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Numerical modeling 

to investigate 

aseptic loosening of 

hip implants
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Osteoarthritis
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Total Hip Replacement
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Aseptic Loosening

Post-op 1 year
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Peri-implant Healing
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Peri-implant Healing
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Peri-implant Healing
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Peri-implant Healing
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MSCs Differentiation
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MSCs Differentiation
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Hypothesis
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Modeling Strategy

Quantify implant micromotion

Estimate micromotion-induced 

fluid flow in peri-implant tissue

Study the effects of fluid on 

morphogens distribution and 
MSCs differentiation
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Quantify 

implant micromotion
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Geometry

Bone:

Implant:

From patients CT-scans

From CAD file

Abdul-Kadir 2008
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Material

Reggiani 2007

Bone:

Implant:

Linear elastic with an elastic 

modulus dependent on 

mineral density obtained 

from the CT scan 

Linear elastic 

(titanium alloy)

Elastic 

Modulus

Mineral 

Density
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Governing Equations

Solid Mechanics

Navier’s equation for solid:

Hooke’s law constitutive 

equation for linear elastic 

material:
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Boundary Conditions

Reggiani 2007

Loads and constraints: 

• Experimental 

measurements in 

instrumented prostheses

• ISO standards for implant 

testing
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Results

Abdul-Kadir 2008

Micromotion extends locally from a few µm to 100 µm
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Experimental Validation

Experimental loading of implanted 

cadaveric femur

Analyze the displacements of 

radiopaque markers in a µ-CT scan

22



Quantify 

micromotion-induced 

fluid flow with a 

poroelastic FE model
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Geometry

http://dx.doi.org/10.1080/10255842.2017.1296954
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Governing Equations

Navier’s equation for solid:

Darcy’s law combined with 

continuity equation:

Coupled through Biot’s 

constitutive relations:

Biot’s poroelasticity

σ : stress tensor
ε : strain tensor
εvol : volumetric strain
C : elastic tensor
E : Young modulus
ν : Poisson ratio

Darcy’s (fluid) velocity

pf : fluid (pore) pressure
k : permeability
μ : viscosity
𝛼B : Biot-Willis coefficient
S : storage coefficient
  S = S(𝛼, porosity, fluid bulk modulus, solid bulk modulus)

ζ : fluid volume per unit volume 
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Initial and Boundary Conditions

Initial conditions:

Boundary conditions:

Fluid

Solid
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Material
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Results

Micromotion-induced fluid flow in granulation tissue 

extends 1 µm/s to 700 µm/s
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Study the effects of 

fluid on morphogens 

distribution and 

MSCs differentiation
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Model
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Governing Equations

Mass transport
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Results

Fluid flow is strong 

enough to:

• Disturb the 

concentration 

profile of 

morphogens

• Change the number 

of bound receptors 

(i.e. have an effect 

on cell 

differentiation)

Gortchacow, Biophysical Journal, 2013 
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Experimental Validation

Microfluidics experiments
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Conclusion

A better understanding of 

conditions promoting 

aseptic loosening of hip 

implants can lead to better 

implant designs or surgical 

techniques and benefit 

patients
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Conclusion

Numerical modeling helps to 

investigate complex multi-

scale hypotheses.

However, experimental 

validation is essential to 

assess the predictive 

capabilities of models.
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