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Abstract: The topics of verification and validation have increasingly been discussed in the 
field of computational biomechanics, and many recent articles have applied these concepts in 
an attempt to build credibility for models of complex biological systems. Verification and 
validation are evolving techniques that , if used improperly, can lead to false conclusions about 
a system under study. In basic science, these erroneous conclusions may lead to failure of a 
subsequent hypothesis, but they can have more profound effects if the model is designed to 
predict patient outcomes. While several authors have reviewed verification and validation as 
they pertain to traditional solid and fluid mechanics, it is the intent of this paper to present 
them in the context of computational biomechanics. Specifically, the task of model validation 
will be discussed, with a focus on current techniques. It is hoped that this review will encourage 
investigators to engage and adopt the verification and validation process in an effort to increase 
peer acceptance of computational biomechanics models. 
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l INTRODUCTION 

Modelling of biological systems allows simulation of 
the mechanical behaviour of tissues to supplement 
experimental investigations or when experiment is 
not possible. It aids in defining the structure­
function relationship of tissues and their constitu­
ents. Modelling plays a role in basic science as well as 
in patient-specific applications such as diagnosis and 
evaluation of targeted treatments ll-51 . Regardless of 
the use, confidence in computational simulations is 
only possible if the investigator has verified the 
mathematical foundation of the model and validated 
the results against sound experimental data. 

Computational biomechanics seeks to apply the 
principles of mechanics to living tissues. Beginning 
with the introduction of finite element analysis 
in the 1950s [6, 71, investigators used numerical 
algorithms to simulate structural materials in civil 
and aeronautical engineering applications [8, 9]. 
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Beyond the foundation of solid mechanics, these 
methods were used extensively in computational 
fluid dynamics (CFO) and heat transfer [10-121. As 
the power of the computer grew, so did the ability to 
tackle larger and more complex models. In the 
1970s, researchers applied the principles of compu­
tational solid and fluid mechanics to biology I 13-
181. Bone, ligament, cartilage, cardiac tissue, and 
muscle exhibited complex organization and solid­
fluid interactions that were not adequately described 
by traditional paradigms for engineering materials. 
Novel constitutive models were developed in an 
attempt to describe these materials. Again, leaps in 
computing power allowed the solution of more 
intricate problems, but adding complexity increased 
the potential for errors. 

The issues of uncertainty in the ability of a model 
to describe the physics of a system did not go 
unnoticed. The first cohesive attempts to define 
methods of dealing with these problems arose in 
CFD l19-21]. Publications dealing with these issues 
in solid mechanics soon followed l22, 231. To date, 
no true standard has been written owing to the 
constantly evolving state of the art, and as such these 
documents are thought of as guidelines. 

Proc. IMechE Vol. 224 Part H: J. Engineering in Medicine 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

802 H B Henninger, S P Reese, A E Anderson, and J A Weiss 

The literature refers to the areas of concern as 
verification and validation. Verification is defined by 
the ASME Committee for Verification and Validation 
in Computational Solid Mechanics as 'the process of 
determining that a computational model accurately 
represents the underlying mathematical model and 
its solution', whereas validation is defined as 'the 
process of determining the degree to which a model 
is an accurate representation of the real world from 
the perspective of the intended uses of the model' 
[22]. Succinctly, verification is 'solving the equations 
right' (mathematics) and validation is 'solving the 
right equations' (physics) [24, 25I. By definition, 
verification must precede validation, to separate 
errors due to model implementation from uncer­
tainty due to model formulation [19, 20, 22, 26]. The 
general flow of the verification and validation 
process is illustrated in Fig. 1. 

It has been argued that verification and validation 
are only applicable for a closed system in which all 
variables and their relative influence on the system 
are known, but natural systems never obey this 
simplification [27]. Oberkampf and collaborators 
opined that engineering does not require 'absolute 
truth' but instead a statistically meaningful compar­
ison of computational and experimental results 
designed to assess random (statistical) and bias 
(systematic) errors [20]. In order to build practical 
confidence in any prediction, the engineering ap­
proach must be used. 

For the purposes of this paper, error is defined 
as the difference between a simulation, or experi­
mental value, and the truth. Error can arise in a 
number of areas, particularly insufficiencies in the 
formulation of the model describing the physics 
of the real world or inaccurate implementation of 
the model into a computational code [19, 20, 22[. 
The intended use of the model then dictates the 
requirements of error analysis. Basic science may 
only require cursory examination of errors if the 
intention is to gather general information for fur­
ther study. In contrast, clinical application of the 
preclictions from a simulation necessitates exten­
sive examination of errors , especially if patient 
treatment or outcome is directly impacted. The im­
portance of recogni2ing and accounting for errors 
is critical for peer acceptance of the relevance and 
applicability of tbe model. This is apparent in 
the growing number of scientific journals requir­
ing some degree of verification and validation of 
models presented for consideration (e.g. Annals of 
Biomedical Engineering [281, Clinical Biomechanics 
[29I, etc.). 
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Fig. I Flow of the verification and validation process 
in computational biomechanics. Verification 
solves the mathematical model and ensures 
that it is implemented correctly (code verifi­
cation) and provides acceptable solutions to 
benchmark problems (calculation verification). 
Initial computational solutions provide indi­
cators of which parameters are critical in the 
model formulation (sensitivity analysis), and 
these can be used in the design of validation 
experiments. Validation is used to quantify the 
model's ability to describe the experimental 
outcomes of the physical system given well­
defined boundary conditions. Sensitivity an­
alysis is used again to determine the degree to 
which input parameters influence the solution 
output. The process is iterative until the model 
and validation experiments provide reasonable 
agreement within preset acceptance criteria. 
Adapted with permission from the ASME 
Committee (PT60) on Verification and Vali­
dation in Computational Solid Mechanics (2006) 

This paper reviews validation in computational 
biomechanics. Validation, as it pertains to the real­
world physics of biological materials, has been an 
elusive target owing to the complexity of the tissues. 
Existing models provide predictions of stress or 
strain in a tissue, but validation may only be 
supported by rudimentary experiments with any 
level of confidence. It is the ultimate goal of 
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validation to provide a physical foundation for 
comparison such that problems that are not experi­
mentally feasible can be simulated with the belief 
that they provide realistic predictions. Validation is 
by nature a collaborative effort between experimen­
talists, code developers, and researchers seeking to 
define mathematical descriptors of real-world mat­
erials . It is likely that the future will provide firmer 
experimental standards, commonality in reporting, 
and continuous improvement strategies, even if the 
goal of a 'gold standard ' testing regimen is never 
truly achievable. As this text focuses on validation, 
the reader is referred to a number of extensive 
reviews of verification and related topics in compu­
tational modelling of traditional solid, fluid, and 
biomechanics [19-23, 26, 27, 30-36 ]. Verification 
and sensitivity studies will be covered briefly, as they 
are inextricably tied to validation . 

2 VERIFICATION AND SENSITMTY STUDIES 

2.1 Verification 

Verification is 'the process of gathering evidence to 
establish that the computational implementation of 
the mathematical model and its associated solution 
are correct' [22]. A verified code yields the correct 
solution to benchmark problems of known solution 
(analytic or numeric), but does not necessarily 
guarantee that it will accurately represent complex 
biomechanical problems (the domain of validation) 
[191. From this definition it is clear that verification 
must precede validation. The need for validation is 
obviated if the numerical implementation of the 
proposed model is not accurate in its own right. 

Verification is composed of two categories, code 
and calculation verification. Code verification en­
sures that the mathematical model and solution 
algorithms are working as intended. Typically, the 
numerical algorithms are in the framework of finite 
difference or finite element (FE) methods, in which 
discretized domains are solved iteratively until 
convergence criteria are met. The errors that can 
occur include discontinuities, inadequate iterative 
convergence, programming errors, incomplete mesh 
convergence, lack of 'conserv ation' (mass, energy, 
heat, and so on), computer round-off, etc. [21, 23 ]. 
The asse ssment of numerical error has been studied 
extensively and is suggested to follow a hierarchy of 
test problems [19, 22]. This includes comparison 
with exact analytical solutions (most accurate but 
least likely to exist for complex problems), semi­
analytic solutions with numerical integration of 
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ordinary differential equations, and highly accurate 
numerical solutions to partial differential equations 
describing the problem domain. An example of code 
verification is found in Ionescu et al. [371, where a 
transversely isotropic hyperelastic constitutive 
model implementation was verified against an 
analytical solution for the case of equibiaxial stretch. 
The code was capable of predicting stresses to within 
3 per cent of an analytical solution , thus verifying the 
code performance. Note that this was a limited test 
of applicability and does not mean the model could 
accurately predict other responses that were not 
independently verified. 

Calculation verification focuses on errors arising 
from discretization of the problem domain. Errors 
can arise from discretization of both the geometry 
and analysis time and should be verified indepen­
dently. A common way to characterize discretization 
error in the FE method is via a mesh converg ence 
study. A mesh is considered too coarse if subsequent 
refinement of the mesh results in predictions that 
are substantially different (i.e. solution does not 
asymptote) . The consequence of incomplete mesh 
convergence is that the problem will generally be too 
'stiff in comparison with an analytical solution, and 
increasing the number of elements will 'soften' the 
FE solution [l, 35]. Studies of spinal segments have 
suggested that a change of < 5 per cent in the 
solution output is adequate to ensure that mesh 
convergence is complete [311. Mesh convergence is 
documented in the literature owing to the preva­
lence in finite element studies, and it is recom­
mended for all discretized analyses [38--431. 

Although verification is absolutely required for 
user-developed codes to ensure that the model is 
delivering the expected outputs to benchmark 
problems [26], use of a commercial code does not 
relieve the user of the need for verification . Given 
every conceivable problem, teams of commercial 
software engineers cannot ensure that all possible 
combinations of boundary conditions and material 
constraints yield accurate results [20 ]. Therefore, the 
user is tasked with verification prior to the use of a 
given model implementation. 

2.2 Sensitivity studies 

Many mathematical models of biological tissues are 
formulated on the basis of fundamental consider­
ations such as material symmetry , stiffness , static 
versus dynamic response, etc. All mate rial para­
meters, whether adopted from the literature or 
derived from experiments, include some degree of 
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error [351. This can result from the incomplete 
characterization of a new material in the laboratory, 
differences between protocols, or inherent specimen• 
to-specimen variability. Errors are exacerbated in the 
case of patient-specific models where unique combi­
nations of material properties and specimen geome• 
try are coupled 138]. Sensitivity studies are common 
in computational analyses, usually focusing on the 
influence of experimentally derived material coeffi­
cients on the model predictions [ l, 38, 39, 42, 44-49]. 
Multiple sources have identified the resolution of 
medical image data as a source of error in computa­
tional models, owing to deviations in the reconstruc • 
lion of three-dimensional (3D) geometry from two• 
dimensional (2D) images I l, 31, 50/ . 

Sensitivity studies are an important part of any 
computational study, especially those utilizing mod­
els that are previously untested 119, 20, 22, 23, 26, 
30, 31 , 35]. Sensitivity analysis can be performed 
before or after validation experiments , and some 
argue that both are appropriate. If undertaken prior 
to validation, sensitivity studies can help the in• 
vestigator target critical parameters 120, 30, 35]. 
Validation experiments can then be designed to 
tightly control the quantities of interest . After vali­
dation, sensitivity analyses provide assuranc e that 
the experimental results are within initial estimates , 
and they can determine if they still have a significant 
impact on model outputs . 

Sensitivity studies provide the investigator with a 
measure of how error in a particular model input wiU 
impact upon the results of a simulation , scaling tbe 
relative importance of the inputs 123, 351. The 
general procedure is to alter a single material 
parameter, by orders of magnitude or multiples of 
the standard deviation about the mean, while 
holding the others constant. For large-scale para­
metric numerical analysis, Monte Carlo simulations 
can be used to evaluate combinations of paramete rs 
[32]. Simulations that are not altered significantly 
witb variations in an input parameter are said to be 
insensitive to changes in the given input. By 
contrast , a parameter that dramatically influences 
the output should be investigated to ensure proper 
characterization . 

3 VALIDATION 

3.1 Validation 

Validation is the process of ensuring that a compu­
tational model accurately represents the physics of 
the real-world system [19, 22]. While some consider 
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validation of natural systems to be impossible 127], 
the engineering viewpoint suggests that the 'truth' 
about tbe system is a statistically meaningful pre­
diction that can be made for a specific set of 
boundary conditions 120, 26, 29] . This does not 
suggest that in vitro experimental validation (in a 
controlled laboratory environment) represents the in 
vivo case (within the living system), as the boundary 
conditions are likely impossible to mimic . It means 
that, if a simplified model cannot predict the 
outcome of a basic experiment, it is probably not 
suited to simulating a more complex system . 

Validation is often the most laborious and re­
source-dependent aspect of computational analysis, 
but if done properly it can ensure that the model 
predictions are robust 120, 21, 261. These costs may 
pale in comparison to the repercus sions of a false 
prediction if the intended use of the model is critical. 
The level of validation required is directly tied to the 
intended use of the model , and the supporting 
experiments should be tailored accordingly. 

A general validation methodology is to determine 
the outcome variables of interest and prioritize tbem 
according to their relative importance . Oberkampf 
suggests using the phenomenon identification and 
ranking table (PIRTJ 120, 5 l I. The PIRT guidelines 
scale each variable according to its impact within the 
system and determine if the model adequately 
represents the phenomena in question . It then 
identifies if existing experimental data are able to 
validate the model or if additional experiments are 
required . Finally, PIRT provides a framework to 
assess validation metrics, which quantify tbe pre­
dictive capability of the model for the desired 
outcome variable. 

The central question is one of time, cost, and the 
complexity of tbe experiments needed to validate the 
simulation and tbe ramifications of erroneous con­
clusions. Is the model the most appropriate repre­
sentation of the physical system? Will a simpler 
model be adequate, or will it be unable to capture 
details only available in more sophisticated formu­
lations? Can experiments provide realistic data for 
tl1e critical outcome variables, or are the intended 
uses of the model incapable of laboratory examina­
tion? 

3.2 Types of validation 

The two predominant types of validation are direct 
and indirect 131/. Direct validation performs exp­
eriments on the quantities of interest , from basic 
material characterizations to hierarchical systems 
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analysis. Although they may seem trivial. the most 
basic validation experiments are often the most 
beneficial, as they provide fundamental confidence 
in the model's ability to represent constituents of the 
system [30I. The goal is to produce an experiment 
that closely matches a desired simulation so that 
each material property and boundary condition can 
be incorporated . Limitations include reproduction of 
the physical scale or an inability to generate data for 
the specific model output that is most desired. 
Typically, these relate to the regeneration of the 
complex boundary conditions associated with in 
vivo systems as quantified by in vitro experiments. 

Indirect validation utilizes experimental results 
that cannot be controlled by the user, such as from 
the literature or results of clinical studies. Experi­
mental quality control. sources of error, and the 
degree of variability are typically not known if the 
data are not collected by the analyst. Indirect 
validation is clearly less favoured than direct valid­
ation, but may be unavoidable. The required experi­
ments may be cost prohibitive, difficult to perform, 
or may simply be unable to quantify the value that is 
sought by the model. 

3.3 Experimental design considerations 

The investigator should consider how the model will 
be tested directly. Does it include one constituent or 
many, what quantities are being measured, and can 
individual components be tested independently 
from one another as well as in their combined state? 
The governing committees both suggest building the 
testing protocol through three general stages: (I) 

finite benchmark problems of the constituents, (2) 
subsystems, and (3) complete system analysis [19, 
221. Often only the first stage is possible, but the 
others may be used to guide further analysis, even if 
direct experimental validation is not possible. When 
reporting experimental data, the results should be 
presented as means and standard deviations along 
with the number of independent measures collected 
[19, 20, 22, 231. 

A significant consideration in computational bio­
mechanics is how well in vitro testing can mimic the 
in vivo environment. Boundary conditions may be 
manipulated easily on the laboratory bench, but data 
may not represent conditions within the living 
system. This can negatively affect computational 
predictions, as isolated tissues may behave differently 
to when they are part of the composite biological 
system. An example is found in the work of Gardiner 
and Weiss [45], where in situ ligament strains were 
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determined on a subject-specific basis. Finite element 
predictions of strain using averaged data fit the 
experimental data poorly compared with the sub­
ject-specific models, emphasizing the need for well­
defined boundary conditions. 

As computing power increases, subject-specific 
simulations will become more commonplace. Ex­
perimental validation needs to account for the in­
fluence of geometric and parameterized simplifica­
tions (generic population versus subject specific). 
The analysis of individual models may not provide 
better results given the time and effort required to 
formulate all different test cases. Validation also may 
not be possible in the clinical setting, where 
researchers and clinicians seek to predict the out­
comes of diagnosis and treatment. This is a trade-off 
of model generation versus the confidence that can 
result from direct experimentation. Again, what is 
the desired outcome of validation, and is it achiev­
able with available tools? 

3.4 Validation metrics 

Validation metrics quantify the differences between 
the experimental results and the simulation and can 
include all assumptions and estimates of errors [20, 
22, 301. Qualitative observations require user inter­
pretation and provide no universal scale for compar­
ison. Graphical comparisons such as scaled fringe 
plots are quasi-quantitative, as they find a basis in 
human interpretation. Metrics must be quantitative 
in nature and are suggested to follow the design flow 
of the PLRT in order to scale and capture the most 
relevant parameters [201. 

Metrics can be deterministic, using graphical 
comparisons to relate the model to experiments 
[201. Deterministic metrics rely on graphs and plots, 
which are inherently qualitative. Statistical analysis 
such as regression and correlation can strengthen 
quantitative conclusions [20, 30I but must be 
thoroughly examined, as variation in the data dir­
ectly affects the strength of their relationships [52]. 
Alone, these are not complete, so experimental 
uncertainty metrics and numerical error metrics are 
employed [20]. Experimental uncertainty metrics 
quantify the inaccuracies built into the experimental 
apparatus and their impact on experimental data. 
The tolerances of the devices should be provided, 
and accuracy should be determined by the user as a 
secondary check that the devices are within speci­
fication. Accuracy of any device should be reported 
as the mean ± 1.96 standard deviations, as this is 
the statistically relevant confidence interval within 
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which specifications should fall 120, 221. Numerical 
error metrics include the influence of computational 
error on the model domain. Numerical error is 
quantified by manipulating the solution strategy or 
input parameters to test the impact on the solution. 
These may include the use of implicit versus explicit 
time integration or altered convergence criteria 1301. 

Metrics may also be non-deterministic . These are 
the most comprehensive, as they include the 
deterministic quantifications as well as estimates of 
all input parameters as probability distributions 1201. 
Material properties derived from experiments in­
clude error . The probability distribution is the 
statistical definition of the material properties as a 
function of that error, factoring in the variance and 
number of samples tested. This allows the metric 
to be truly quantitative , as it builds in the effects 
of experimental uncertainty and numerical error 
simultaneously. Oberkampf provides an excellent 
illustration of this phenomenon in section 2.4.4 of 
his text 1201. 

3.5 Examples of validation in computational 
blomechanlcs 

Many studies provide examples of validation , but 
few encompass the fully scaled approach of non­
deterministic metrics. This is likely due to the time 
and cost constraints that come with experimental 
validation, but also the relative infancy of the field of 
computational biomechanics. As a rapidly growing 
field, many studies validate models with the inten­
tion that predictions are for use in subsequent 
analysis and experimentation. Direct applicability 
on patient outcome is often an extended goal 12-51. 
Given the disparity in intended use of models, the 
level of validation varies greatly. It is the intention to 
provide the reader with examples of validation in 
computational biomechanics, although no 'gold 
standard' currently exists. The following discussion 
samples computational biomechanics papers from 
various disciplines including cell, cardiovascular , 
soft tissue, bone , and implant mechanics. 

In most cases , validation was performed by 
comparison with commercially available software, 
typically finite element solvers such as ABAQUS 
(Dassault Systems, SIMULIA, Warwick, RI, USA) or 
NIKE3D (Lawrence Livermore National Laboratory, 
Livermore, CA, USA). Some conducted their work 
using custom computational frameworks, but no 
study explicitly called out code verification. The 
development and use of the code begets confidence, 
as simple problems are solved successfully. Unfortu • 
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nately, when code verification is not confirmed, the 
reader is left to assume that the author has 
performed due diligence in ensuring proper code 
functionality. No matter how trivial, it is recom­
mended that every author provide documented 
assurance that the code has been verified. 

As for numerical verification, most studies per­
formed mesh convergence analysis. The typical men­
tion of convergence analysis concluded with the 
num ber of elements and nodes, as well as element 
types used [42, 43, 46, 531, while others added the 
refined mesh quality as an iterative percentage change 
in a solution parameter II, 38, 39 , 541. The presen­
tation of mesh quality as a metric provides the reader 
with a baseline discretization error and is recom­
mended for future studies . 

Ideally, validation experiments target critical para­
meters to provide confidence that the inputs to and 
outputs from a model accurately define the physics 
of the system. Almost universally, the input para­
meters were derived in previou s studies. Commonly 
accepted material properties were used in the case of 
well-characterized structural materials like metals 
and polymers [40, 43, 54]. For biological tissues, 
mean values were used as inputs, and sensitivity 
analysis tested the influence of their variance on the 
system. The most basic exploratory models of cell 
and vascular response contained one or two materi­
als, so sensitivity analysis was simplified consider­
ably 147, 53, 55, 561. Complex computational stud­
ies of bone, cartilage, and ligament deformation 
involving multiple materials, loading scenarios, 
and geometries scaled up the degree of sensitivity 
analysis [l, 38, 39, 421. Analyses of meniscus and 
intervertebral disc performed stochastic and para­
metric optimizations to determine the influential 
parameters as well as scaling them relative to one 
anotber [46, 571. While these reports used sensitivity 
analysis a posteriori, it should not be overlooked as a 
building block to aid in the design of validation 
experiments. 

Validation primarily tested the composite systems , 
regardless of the level of complexity. The boundary 
conditions generally agreed well betwee n experi­
ment and simulation , as extension of model applic­
ability was not of immediate concern in the basic 
system validation . A few models were tested with the 
intention of future clinical use in patient diagnostics, 
implantation, and outcome [1, 42 , 46, 47 , 54, 55,581, 
but require further analysis before extension into the 
clinical environment. 

An example of the flow of validation and sensitiv­
ity analysis can be found in a study of cortical bone 
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strains in the human pelvis (Fig. 2) 1381. This work 
used direct mechanical testing to simulate body 
weight loading through the hip joint while measur­
ing deformation on the cortical bone with strain 
gauges. The target parameters and metrics were 
defined a priori, and a dual computational and 
experimental approach allowed the influence of the 
unknown material properties to be evaluated with 
sensitivity analysis, identifying critical parameters 
for investigation in the experiments. 

Given the diversity and complexity of the systems , 
validation experiments were well suited for the 
intended use of the models. The investigators took 
precautions to apply the models to well-defin ed 
experimental methods, employing techniques like 

atomic force microscop y 1561, magnetic resonan ce 
imaging 147]. and traditional mechanical testing 
batteries I 1, 38, 40, 59, 60] . The techniques were 
capable of providing the defined measure that was 
sought as the model output, and errors associated 
with data collection were minimized where po ssible. 
Wher e errors could not be reduced , metrics were 
employed to capture their impact on the simu­
lations. 

The use of metrics was as varied as the models 
that employed them. Most studies used graphical 
comparison such as fringe plots and line graphs I 1, 

38, 42 , 43, 47, 53, 55, 56, 58, 60, 611. These 
assessments illustrated agreement of model predic­
tions with experiments, using quantities such as 
stress or strain. As discussed earlier, they are 
subjective. This is generally acceptable in explora-

Validation Plan 

Use: 
Patient Specific Research 

Validation Parameter: 

Experimental 
Methods <~i~ 

tory studies but should be su pported by non­
deterministic metrics if conclusions are to be drawn 
from the simulation. 

Traditional forms of metrics were used in the 
majority of the studies that were sampled. These 
included change as a percentage of nominal 143, 47]. 
root-mean-square error ll, 40, 46 1. and correlation 
coefficients and coefficients of determination [38, 
42 , 58, 60-62]. Each of these may be determini stic or 
non-deterministic , depending on the inclu sion of 
sampling error into the calculation. 

Correlation coefficients, R, and coefficients of 
determination, Ff, are often shown on a scatter plot 
comparing simulation versus experimental values. 
While ideal comparison yields a regression line with 
a slope of 1, it do es not capture the varianc e of the 
respective datasets. This means that high variation 
betw een individual data compared with the mea­
surement error within the experiment begets artifi­
cially high correlation. Altman and Bland 152[ note 
that 't he correlation coefficient is not a meas ure of 
agreement; it is a measure of association'. They 
suggest an alternative form of analysis that acc ounts 
for repeatability (the differenc e between two mea­
sure ments on a sing le subject) and reproducibility 
(the difference between two measurements on a 
single subject after a change in se t-up) . The typical 
experime ntal (E) versus simulation (SJ scatt er plot is 
th e starting point . Data are then plotted as the 
average of the methods ((E + SJ/2) on the x axis and 
the difference betwee n the methods (E - SJ on the y 
axis. A new regre ssion line is then tested against a 

Results 
Experimental 

/ 
Testing -
~~ 

Qualitative 

Sensitivity Testing 

f Material Coefficients! 
Cortical Strain 

Validation Metric 
Correlation Coefficient 

Computational -+­
Model I Geometry 

I 

Quantitative 

Comparison 

I Discretization I -
Fig. 2 Validation of pelvic cortical bon e strains by Anderson et al. 138[, a well-defined validation 

plan wher e the model use , parameters, and metrics were defined a priori and provided 
the initial probl em sta tement . A computational model was constructed to assist the 
development of the experimental model. Sensitivity tests were perform ed on the 
computational models in parall el with the experimental testing. Comparisons and 
conclusions were based on both qualitative and quantitative assessments of measured 
cortical bone strains and simulated pelvic loading 
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Fig. 3 Scatter plot regression versus Bland-Altman 
plots. Top panes (A, BJ show typical scatter 
plots of experimental versus simulation data. 
Although both show a regression line of 
slope= 1, they are derived from populations 
with higher (AJ and lower (BJ variance. Pane C 
shows a Bland-Altman plot where the dif­
ference between experiment and simulation 
(E - S) is plotted versus the average range 
(E+S/2). Deviation above or below the line 
(£ - S = OJ indicates the relative scale of agree­
ment between experiment and simulation. 
Pane D illustrates how the difference (£ - SJ 
may vary as a function of their average, indi­
cating bias towards a given range of experi­
mental and simulation conditions 

null hypothesis that the difference (£ - SJ is zero, 
capturing variation that inflates traditional correl­
ation. The approach is illustrated in Fig. 3. 

3.6 Examples of validation with clinical 
implications 

A recent push has generated models with increased 
clinical signillcance . This is typically performed by 
use of patient-specific geometric and material data 
that can be extracted from imaging data (e.g. CT, 
MRI) to create a patient-specific biomechanical 
model. An example of this application was given by 
Anderson et al., where the contact pressure in 
acetabular hip cartilage was simulated using finite 
element models, and experimentally validated using 
a cadaveric human pelvis Ill. One stated intent was 
to provide a model for obtaining 'clinically mean-
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ingful data in terms of improving the diagnosis and 
treatment of hip OA .. .' 11]. Likewise, Fernandez and 
Hunter generated knee models for the purpo se of 
pathologic diagnosis and surgical planning 1631. 
Finite element models of the knee were generated 
from patient-specific data and were used to perform 
two different surgical simulations, but no validation 
was reported. 

As patient-specific models become more com­
mon, it will be a fundam ental requirement that they 
are validated in light of their intended clinical 
impact . If medical professionals cannot be con­
vinced of the predictive capabilities, the models will 
not be applied. Therefore , validation should be 
provided with future studies aimed at direct clinical 
applic ation. This should include experimental vali­
dation of individual tissues and the composite 
system, sensitivity analyses of the intended para­
meters , and thorough statistical evaluation of the 
predictive nature of the model. 

There is a growing interest in the development of 
surgical planning software. For instanc e, the soft­
ware suite MedEdit uses patient-specific data in the 
planning of bone fixation after traumatic fracture 
[64). It allows the surgeon to interactively add, edit, 
and remove bone fixation hardware from patient­
specific bone model s, and then to perform FE 
simulations in the hop e of finding an optimal 
surgical procedure . If there is intent for the software 
to obtain FDA approval , the need for detailed 
validation becomes especially important. 

There is additional interest in using patient­
specific models to aid in the design of medical 
implants. Vartziotiz et al. [65) used FE simulations to 
aid the design of custom hip implants based on 
patient-specific geometry, while Ridzwan et al. [66) 
and Ruben et al. 167) used FE models coupl ed with 
topology optimization algorithms to generate an 
optim al hip implant shape. Similar efforts have 
sought to use computational modelling in the design 
of knee and spinal implant s [43 , 68). Ideally, each 
patient could be analysed and fitted with custom 
hardw are based on model predictions of their speci­
fic morphology and gait patterns, improving the 
success rate of surgical intervention. 

Although the prospect of using simulations in 
clinical applications is exciting, caution must be 
exercised. Many studies that use finite element 
analysis have done little to establish the validity of 
their methods via thorough experim entation . If it 
cannot be established that these new methods can 
increas e the level of care that clinicians are able to 
provide, then their usefulness will be limited . 
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Fig. 4 Oberkampfs validation hierarchy [20[. illustrated for use in computational biomechanics. 
The hierarchy starts at the tissue level and progresses to the structural, subsystem, and 
system levels. The validation hierarchy is illustrated here with a knee model including 
bone, articular cartilage, and the medial collateral ligament. Suggested validation 
requirements are shown for each level of model complexity 

A study on a subject-specific tibia model provides 
a useful example (401: the purpose of the model was 
to 'evaluate new and modified designs of joint 
prostheses and fixation devices'. The models and 
experimental validations were performed for both 
a normal and a knee-prosthesis-implanted tibia. 
Numerous loading conditions were applied, making 
the validation more comprehensive. Additionally, 
important model assumptions (such as selection 
of material properties) were clearly stated. These 
practices facilitate the transition from research­
based modelling to clinical application. 

As computational models become more complex, 
a consistent methodology for model validation is 
desirable. Oberkampf suggests a validation hierarchy 
to describe the levels of model construction [201 
(Fig. 4). The first step is the need to validate a 
specific constitutive model for each unique tissue . 
Validation at this level typically involves material 
testing and extraction of material coefficients from 
experimental data . The next level involves validating 
the model of an entire structure (articular cartilage 
and bone). This includes assessing the assignment of 
material properties and validating the model geo­
metry . At the subsystem level, two or more struc­
tures are combined into a single model (bone­
to-bone contact, ligament, and bone). Finally, the 
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combination of two or more subsystems (articular 
cartilage-bone-ligament) results in a system-level 
model. These are the most challenging to validate, 
but also the most clinically relevant. 

Patient-specific models for use in diagnosis, 
surgical simulation, and implant design are expected 
to provide useful tools for clinicians. However, like 
any tool, each model must come with a well-defined 
set of criteria that defines the model's scope, predictive 
capability, strengths, weaknesses, and intended uses. 
Good validation practices, clearly defined scope and 
model assumptions, and predictive capability are im­
portant for acceptance of biomechanical models in the 
clinic. 

4 CONCLUSIONS 

This review has discussed the verification and valid­
ation used in computational biomechanics. The 
inclusion of verification and validation is required 
for credibility of a proposed model, and there will no 
doubt be continued improvement in the methodol­
ogies used. Given the diversity of applications in this 
small sampling of the literature, it is no wonder that 
a standard for verification and validation is an elu­
sive goal. Provided that investigators continue to 
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apply critical scientific reasoning and sound experi­
mental practice to these problems, computational 
models will become fundamental tools to address 
future research questions and clinical applications. 
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