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Hypothesis
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Modeling Strategy
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Quantify implant micromotion

Estimate micromotion-induced
fluid flow in peri-implant tissue

Study the effects of fluid on
morphogens distribution and
MSCs differentiation
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Quantify
iImplant micromotion
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Geometry

Abdul-Kadir 2008
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Bone: From patients CT-scans

Implant. From CAD file
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Material
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Bone: Linear elastic with an elastic
modulus dependent on
mineral density obtained
from the CT scan

Implant: Linear elastic
(titanium alloy)
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Governing Equations
Solid Mechanics

Navier’s equation for solid:

Hooke’s law constitutive
equation for linear elastic
material:
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Boundary Conditions

Reggiani 2007

Loads and constraints:

« EXxperimental
measurements in
Instrumented prostheses

« |SO standards for implant
testing
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Results

Abdul-Kadir 2008
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Micromotion extends locally from a few umto 100 um
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Experimental Validation

Experimental loading of implanted
cadaveric femur

Analyze the displacements of
radiopaque markers in a y-CT scan
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Quantify
micromotion-induced
fluid flow with a
poroelastic FE model
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Geometry

(a) - CT scan (b) - Numerical Model

Cortical Bone (o1 [N | U1 -8 Cortical Bone Cancellous Bone
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Granulation Implant yL
Tissue X

http://dx.doi.org/10.1080/10255842.2017.1296954
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Governing Equations

Biot’'s poroelasticity
Navier’'s equation for solid:

Darcy’s law combined with
continuity equation:

Coupled through Biot’s
constitutive relations:

o : stress tensor

€ : strain tensor

€,0/ - VOlumetric strain
C : elastic tensor

E : Young modulus

v : Poisson ratio

Darcy’s (fluid) velocity

—Vo =0 l
0 [ ] 0
Pf K Evol
S——+V-||——V = —«
ot 14 bf B ot
. J
o =C(E,v)e(u) — appy
1
Pf = g(( — O‘B&JOZ)
p; : fluid (pore) pressure ¢ : fluid volume per unit volume
k : permeability
K : viscosity

ag : Biot-Willis coefficient
S : storage coefficient

S =S(a, porosity, fluid bulk modulus, solid bulk modulus)
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Initial and Boundary Conditions

Initial conditions:

Solid
u=20
u = ug-
un =
0 Fluid

1

2

pf:(),u:()

Boundary conditions:

sin(2w ft — %)

,Vr =11,T2

{n-fo =0 ,Vr=rg,r3

pr =20

,\V/I' =T33

,\V/I‘ = TIp
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Material
Material
Property Granulation Cancellous  Cortical
Tissue Bone Bone
Young’s
Modulus 1 MPa 6 GPa 15.75 GPa
(E)
Poisson’s
Ratio 0.167 0.325 0.325
(v)
Porosity 0.8 0.8 0.04
(ep)
Permea-
bility le=" m? 37¢e 1% m? 1e720 m?
(%)
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Results

Micromotion
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Micromotion-induced fluid flow in granulation tissue
extends 1 ym/s to 700 um/s
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Study the effects of
fluid on morphogens

distribution and
MSCs differentiation
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Model

™ (1) & €3
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Governing Equations
Mass transport

Diffusion (D) — Advection (A) — Reaction (R) i bulk:

—_—
D ﬂ. l R

Binding (B) — Unbinding (UB) reaction on the wall :

dB
E kon(Rt - B)Cly—
B UB

Secretion(S) of morphogens:

0B DaC|
ot dy b=o

C - concentration
R, — total number of receptors

B — number of bound receptors
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x ~ 1/decay rate
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Results

Pe (Peclet number) ~ fluid flow
Pe =0 Pe = 500

Fluid flow is strong
enough to:

e Disturb the
concentration
profile of
morphogens

« Change the number
of bound receptors
(i.e. have an effect
on cell
differentiation)

Gortchacow, Biophysical Journal, 2013 32
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Experimental Validation

Microfluidics experiments

Variation in cell response up and dowstream the flow

Effects of colony length on cell response to flow

j Regular patterning of cells

k Variation in cell response
between patterns along the
flow observed by immuno-
fluorescence of predefined

markers /

I Patterning cell
colonies of
different lengths

m Variation in cell
response
between colonies
of different
lengths
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Conclusion

A better understanding of
conditions promoting
aseptic loosening of hip
Implants can lead to better
iImplant designs or surgical
techniques and benefit
patients
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Conclusion

Numerical modeling helps to
iInvestigate complex multi-
scale hypotheses.

However, experimental
validation is essential to
assess the predictive
capabilities of models.
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