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THE KNEE
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THE KNEE
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> 30%  of population over 65 years

Osteoarthritis

[Barthel et al., 2009]



TOTAL KNEE ARTHROPLASTY
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component

Tibial
component Patellar 

button

Tibial insert

▪ 1.1 million surgeries per year in USA & Europe

▪ satisfaction rate 70-86%, revision rate ~ 6%
[Bozic et al., 2010]
[He et al., 2011]

Up to 24% of revisions!
[Sundberg et al., 2014]



PATELLAR COMPLICATIONS

8

Patellar fracture (up to 5.2%)1

Anterior knee pain 
(at least 10%)1

1[Schindler, 2012 ]

▪ Tissue damage

▪ Change in cell metabolic activity

Patient
Surgical technique

Implant design

Bone strains2,3

2[Lie et al., 2005]

3[Fitzpatrick et al., 2011]

Fracture, Pain4,5

4[Draper et al., 2011] 5[Ho et al., 2014]

?



PATELLAR STRAIN PREDICTION
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In silicoIn vivo In vitro

Unavailable
Limited
Not applicable to patient

Numerical modeling

Few studies1

Mainly cadaveric studies
Models not fully adapted to subjects
No validated material law for patella

1[Fitzpatrick et al., 2011, 2013]
  [Amirouche et al., 2013]
  [Takahashi et al., 2012]

[Sharma et al., 2011]

[Merican et al., 2014]

[Fernandez et al., 2008]



THESIS OBJECTIVES
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Patellar model

Kinematics, forces

Patient-specific knee model to evaluate patellar strain in TKA

Knee model

Bone material properties

Strain

Application to the TKA patients

1

3

2



KNEE MODEL: GEOMETRY
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Computer Tomography
(CT)

Geometry reconstruction
Implant positioning

Numerical Model



KNEE MODEL: BOUNDARY CONDITIONS
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▪ Loaded squat (Oxford)

▪ Control: BW + muscle elongation + 
feedback algorithm1

▪ Force in muscles distributed 
according to muscle ratios (patient 
and literature)

▪ Abaqus/Standard

1[Terrier et al., 2007]
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Hip load

Quadriceps

actuator

Reflective 

markers

Patella

▪ Static squat: 10 to 60° (each 5°) 

▪ Body load 300 N

▪ Self-learning algorithm1

Measurements:

▪  Quadriceps force

▪ Patellar kinematics

1 [Arami et al.,2008]

LMAM, EPFL

Force  sensor

KNEE MODEL: VALIDATION



KNEE MODEL: VALIDATION (with experiment)
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Three-cylinder open-chain system

 [Grood and Suntay, 1983]

Average error: 0.6 mm Average error: 1.1 degree

Average error:120 N

Numerical predictions

Experimental measurements
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[Sharma et al., 2012]

KNEE MODEL: VALIDATION (with literature)



PATELLAR MODEL
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CT

Geometry

Mesh

element

Material properties

?



PATELLAR MODEL
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Homogenized
material properties

Isotropic

Anisotropic
(orthotropic)

CT

µCT



Mean intercept length (MIL) method → Fabric tensor

Fabric tensor 

BONE ANISOTROPY

M = 

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

𝑚1

𝑚2

𝑚3
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MIL is the mean distance between a change 

of phase (solid/liquid, (bone/marrow),

with respect to a particular orientation 



PATELLAR MODEL: MATERIAL LAW
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Morphology – elasticity relationship 
(Zysset – Curnier)1

1 [Zysset , Curnier, 1995]
2 [Cowin, 1995]

𝐸𝑖 = 𝐸0𝜌
𝑘𝑚𝑖

2𝑙

𝐸𝑖

ν𝑖𝑗
=

𝐸0

ν0
𝜌𝑘𝑚𝑖

𝑙𝑚𝑗
𝑙

𝐺𝑖𝑗 = 𝐺0𝜌
𝑘𝑚𝑖

𝑙𝑚𝑗
𝑙

∀ 𝑖 ≠ 𝑗 = 1,2,3

isotropic model

M: fabric tensor2

𝜌: BV/TV (bone vol/total vol.)

anisotropic model

𝑚1 ≤ 𝑚2 ≤ 𝑚3, 𝑡𝑟 𝑀 = 3

5 constants to identify: 𝑬𝟎, 𝝂𝟎, 𝑮𝟎, k, l  

Anisotropic linear elastic material

ν_23/𝐸_2 

𝑪 =
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𝜀 = 𝐶 σ

𝑚1 = 𝑚2 = 𝑚3 = 1

9 parameters → 5 constants + 4 variables 
4 (3+1) variables:{



IDENTIFICATION with µFE 
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µCT: 20 patellae 200 cubes (5.3 mm)

▪ Each voxel to hex element 
( E=12 GPa, v=0.3)1

1[Wolfram, 2010, 2012]

𝐸0, ν0, 𝐺0, k, l
anisotropic

isotropic

▪ Kinematic Uniform BC2

2[Pahr and Zysset, 2008]

Stiffness Fabric (MIL) + ρ

▪ ≈ 9 million DOF



IDENTIFICATION with µFE 
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Law E0 (MPa) ν0 G0 (MPa) k l

Anisotropic 12723.05 0.24 4224.62 2.1 1.02

Isotropic 11035.98 0.26 4395.05 2.13 -



VALIDATION with µFE

22

µCT: 18 sections µFE hFE

▪ hFE: anisotropic and 
isotropic

▪ Kinematic Uniform 
BC

Global comparison:
Stiffness

Local comparison:
Strain/stress invariants

▪ ≈ 250 million DOF
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VALIDATION with µFE

µFE hFE aniso hFE iso

Strain energy density
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MATERIAL PROPERTIES FROM CT

Anisotropy?

Bone volume fraction?
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PATELLA MODEL
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▪ Deformable patella (bone, cement, 
component) and femoral surface

▪ Translation and rotation according 
to knee model

▪ Forces along anterior bone surface 
with cubic weight function (Abaqus)

▪  

▪  

▪  
▪  

▪  ▪  

▪  

F

▪  

polyethylene

cement

bone



APPLICATION 1 : PATELLAR CUT
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▪ 1 patient

▪ Preoperative CT & planning

▪ Patellar cut is more than 
recommended

▪ 8 months follow-up

QUESTION:

▪ Does cut influence patellar 
mechanics?

▪ Does deeper cut increase risk of 
complications?

▪ Potential of the model?



RESULTS
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Kinematics and force

Strain

Deeper cut → higher strain!



APPLICATION 2: PATIENT-SPECIFIC STRAIN
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▪ Patellar cut from post-op X-Ray

▪ Loaded squat (BW)

▪ Muscles ratios (literature)

▪ Octahedral shear strain at 60° of knee flexion 

▪ 14 patients

▪ Preoperative CT & planning

▪ 1 year follow-up

▪ No complications

Patient Knee model Patella model
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▪ Variation between patients

▪ Correlation between strain and patient parameters:

- Age

- Sex 

- Height, weight, body mass index (BMI)

- Patellar volume after resurfacing (V)

- Bone mineral density (BMD) 

- Combination of parameters

QUESTION



APPLICATION 2: DAMAGE CRITERION

[Pistoia et al, 2002]

Bone damage :

▪ 2% of bone volume above bone yield

▪ Bone yield ~ 1-2% of strain

31

Strategy :

▪  Estimate Sp for each patient

▪  Sp > bone yield → patient under risk 



RESULTS: KINEMATICS AND FORCES
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RESULTS: PATELLAR STRAIN
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▪ Example for patient #5

Strain distribution 2% of highly strained bone

M L



RESULTS: CORRELATIONS
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BMD   - Bone Mineral Density 
BMI     - Body Mass Index

y = 0.0173x - 0.3923

R² = 0.8694
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y = 0.6541x - 0.7332

R² = 0.7307
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RESULTS: RISK PREDICTION

35
Latypova et al., Medical Engineering & Physics, 2019, 68:17-24



CONCLUSIONS
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• Developed patient-specific TKA model with focus on patella

• Originality:

– Muscle control
– Adaptation to anatomy, implant design, and position, body 

weight
– Identified and validated patellar material properties (anisotropic 

and isotropic)

• Application to patients:

– Highlighted the importance of the patellar cut
– Highlighted the importance of

 the patellar density and BMI in preoperative planning
– Potential of the model as a surgery planning tool



• Clinical retrospective study

• 2 groups of patients, with >2 years follow-up

– Patients with patellar complications after TKA
– Patients without complications after TKA

• Radiological evaluation of preoperative patellar BMD

• Statistical differences of BMD & BMI

• Clinical recommendation

NEXT STEP: CLINICAL APPLICATION
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