Validation of computational modelsin biomechanics
Henninger, H B;Reese, S P;Anderson, A E;Weiss, JA

Proceedings of the Institution of Mechanical Engineers; 2010; 224, H7,
Materials Science & Engineering Collection

pg. 801

REVIEW 801

Validation of computational models in biomechanics

H B Henninger'?, S P Reese'?, A E Anderson'*?, and ] A Weiss'>%*

'Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA

2Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
3Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA

The manuscript was received on 4 May 2009 and was accepted after revision for publication on 4 November 2009.

DOI: 10.1243/09544119JEIM649

Abstract: The topics of verification and validation have increasingly been discussed in the
field of computational biomechanics, and many recent articles have applied these concepts in
an attempt to build credibility for models of complex biological systems. Verification and
validation are evolving techniques that, if used improperly, can lead to false conclusions about
a system under study. In basic science, these erroneous conclusions may lead to failure of a
subsequent hypothesis, but they can have more profound effects if the model is designed to
predict patient outcomes. While several authors have reviewed verification and validation as
they pertain to traditional solid and fluid mechanics, it is the intent of this paper to present
them in the context of computational biomechanics. Specifically, the task of model validation
will be discussed, with a focus on current techniques. It is hoped that this review will encourage
investigators to engage and adopt the verification and validation process in an effort to increase

peer acceptance of computational biomechanics models.

Keywords:

1 INTRODUCTION

Modelling of biological systems allows simulation of
the mechanical behaviour of tissues to supplement
experimental investigations or when experiment is
not possible. It aids in defining the structure-
function relationship of tissues and their constitu-
ents. Modelling plays a role in basic science as well as
in patient-specific applications such as diagnosis and
evaluation of targeted treatments (1-5]. Regardless of
the use, confidence in computational simulations is
only possible if the investigator has verified the
mathematical foundation of the mode] and validated
the results against sound experimental data.
Computational biomechanics seeks to apply the
principles of mechanics to living tissues. Beginning
with the introduction of finite element analysis
in the 1950s [6, 7], investigators used numerical
algorithms to simulate structural materials in civil
and aeronautical engineering applications (8, 9].
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Beyond the foundation of solid mechanics, these
methods were used extensively in computational
fluid dynamics (CFD) and heat transfer [10-12]. As
the power of the computer grew, so did the ability to
tackle larger and more complex models. In the
1970s, researchers applied the principles of compu-
tational solid and fluid mechanics to biology [13-
18]. Bone, ligament, cartilage, cardiac tissue, and
muscle exhibited complex organization and solid-
fluid interactions that were not adequately described
by traditional paradigms for engineering materials.
Novel constitutive models were developed in an
attempt to describe these materials. Again, leaps in
computing power allowed the solution of more
intricate problems, but adding complexity increased
the potential for errors.

The issues of uncertainty in the ability of a model
to describe the physics of a system did not go
unnoticed. The first cohesive attempts to define
methods of dealing with these problems arose in
CFD (19-21]. Publications dealing with these issues
in solid mechanics soon followed [22, 23]. To date,
no true standard has been written owing to the
constantly evolving state of the art, and as such these
documents are thought of as guidelines.

JEIM649

Proc. IMechE Vol. 224 Part H: ]. Engineering in Medicine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



802 H B Henninger, S P Reese, A E Anderson, and J A Weiss

The literature refers to the areas of concern as
verification and validation. Verification is defined by
the ASME Committee for Verification and Validation
in Computational Solid Mechanics as ‘the process of
determining that a computational model accurately
represents the underlying mathematical model and
its solution’, whereas validation is defined as ‘the
process of determining the degree to which a model
is an accurate representation of the real world from
the perspective of the intended uses of the model’
[22]. Succinctly, verification is ‘solving the equations
right’ (mathematics) and validation is ‘solving the
right equations’ (physics) [24, 25]. By definition,
verification must precede validation, to separate
errors due to model implementation from uncer-
tainty due to model formulation (19, 20, 22, 26]. The
general flow of the verification and validation
process is illustrated in Fig. 1.

It has been argued that verification and validation
are only applicable for a closed system in which all
variables and their relative influence on the system
are known, but natural systems never obey this
simplification [27]. Oberkampf and collaborators
opined that engineering does not require ‘absolute
truth’ but instead a statistically meaningful compar-
ison of computational and experimental results
designed to assess random (statistical) and bias
(systematic) errors [20]. In order to build practical
confidence in any prediction, the engineering ap-
proach must be used.

For the purposes of this paper, error is defined
as the difference between a simulation, or experi-
mental value, and the truth. Error can arise in a
number of areas, particularly insufficiencies in the
formulation of the model describing the physics
of the real world or inaccurate implementation of
the model into a computational code [19, 20, 22].
The intended use of the model then dictates the
requirements of error analysis. Basic science may
only require cursory examination of errors if the
intention is to gather general information for fur-
ther study. In contrast, clinical application of the
predictions from a simulation necessitates exten-
sive examination of errors, especially if patient
treatment or outcome is directly impacted. The im-
portance of recognizing and accounting for errors
is critical for peer acceptance of the relevance and
applicability of the model. This is apparent in
the growing number of scientific journals requir-
ing some degree of verification and validation of
models presented for consideration (e.g. Annals of
Biomedical Engineering (28], Clinical Biomechanics
[29], etc.).
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Fig. 1 Flow of the verification and validation process
in computational biomechanics. Verification
solves the mathematical model and ensures
that it is implemented correctly (code verifi-
cation) and provides acceptable solutions to
benchmark problems (calculation verification).
Initial computational solutions provide indi-
cators of which parameters are critical in the
model formulation (sensitivity analysis), and
these can be used in the design of validation
experiments. Validation is used to quantify the
model’s ability to describe the experimental
outcomes of the physical system given well-
defined boundary conditions. Sensitivity an-
alysis is used again to determine the degree to
which input parameters influence the solution
output. The process is iterative until the model
and validation experiments provide reasonable
agreement within preset acceptance criteria.
Adapted with permission from the ASME
Committee (PT60) on Verification and Vali-
dation in Computational Solid Mechanics (2006)

This paper reviews validation in computational
biomechanics. Validation, as it pertains to the real-
world physics of biological materials, has been an
elusive target owing to the complexity of the tissues.
Existing models provide predictions of stress or
strain in a tissue, but validation may only be
supported by rudimentary experiments with any
level of confidence. It is the ultimate goal of
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validation to provide a physical foundation for
comparison such that problems that are not experi-
mentally feasible can be simulated with the belief
that they provide realistic predictions. Validation is
by nature a collaborative effort between experimen-
talists, code developers, and researchers seeking to
define mathematical descriptors of real-world mat-
erials. It is likely that the future will provide firmer
experimental standards, commonality in reporting,
and continuous improvement strategies, even if the
goal of a ‘gold standard’ testing regimen is never
truly achievable. As this text focuses on validation,
the reader is referred to a number of extensive
reviews of verification and related topics in compu-
tational modelling of traditional solid, fluid, and
biomechanics (19-23, 26, 27, 30-36]. Verification
and sensitivity studies will be covered briefly, as they
are inextricably tied to validation.

2 VERIFICATION AND SENSITIVITY STUDIES

2.1 Verification

Verification is ‘the process of gathering evidence to
establish that the computational implementation of
the mathematical model and its associated solution
are correct’ [22]. A verified code yields the correct
solution to benchmark problems of known solution
(analytic or numeric), but does not necessarily
guarantee that it will accurately represent complex
biomechanical problems (the domain of validation)
[19]. From this definition it is clear that verification
must precede validation. The need for validation is
obviated if the numerical implementation of the
proposed model is not accurate in its own right.
Verification is composed of two categories, code
and calculation verification. Code verification en-
sures that the mathematical model and solution
algorithms are working as intended. Typically, the
numerical algorithms are in the framework of finite
difference or finite element (FE) methods, in which
discretized domains are solved iteratively until
convergence criteria are met. The errors that can
occur include discontinuities, inadequate iterative
convergence, programming errors, incomplete mesh
convergence, lack of ‘conservation’ (mass, energy,
heat, and so on), computer round-off, etc. [21, 23].
The assessment of numerical error has been studied
extensively and is suggested to follow a hierarchy of
test problems (19, 22]. This includes comparison
with exact analytical solutions (most accurate but
least likely to exist for complex problems), semi-
analytic solutions with numerical integration of

ordinary differential equations, and highly accurate
numerical solutions to partial differential equations
describing the problem domain. An example of code
verification is found in Ionescu et al. [37], where a
transversely isotropic hyperelastic constitutive
model implementation was verified against an
analytical solution for the case of equibiaxial stretch.
The code was capable of predicting stresses to within
3 per cent of an analytical solution, thus verifying the
code performance. Note that this was a limited test
of applicability and does not mean the model could
accurately predict other responses that were not
independently verified.

Calculation verification focuses on errors arising
from discretization of the problem domain. Errors
can arise from discretization of both the geometry
and analysis time and should be verified indepen-
dently. A common way to characterize discretization
error in the FE method is via a mesh convergence
study. A mesh is considered too coarse if subsequent
refinement of the mesh results in predictions that
are substantially different (i.e. solution does not
asymptote). The consequence of incomplete mesh
convergence is that the problem will generally be too
‘stiff’ in comparison with an analytical solution, and
increasing the number of elements will ‘soften’ the
FE solution [1, 35]. Studies of spinal segments have
suggested that a change of <5 per cent in the
solution output is adequate to ensure that mesh
convergence is complete [31]. Mesh convergence is
documented in the literature owing to the preva-
lence in finite element studies, and it is recom-
mended for all discretized analyses [38-43].

Although verification is absolutely required for
user-developed codes to ensure that the model is
delivering the expected outputs to benchmark
problems [26], use of a commercial code does not
relieve the user of the need for verification. Given
every conceivable problem, teams of commercial
software engineers cannot ensure that all possible
combinations of boundary conditions and material
constraints yield accurate results [20]. Therefore, the
user is tasked with verification prior to the use of a
given model implementation.

2.2 Sensitivity studies

Many mathematical models of biological tissues are
formulated on the basis of fundamental consider-
ations such as material symmetry, stiffness, static
versus dynamic response, etc. All material para-
meters, whether adopted from the literature or
derived from experiments, include some degree of
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error [35]. This can result from the incomplete
characterization of a new material in the laboratory,
differences between protocols, or inherent specimen-
to-specimen variability. Errors are exacerbated in the
case of patient-specific models where unique combi-
nations of material properties and specimen geome-
try are coupled [38]. Sensitivity studies are common
in computational analyses, usually focusing on the
influence of experimentally derived material coeffi-
cients on the model predictions [1, 38, 39, 42, 44-49].
Multiple sources have identified the resolution of
medical image data as a source of error in computa-
tional models, owing to deviations in the reconstruc-
tion of three-dimensional (3D) geometry from two-
dimensional (2D) images [1, 31, 50].

Sensitivity studies are an important part of any
computational study, especially those utilizing mod-
els that are previously untested [19, 20, 22, 23, 26,
30, 31, 35]. Sensitivity analysis can be performed
before or after validation experiments, and some
argue that both are appropriate. If undertaken prior
to validation, sensitivity studies can help the in-
vestigator target critical parameters [20, 30, 35].
Validation experiments can then be designed to
tightly control the quantities of interest. After vali-
dation, sensitivity analyses provide assurance that
the experimental results are within initial estimates,
and they can determine if they still have a significant
impact on model outputs.

Sensitivity studies provide the investigator with a
measure of how error in a particular model input will
impact upon the results of a simulation, scaling the
relative importance of the inputs [23, 35]. The
general procedure is to alter a single material
parameter, by orders of magnitude or multiples of
the standard deviation about the mean, while
holding the others constant. For large-scale para-
metric numerical analysis, Monte Carlo simulations
can be used to evaluate combinations of parameters
[32]. Simulations that are not altered significantly
with variations in an input parameter are said to be
insensitive to changes in the given input. By
contrast, a parameter that dramatically influences
the output should be investigated to ensure proper
characterization.

3 VALIDATION

3.1 Validation

Validation is the process of ensuring that a compu-
tational model accurately represents the physics of
the real-world system [19, 22]. While some consider

validation of natural systems to be impossible [27],
the engineering viewpoint suggests that the ‘truth’
about the system is a statistically meaningful pre-
diction that can be made for a specific set of
boundary conditions (20, 26, 29]. This does not
suggest that in vitro experimental validation (in a
controlled laboratory environment) represents the in
vivo case (within the living system), as the boundary
conditions are likely impossible to mimic. It means
that, if a simplified model cannot predict the
outcome of a basic experiment, it is probably not
suited to simulating a more complex system.

Validation is often the most laborious and re-
source-dependent aspect of computational analysis,
but if done properly it can ensure that the model
predictions are robust [20, 21, 26]. These costs may
pale in comparison to the repercussions of a false
prediction if the intended use of the model is critical.
The level of validation required is directly tied to the
intended use of the model, and the supporting
experiments should be tailored accordingly.

A general validation methodology is to determine
the outcome variables of interest and prioritize them
according to their relative importance. Oberkampf
suggests using the phenomenon identification and
ranking table (PIRT) (20, 51]. The PIRT guidelines
scale each variable according to its impact within the
system and determine if the model adequately
represents the phenomena in question. It then
identifies if existing experimental data are able to
validate the model or if additional experiments are
required. Finally, PIRT provides a framework to
assess validation metrics, which quantify the pre-
dictive capability of the model for the desired
outcome variable.

The central question is one of time, cost, and the
complexity of the experiments needed to validate the
simulation and the ramifications of erroneous con-
clusions. Is the model the most appropriate repre-
sentation of the physical system? Will a simpler
model be adequate, or will it be unable to capture
details only available in more sophisticated formu-
lations? Can experiments provide realistic data for
the critical outcome variables, or are the intended
uses of the model incapable of laboratory examina-
tion?

3.2 Types of validation

The two predominant types of validation are direct
and indirect (31)]. Direct validation performs exp-
eriments on the quantities of interest, from basic
material characterizations to hierarchical systems
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analysis. Although they may seem trivial, the most
basic validation experiments are often the most
beneficial, as they provide fundamental confidence
in the model’s ability to represent constituents of the
system [30]. The goal is to produce an experiment
that closely matches a desired simulation so that
each material property and boundary condition can
be incorporated. Limitations include reproduction of
the physical scale or an inability to generate data for
the specific model output that is most desired.
Typically, these relate to the regeneration of the
complex boundary conditions associated with in
vivo systems as quantified by in vitro experiments.

Indirect validation utilizes experimental results
that cannot be controlled by the user, such as from
the literature or results of clinical studies. Experi-
mental quality control, sources of error, and the
degree of variability are typically not known if the
data are not collected by the analyst. Indirect
validation is clearly less favoured than direct valid-
ation, but may be unavoidable. The required experi-
ments may be cost prohibitive, difficult to perform,
or may simply be unable to quantify the value that is
sought by the model.

3.3 Experimental design considerations

The investigator should consider how the model will
be tested directly. Does it include one constituent or
many, what quantities are being measured, and can
individual components be tested independently
from one another as well as in their combined state?
The governing committees both suggest building the
testing protocol through three general stages: (1)
finite benchmark problems of the constituents, (2)
subsystems, and (3) complete system analysis [19,
22]. Often only the first stage is possible, but the
others may be used to guide further analysis, even if
direct experimental validation is not possible. When
reporting experimental data, the results should be
presented as means and standard deviations along
with the number of independent measures collected
(19, 20, 22, 23].

A significant consideration in computational bio-
mechanics is how well in vitro testing can mimic the
in vivo environment. Boundary conditions may be
manipulated easily on the laboratory bench, but data
may not represent conditions within the living
system. This can negatively affect computational
predictions, as isolated tissues may behave differently
to when they are part of the composite biological
system. An example is found in the work of Gardiner
and Weiss (45], where in situ ligament strains were

determined on a subject-specific basis. Finite element
predictions of strain using averaged data fit the
experimental data poorly compared with the sub-
ject-specific models, emphasizing the need for well-
defined boundary conditions.

As computing power increases, subject-specific
simulations will become more commonplace. Ex-
perimental validation needs to account for the in-
fluence of geometric and parameterized simplifica-
tions (generic population versus subject specific).
The analysis of individual models may not provide
better results given the time and effort required to
formulate all different test cases. Validation also may
not be possible in the clinical setting, where
researchers and clinicians seek to predict the out-
comes of diagnosis and treatment. This is a trade-off
of model generation versus the confidence that can
result from direct experimentation. Again, what is
the desired outcome of validation, and is it achiev-
able with available tools?

3.4 Validation metrics

Validation metrics quantify the differences between
the experimental results and the simulation and can
include all assumptions and estimates of errors (20,
22, 30]. Qualitative observations require user inter-
pretation and provide no universal scale for compar-
ison. Graphical comparisons such as scaled fringe
plots are quasi-quantitative, as they find a basis in
human interpretation. Metrics must be quantitative
in nature and are suggested to follow the design flow
of the PIRT in order to scale and capture the most
relevant parameters [20].

Metrics can be deterministic, using graphical
comparisons to relate the model to experiments
[20]. Deterministic metrics rely on graphs and plots,
which are inherently qualitative. Statistical analysis
such as regression and correlation can strengthen
quantitative conclusions [20, 30] but must be
thoroughly examined, as variation in the data dir-
ectly affects the strength of their relationships [52].
Alone, these are not complete, so experimental
uncertainty metrics and numerical error metrics are
employed [20]. Experimental uncertainty metrics
quantify the inaccuracies built into the experimental
apparatus and their impact on experimental data.
The tolerances of the devices should be provided,
and accuracy should be determined by the user as a
secondary check that the devices are within speci-
fication. Accuracy of any device should be reported
as the mean + 1.96 standard deviations, as this is
the statistically relevant confidence interval within
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which specifications should fall [20, 22]. Numerical
error metrics include the influence of computational
error on the model domain. Numerical error is
quantified by manipulating the solution strategy or
input parameters to test the impact on the solution.
These may include the use of implicit versus explicit
time integration or altered convergence criteria [30].

Metrics may also be non-deterministic. These are
the most comprehensive, as they include the
deterministic quantifications as well as estimates of
all input parameters as probability distributions [20].
Material properties derived from experiments in-
clude error. The probability distribution is the
statistical definition of the material properties as a
function of that error, factoring in the variance and
number of samples tested. This allows the metric
to be truly quantitative, as it builds in the effects
of experimental uncertainty and numerical error
simultaneously. Oberkampf provides an excellent
illustration of this phenomenon in section 2.4.4 of
his text [20].

3.5 Examples of validation in computational
biomechanics

Many studies provide examples of validation, but
few encompass the fully scaled approach of non-
deterministic metrics. This is likely due to the time
and cost constraints that come with experimental
validation, but also the relative infancy of the field of
computational biomechanics. As a rapidly growing
field, many studies validate models with the inten-
tion that predictions are for use in subsequent
analysis and experimentation. Direct applicability
on patient outcome is often an extended goal [2-5].
Given the disparity in intended use of models, the
level of validation varies greatly. It is the intention to
provide the reader with examples of validation in
computational biomechanics, although no ‘gold
standard’ currently exists. The following discussion
samples computational biomechanics papers from
various disciplines including cell, cardiovascular,
soft tissue, bone, and implant mechanics.

In most cases, validation was performed by
comparison with commercially available software,
typically finite element solvers such as ABAQUS
(Dassault Systems, SIMULIA, Warwick, RI, USA) or
NIKE3D (Lawrence Livermore National Laboratory,
Livermore, CA, USA). Some conducted their work
using custom computational frameworks, but no
study explicitly called out code verification. The
development and use of the code begets confidence,
as simple problems are solved successfully. Unfortu-

nately, when code verification is not confirmed, the
reader is left to assume that the author has
performed due diligence in ensuring proper code
functionality. No matter how trivial, it is recom-
mended that every author provide documented
assurance that the code has been verified.

As for numerical verification, most studies per-
formed mesh convergence analysis. The typical men-
tion of convergence analysis concluded with the
number of elements and nodes, as well as element
types used [42, 43, 46, 53], while others added the
refined mesh quality as an iterative percentage change
in a solution parameter (1, 38, 39, 54]. The presen-
tation of mesh quality as a metric provides the reader
with a baseline discretization error and is recom-
mended for future studies.

Ideally, validation experiments target critical para-
meters to provide confidence that the inputs to and
outputs from a model accurately define the physics
of the system. Almost universally, the input para-
meters were derived in previous studies. Commonly
accepted material properties were used in the case of
well-characterized structural materials like metals
and polymers {40, 43, 54]. For biological tissues,
mean values were used as inputs, and sensitivity
analysis tested the influence of their variance on the
system. The most basic exploratory models of cell
and vascular response contained one or two materi-
als, so sensitivity analysis was simplified consider-
ably (47, 53, 55, 56]. Complex computational stud-
ies of bone, cartilage, and ligament deformation
involving multiple materials, loading scenarios,
and geometries scaled up the degree of sensitivity
analysis [1, 38, 39, 42]. Analyses of meniscus and
intervertebral disc performed stochastic and para-
metric optimizations to determine the influential
parameters as well as scaling them relative to one
another [46, 57]. While these reports used sensitivity
analysis a posteriori, it should not be overlooked as a
building block to aid in the design of validation
experiments.

Validation primarily tested the composite systems,
regardless of the level of complexity. The boundary
conditions generally agreed well between experi-
ment and simulation, as extension of model applic-
ability was not of immediate concern in the basic
system validation. A few models were tested with the
intention of future clinical use in patient diagnostics,
implantation, and outcome [1, 42, 46, 47, 54, 55, 58],
but require further analysis before extension into the
clinical environment.

An example of the flow of validation and sensitiv-
ity analysis can be found in a study of cortical bone
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strains in the human pelvis (Fig. 2) (38]. This work
used direct mechanical testing to simulate body
weight loading through the hip joint while measur-
ing deformation on the cortical bone with strain
gauges. The target parameters and metrics were
defined a priori, and a dual computational and
experimental approach allowed the influence of the
unknown material properties to be evaluated with
sensitivity analysis, identifying critical parameters
for investigation in the experiments.

Given the diversity and complexity of the systems,
validation experiments were well suited for the
intended use of the models. The investigators took
precautions to apply the models to well-defined
experimental methods, employing techniques like
atomic force microscopy [56], magnetic resonance
imaging [47], and traditional mechanical testing
batteries (1, 38, 40, 59, 60]. The techniques were
capable of providing the defined measure that was
sought as the model output, and errors associated
with data collection were minimized where possible.
Where errors could not be reduced, metrics were
employed to capture their impact on the simu-
lations.

The use of metrics was as varied as the models
that employed them. Most studies used graphical
comparison such as fringe plots and line graphs [1,
38, 42, 43, 47, 53, 55, 56, 58, 60, 61]. These
assessments illustrated agreement of model predic-
tions with experiments, using quantities such as
stress or strain. As discussed earlier, they are
subjective. This is generally acceptable in explora-

Experimental

Validation Plan

Methods
Use:
Patient Specific Research i
Validation Parameter:

Cortical Strain

Validation Metric:
Correlation Coefficient

Computational
Model

tory studies but should be supported by non-
deterministic metrics if conclusions are to be drawn
from the simulation.

Traditional forms of metrics were used in the
majority of the studies that were sampled. These
included change as a percentage of nominal [43, 47],
root-mean-square error (1, 40, 46/, and correlation
coefficients and coefficients of determination [38,
42, 58, 60-62]. Each of these may be deterministic or
non-deterministic, depending on the inclusion of
sampling error into the calculation.

Correlation coefficients, R, and coefficients of
determination, R?, are often shown on a scatter plot
comparing simulation versus experimental values.
While ideal comparison yields a regression line with
a slope of 1, it does not capture the variance of the
respective datasets. This means that high variation
between individual data compared with the mea-
surement error within the experiment begets artifi-
cially high correlation. Altman and Bland [52] note
that ‘the correlation coefficient is not a measure of
agreement; it is a measure of association’. They
suggest an alternative form of analysis that accounts
for repeatability (the difference between two mea-
surements on a single subject) and reproducibility
(the difference between two measurements on a
single subject after a change in set-up). The typical
experimental (E) versus simulation (S) scatter plot is
the starting point. Data are then plotted as the
average of the methods ((E+5)/2) on the x axis and
the difference between the methods (E— S) on the y
axis. A new regression line is then tested against a

Results
Experimental
/ Testing - ‘ Qualitative
Sensitivity Testing ‘ |
Material Coefficients -
— Quantitative
‘ Comparison
Geometry
BT [ 1
*
[ —

Fig. 2 Validation of pelvic cortical bone strains by Anderson et al. [38), a well-defined validation
plan where the model use, parameters, and metrics were defined a priori and provided
the initial problem statement. A computational model was constructed to assist the
development of the experimental model. Sensitivity tests were performed on the
computational models in parallel with the experimental testing. Comparisons and
conclusions were based on both qualitative and quantitative assessments of measured
cortical bone strains and simulated pelvic loading
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Fig. 3 Scatter plot regression versus Bland-Altman
plots. Top panes (A, B) show typical scatter
plots of experimental versus simulation data.
Although both show a regression line of
slope=1, they are derived from populations
with higher (A) and lower (B) variance. Pane C
shows a Bland-Altman plot where the dif-
ference between experiment and simulation
(E—S) is plotted versus the average range
(E+S/2). Deviation above or below the line
(E— §=0) indicates the relative scale of agree-
ment between experiment and simulation.
Pane D illustrates how the difference (E—-S)
may vary as a function of their average, indi-
cating bias towards a given range of experi-
mental and simulation conditions

null hypothesis that the difference (E—S) is zero,
capturing variation that inflates traditional correl-
ation. The approach is illustrated in Fig. 3.

3.6 Examples of validation with clinical
implications

A recent push has generated models with increased
clinical significance. This is typically performed by
use of patient-specific geometric and material data
that can be extracted from imaging data (e.g. CT,
MRI) to create a patient-specific biomechanical
model. An example of this application was given by
Anderson et al., where the contact pressure in
acetabular hip cartilage was simulated using finite
element models, and experimentally validated using
a cadaveric human pelvis [1]. One stated intent was
to provide a model for obtaining ‘clinically mean-

ingful data in terms of improving the diagnosis and
treatment of hip OA ..." [1]. Likewise, Fernandez and
Hunter generated knee models for the purpose of
pathologic diagnosis and surgical planning [63].
Finite element models of the knee were generated
from patient-specific data and were used to perform
two different surgical simulations, but no validation
was reported.

As patient-specific models become more com-
mon, it will be a fundamental requirement that they
are validated in light of their intended clinical
impact. If medical professionals cannot be con-
vinced of the predictive capabilities, the models will
not be applied. Therefore, validation should be
provided with future studies aimed at direct clinical
application. This should include experimental vali-
dation of individual tissues and the composite
system, sensitivity analyses of the intended para-
meters, and thorough statistical evaluation of the
predictive nature of the model.

There is a growing interest in the development of
surgical planning software. For instance, the soft-
ware suite MedEdit uses patient-specific data in the
planning of bone fixation after traumatic fracture
[64]. It allows the surgeon to interactively add, edit,
and remove bone fixation hardware from patient-
specific bone models, and then to perform FE
simulations in the hope of finding an optimal
surgical procedure. If there is intent for the software
to obtain FDA approval, the need for detailed
validation becomes especially important.

There is additional interest in using patient-
specific models to aid in the design of medical
implants. Vartziotiz et al. [65] used FE simulations to
aid the design of custom hip implants based on
patient-specific geometry, while Ridzwan et al. [66]
and Ruben et al. [67) used FE models coupled with
topology optimization algorithms to generate an
optimal hip implant shape. Similar efforts have
sought to use computational modelling in the design
of knee and spinal implants [43, 68]. Ideally, each
patient could be analysed and fitted with custom
hardware based on model predictions of their speci-
fic morphology and gait patterns, improving the
success rate of surgical intervention.

Although the prospect of using simulations in
clinical applications is exciting, caution must be
exercised. Many studies that use finite element
analysis have done little to establish the validity of
their methods via thorough experimentation. If it
cannot be established that these new methods can
increase the level of care that clinicians are able to
provide, then their usefulness will be limited.
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Hierarchy

Example

Validation Requirement

Constitutive models of individual
Tissue materials independently validated.
b= : Transversely isotropic
-Trabecular bone R ~
hyperelastic ligament.
-Ligament Geometry and material property
: -Femoral condyle distribution validated fo h system
Structure e iy Srmsia iy
-Tibial p component. ample: Cortical thickness
-Articular cartilage of tibial plateau.
Subsystems experimentally validated
Q -Cartilage/bone interface against computational model. Example:
Subsystem N Be/l . = " P
’ -Ligament insertions Contact stress at between bones or
strains at ligament insertion site.
System experimentally validated against
computational model. Example: Stress
S}'Sltf[ﬂ -Whole joint system and strain within ligament given flexion

of the joint.

Fig. 4 Oberkampf's validation hierarchy [20], illustrated for use in computational biomechanics.
The hierarchy starts at the tissue level and progresses to the structural, subsystem, and
system levels. The validation hierarchy is illustrated here with a knee model including
bone, articular cartilage, and the medial collateral ligament. Suggested validation
requirements are shown for each level of model complexity

A study on a subject-specific tibia model provides
a useful example [40): the purpose of the model was
to ‘evaluate new and modified designs of joint
prostheses and fixation devices’. The models and
experimental validations were performed for both
a normal and a knee-prosthesis-implanted tibia.
Numerous loading conditions were applied, making
the validation more comprehensive. Additionally,
important model assumptions (such as selection
of material properties) were clearly stated. These
practices facilitate the transition from research-
based modelling to clinical application.

As computational models become more complex,
a consistent methodology for model validation is
desirable. Oberkampf suggests a validation hierarchy
to describe the levels of model construction [20]
(Fig. 4). The first step is the need to validate a
specific constitutive model for each unique tissue.
Validation at this level typically involves material
testing and extraction of material coefficients from
experimental data. The next level involves validating
the model of an entire structure (articular cartilage
and bone). This includes assessing the assignment of
material properties and validating the model geo-
metry. At the subsystem level, two or more struc-
tures are combined into a single model (bone-
to-bone contact, ligament, and bone). Finally, the

combination of two or more subsystems (articular
cartilage-bone-ligament) results in a system-level
model. These are the most challenging to validate,
but also the most clinically relevant.

Patient-specific models for use in diagnosis,
surgical simulation, and implant design are expected
to provide useful tools for clinicians. However, like
any tool, each model must come with a well-defined
set of criteria that defines the model's scope, predictive
capability, strengths, weaknesses, and intended uses.
Good validation practices, clearly defined scope and
model assumptions, and predictive capability are im-
portant for acceptance of biomechanical models in the
clinic.

4 CONCLUSIONS

This review has discussed the verification and valid-
ation used in computational biomechanics. The
inclusion of verification and validation is required
for credibility of a proposed model, and there will no
doubt be continued improvement in the methodol-
ogies used. Given the diversity of applications in this
small sampling of the literature, it is no wonder that
a standard for verification and validation is an elu-
sive goal. Provided that investigators continue to
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apply critical scientific reasoning and sound experi-
mental practice to these problems, computational
models will become fundamental tools to address
future research questions and clinical applications.
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