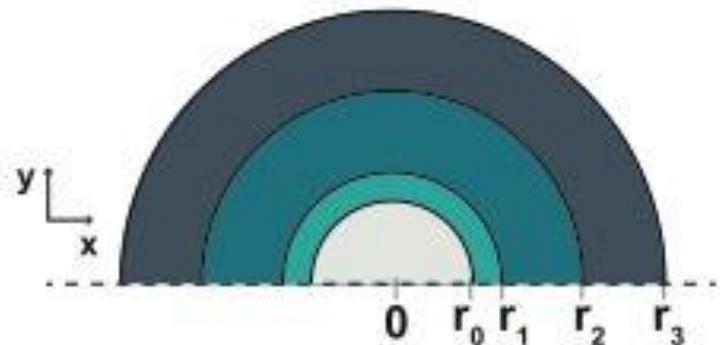
μ : viscosity

α_B : Biot-Willis coefficient

S : storage coefficient

$S = S(\alpha, \text{porosity, fluid bulk modulus, solid bulk modulus})$

Initial and Boundary Conditions



$$\mathbf{u}_0 =$$

Initial conditions:

$$p_f = 0, \mathbf{u} = 0$$

Boundary conditions:

Solid

$$\begin{cases} \mathbf{u} = 0 & , \forall \mathbf{r} = \mathbf{r}_3 \\ \mathbf{u} = \mathbf{u}_0 \cdot \frac{1}{2} \sin(2\pi ft - \frac{\pi}{2}) & , \forall \mathbf{r} = \mathbf{r}_0 \end{cases}$$

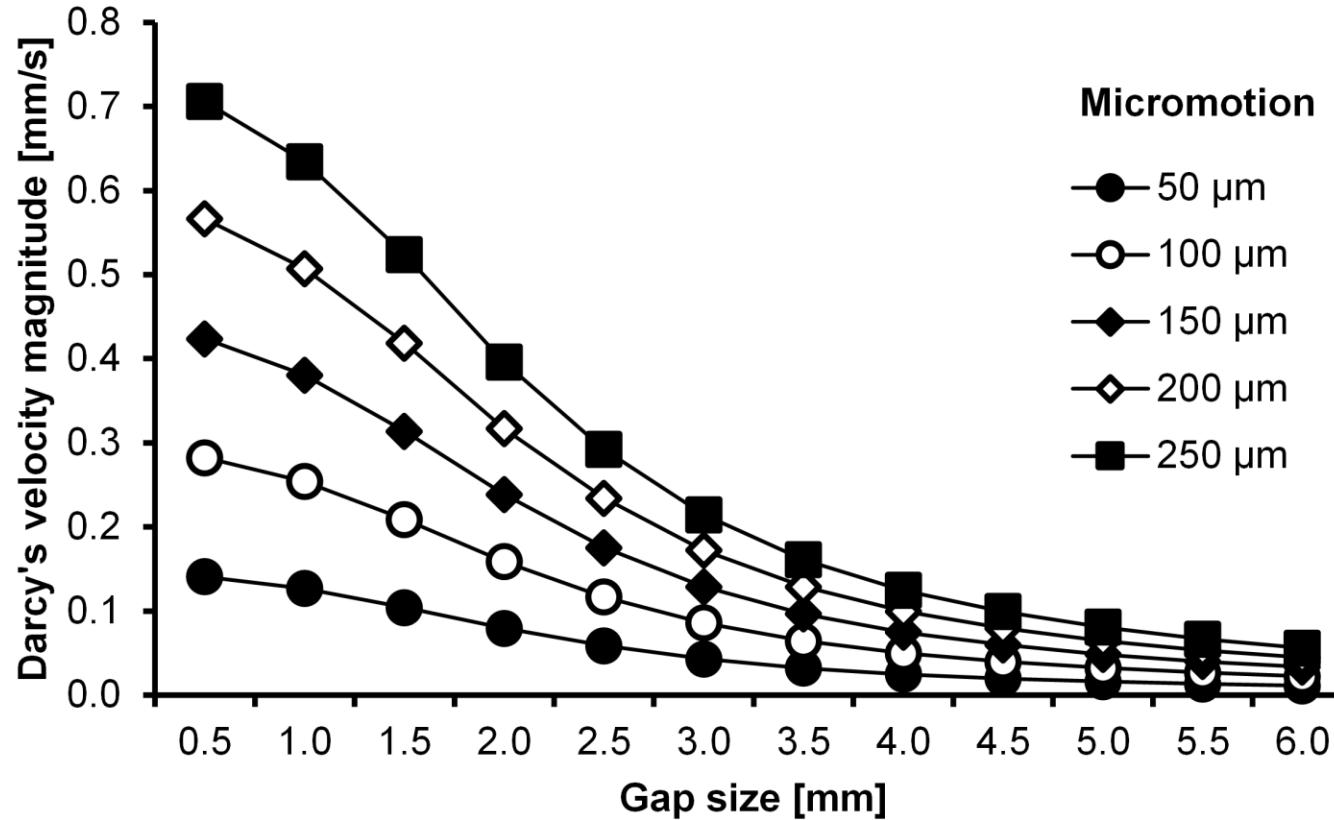
Fluid

$$\begin{cases} \mathbf{n} \cdot \nabla p_f = 0 & , \forall \mathbf{r} = \mathbf{r}_0, \mathbf{r}_3 \\ p_f = 0 & , \forall \mathbf{r} = \mathbf{r}_1, \mathbf{r}_2 \end{cases}$$

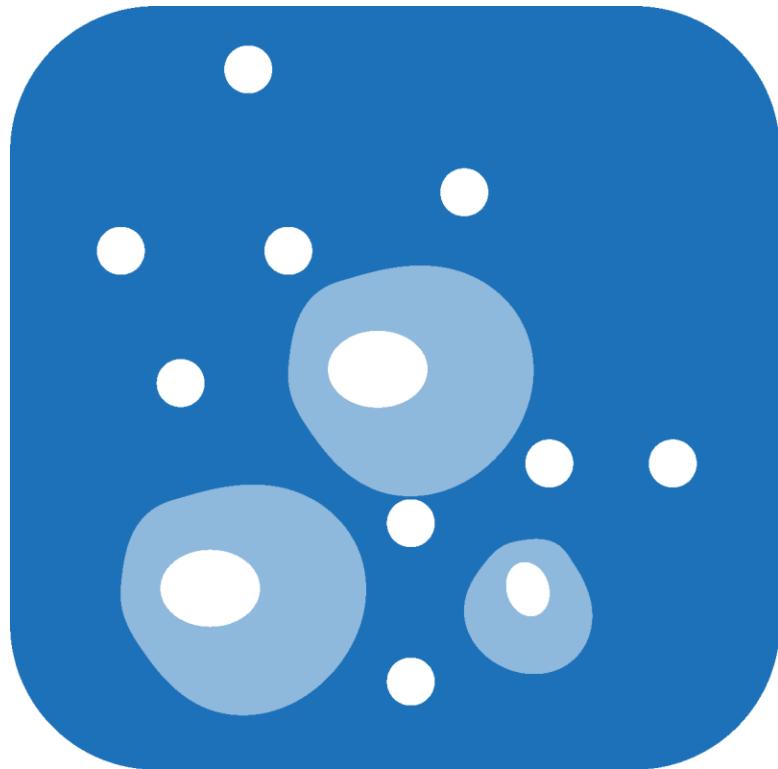
Material

Property	Material		
	Granulation Tissue	Cancellous Bone	Cortical Bone
Young's Modulus (E)	1 MPa	6 GPa	15.75 GPa
Poisson's Ratio (ν)	0.167	0.325	0.325
Porosity (ϵ_p)	0.8	0.8	0.04
Permeability (κ)	$1e^{-17}$ m ²	$3.7e^{-16}$ m ²	$1e^{-20}$ m ²

Results

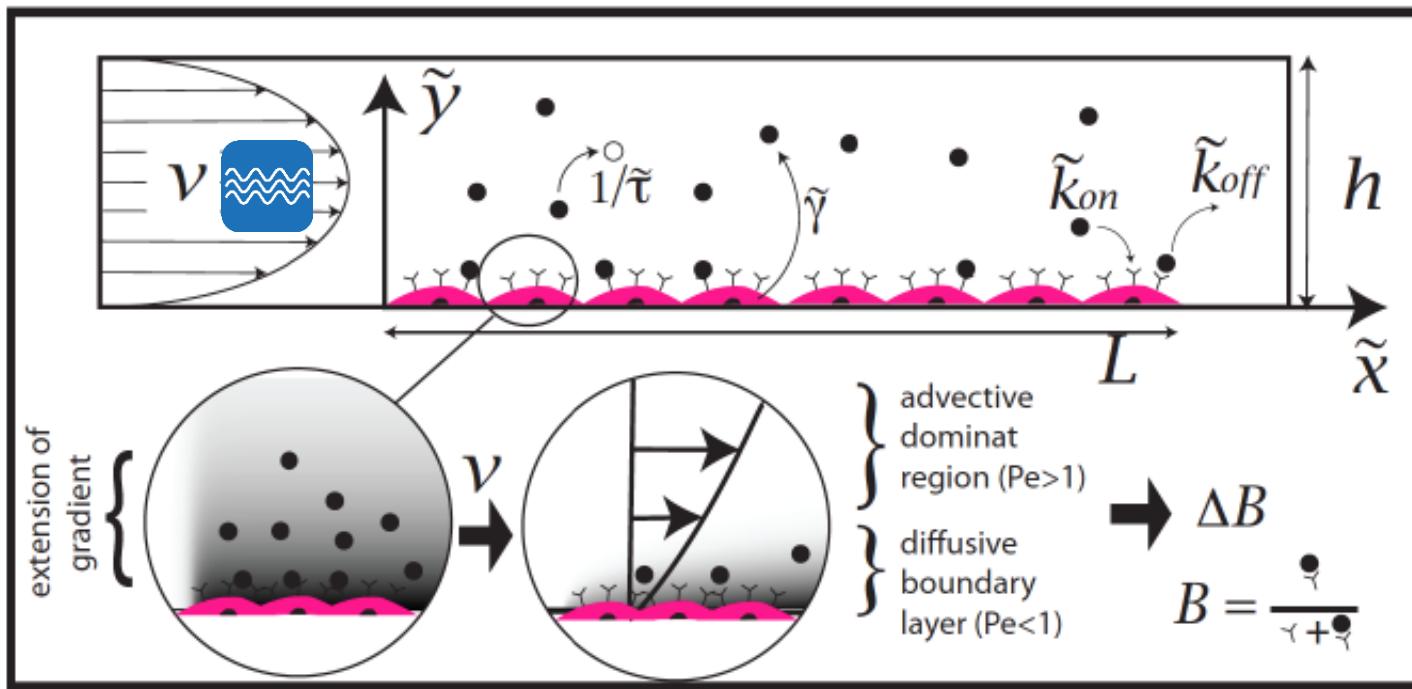


Micromotion-induced fluid flow in granulation tissue extends 1 $\mu\text{m/s}$ to 700 $\mu\text{m/s}$



Study the effects of
fluid on morphogens
distribution and
MSCs differentiation

Model



$$B = \frac{\text{surface density of } bound \text{ receptors}}{\text{surface density of receptors}}$$

Governing Equations

Mass transport

Diffusion (D) – Advection (A) – Reaction (R) in bulk:

$$\frac{\partial}{\partial t} C = \text{D} - \text{A} - \text{R}$$

D
 A
 R

Binding (B) – Unbinding (UB) reaction on the wall :

$$\frac{\partial B}{\partial t} = \text{B} - \text{UB}$$

B
 UB

Secretion(S) of morphogens:

$$\gamma - \frac{\partial B}{\partial t} = -D \frac{\partial}{\partial y} C \Big|_{y=0}$$

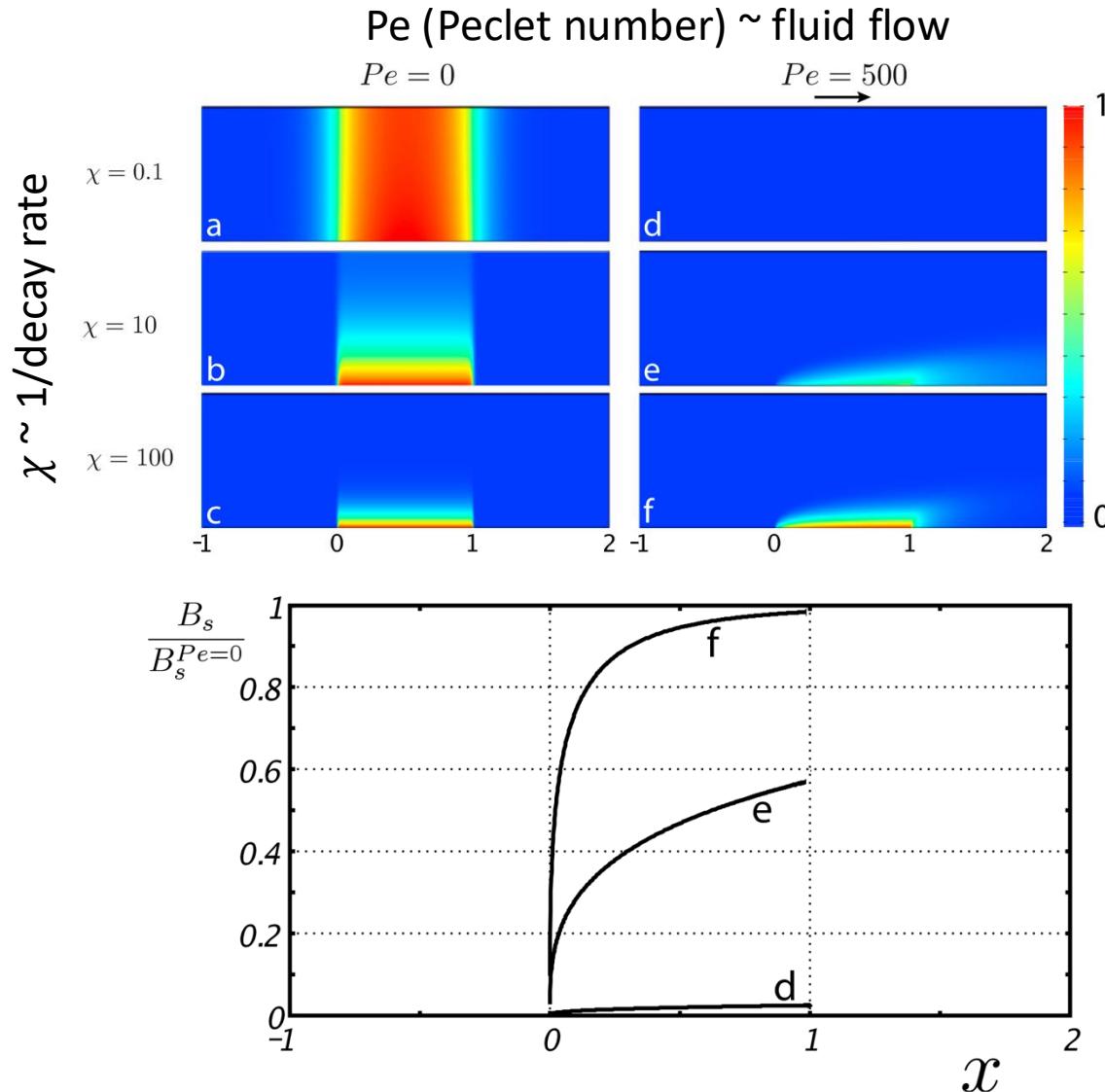
S

C - concentration

R_t – total number of receptors

B – number of bound receptors

Results

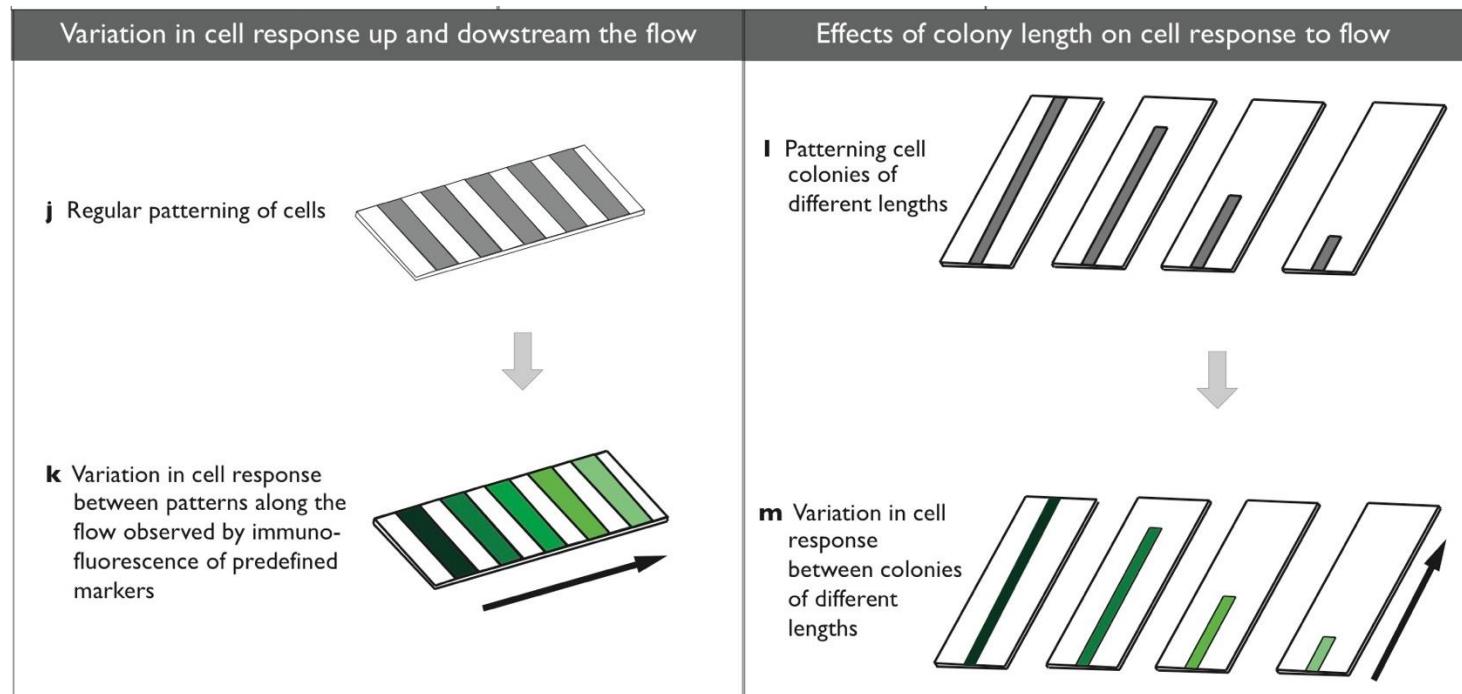


Fluid flow is strong enough to:

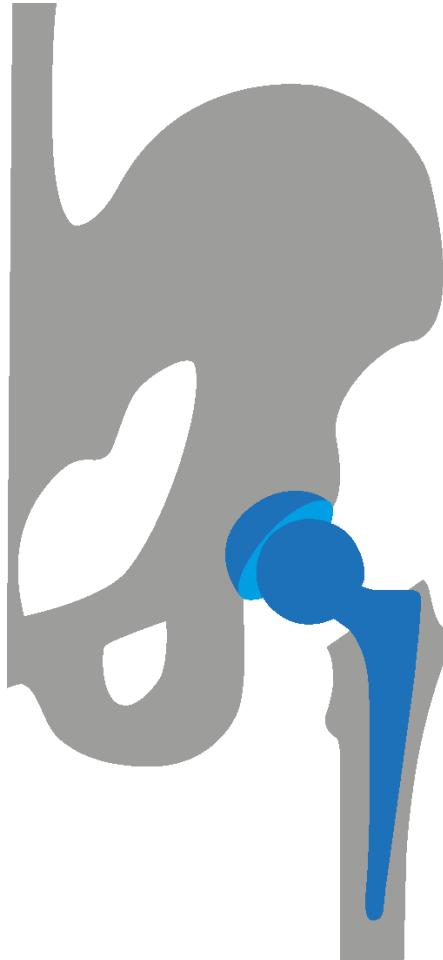
- Disturb the concentration profile of morphogens
- Change the number of bound receptors (i.e. have an effect on cell differentiation)

Experimental Validation

Microfluidics experiments

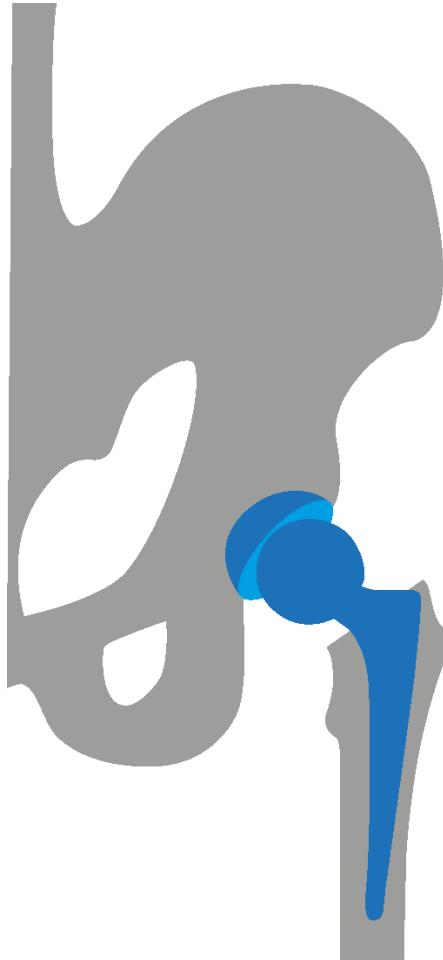


Conclusion



A better understanding of conditions promoting aseptic loosening of hip implants can lead to better implant designs or surgical techniques and benefit patients

Conclusion



Numerical modeling helps to investigate complex multi-scale hypotheses.

However, experimental validation is essential to assess the predictive capabilities of models.