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THE KNEE

Patellar
tendon

Tibia




THE KNEE

Osteoarthritis

\\

> 30% of population over 65 years

[Barthel et al., 2009]



TOTAL KNEE ARTHROPLASTY

Femoral Up to 24% of revisions!

component [Sundberg et al., 2014]
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= 1.1 million surgeries per year in USA & Europe
[Bozic et al., 2010]
[He et al., 2011] = satisfaction rate 70-86%, revision rate ~ 6%



PATELLAR COMPLICATIONS

o/\1
Patellar fracture (up to 5.2%) Patient

Surgical technique
Implant design

. . . Bone strains??3
Anterior knee pain

(at least 10%)*

= Tissue damage

= Change in cell metabolic activity

Fracture, Pain%~

1[Schindler, 2012 ] 3[Fitzpatrick et al., 2011]
2[Lie et al., 2005] “[Draper et al., 2011] >[Ho et al., 2014]



PATELLAR STRAIN PREDICTION

In vivo In vitro In silico

: Limited : :
Unavailable Not applicable to patient Numerical modeling

~ Image
detector

Adjustable "
step height

[Sharma et al., 2011] [Fernandez et al., 2008]

Few studies?
Mainly cadaveric studies
Models not fully adapted to subjects

'[Fitzpatrick et al., 2011, 2013] No validated material law for patella

[Amirouche et al., 2013]
[Takahashi et al., 2012]



THESIS OBJECTIVES

Patient-specific knee model to evaluate patellar strain in TKA
1 2
Knee model Patellar model

Bone material properties

Kinematics, forces Strain

Application to the TKA patients
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KNEE MODEL: GEOMETRY

Computer Tomography  Geometry reconstruction
(CT) Implant positioning

mv © SYMBIOS

Numerical Model
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KNEE MODEL: BOUNDARY CONDITIONS

* Loaded squat (Oxford)

= Control: BW + muscle elongation +
feedback algorithm?

= Force in muscles distributed
according to muscle ratios (patient
and literature)

= Abaqus/Standard

Terrier et al., 2007]
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KNEE MODEL: VALIDATION

r™ .
Reflective
' & markers

N
® | ,4‘PateHa

LMAM, EPFL

= Static squat: 10 to 60° (each 5°)
= Body load 300 N

= Self-learning algorithm?

Measurements:
= Quadriceps force

= Patellar kinematics

1 [Arami et al.,2008]
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KNEE MODEL: VALIDATION (with experiment)

Average error: 0.6 mm Average error: 1.1 degree
50 : 40
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Three-cylinder open-chain system
6o Average error:120 N [Grood and Suntay, 1983]

=== [Experimental measurements

----- Numerical predictions
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KNEE MODEL: VALIDATION (with literature)
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PATELLAR MODEL

element

Mesh

16

rial properties

Mate

Geometry



PATELLAR MODEL

Isotropic

Homogenized
material properties

DNTK
Var
4

Anisotropic
(orthotropic)




BONE ANISOTROPY

Mean intercept length (MIL) method - Fabric tensor

Fabric tensor

MIL 1s the mean distance between a change

m; 0 0
of phase (solid/liquid, (bone/marrow), M = [ 0 m, O ]
0 0 m
with respect to a particular orientation ’
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PATELLAR MODEL: MATERIAL LAW

Anisotropic linear elastic material e =Co Morphology — elasticity relationship

(Zysset — Curnier)?

(1 _Va _Vam '

V2 1 v 0
E, E; Ej E; E, -
Vi3 Va3 1 — = —pfmim;
E, E, Ej Vij Vo J
C = .
2G,3 K lanl
0 1 Gij = Gop™mmy
2Gq3 ) Vi+j=1273
2G4

5 constants to identify: Ey, vy, Go, k, |
9 parameters = 5 constants + 4 variables

, M: fabric tensor?
4 (3+1 bles:
(3+1) variables {p: BV/TV (bone vol/total vol.)

anisotropic model isotropic mo

.

el

p—

my <m, <mg, tr(M) =3 my =my =Mz =

1 [Zysset , Curnier, 1995]
2 [Cowin, 1995]



IDENTIFICATION with uFE

uCT: 20 patellae 200 cubes (5.3 mm)

= Each voxel to hex element
( E=12 GPa, v=0.3)!

IWolfram, 2010, 2012]

= Kinematic Uniform BC?
2[Pahr and Zysset, 2008]

1 3 F 7 ’

, - I 4
cogmpres& ns ,

L [ “ /

Stiffness Fabric (MIL) + p

= =9 million DOF

Eq,vg, Go, k, |
anisotropic

iIsotropic
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IDENTIFICATION with uFE

Anisotropic Isotropic
10 - 10 .
y = 0.9488x + 0.3163 a? y = 0.838x + 1.0002 &
r2aq=0.95 2,4 = 0.85 4
ccc =0.97 - ccc=0.92
= RMSE=0.20 ¥ © RMSE = 0.32
% g LP< 0.001 | ool S . P< 0.001
< ’ £
U-lI.E s uc [} 0
3 %
6 10 2 6 10
C.ee (In(MPa)) C,e (In(MPa))
Law E, (MPa) G, (MPa) k |
Anisotropic  12723.05 4224.62 21 1.02
Isotropic 11035.98 4395.05  2.13 -
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VALIDATION with uFE

UCT: 18 sections

UFE

Global comparison:

Stiffness

hFE

Local comparison:
Strain/stress invariants

?M? i

M‘W

‘;—;;_' X ’M’Q
\ 1‘

l"‘-

= hFE: anisotropic and
isotropic

= Kinematic Uniform
BC




VALIDATION with uFE

UFE hFE aniso hFE iso
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MATERIAL PROPERTIES FROM CT

|

Anisotropy?

Bone volume fraction?
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MATERIAL PROPERTIES FROM CT

Patient’s CT

|_
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Registration

N

Anisotropy

Deformed pCT Predicted anisotropy

[E. Taghizadeh et al., 2015]

Bone volume fraction
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PATELLA MODEL

= Deformable patella (bone, cement,
component) and femoral surface

" Translation and rotation according
to knee model

" Forces along anterior bone surface
with cubic weight function (Abaqus)

polyethylene T +— bone

cement
26



APPLICATION 1 : PATELLAR CUT
QUESTION:

= Does cut influence patellar

1 patient )
mechanics?

Preoperative CT & planning . .
= Does deeper cut increase risk of

Patellar cut is more than complications?
recommended _

= Potential of the model?
8 months follow-up

Received cut Recommended cut

21 mm

27



RESULTS

A
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APPLICATION 2: PATIENT-SPECIFIC STRAIN

14 patients = Patellar cut from post-op X-Ray
Preoperative CT & planning = Loaded squat (BW)
1 year follow-up = Muscles ratios (literature)

No complications = Qctahedral shear strain at 60° of knee flexion

uCT
template

p + fabric

& @

Patient Knee model Patella model 29



QUESTION

= Variation between patients

= Correlation between strain and patient parameters:

Age

Sex

Height, weight, body mass index (BMI)
Patellar volume after resurfacing (V)
Bone mineral density (BMD)

Combination of parameters

30



APPLICATION 2: DAMAGE CRITERION

Bone damage :

=
-]
=

S T = 2% of bone volume above bone yield
E » Bone yield ~ 1-2% of strain
o
-
2 [Pistoia et al, 2002]
=]
z
3
g Strategy :
C o | : | . : :

0 ! S, B Estimate S, for each patient

Strain (%) = Sp > bone yield — patient under risk

31



RESULTS: KINEMATICS AND FORCES

Anterior-Posterior
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RESULTS: PATELLAR STRAIN

=  Example for patient #5

M<«<—— L

Mean strain (%)

— @

2 I -E-h '

i —_— :
M [ [T [T e

o ] 0.0 0.8 1.6%

Strain distribution 2% of highly strained bone
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RESULTS: CORRELATIONS
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RESULTS: RISK PREDICTION

0.5

0.45

0.15

0.1

20

Strain < 1%

1% < Strain < 2%

25 30 35 40 45
BMI [kg/m?]

Latypova et al., Medical Engineering & Physics, 2019, 68:17-24



CONCLUSIONS

* Developed patient-specific TKA model with focus on patella

* Originality:
— Muscle control
— Adaptation to anatomy, implant design, and position, body
weight
— ldentified and validated patellar material properties (anisotropic
and isotropic)

e Application to patients:

— Highlighted the importance of the patellar cut
— Highlighted the importance of

the patellar density and BMI in preoperative planning
— Potential of the model as a surgery planning tool

36



NEXT STEP: CLINICAL APPLICATION

* Clinical retrospective study

e 2 groups of patients, with >2 years follow-up

— Patients with patellar complications after TKA
— Patients without complications after TKA

* Radiological evaluation of preoperative patellar BMD
» Statistical differences of BMD & BMI

 Clinical recommendation
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