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Numerical methods for PDE

Most PDEs can’t be solved algebraically

Numerical method should be robust and reliable:

– Stable (convergence, increasing/oscillating error)

– Accurate “enough” (constant error)



Numerical methods for PDE

• Approximate (discretized) solution of the PDE

• Subdivide the domain in small sub-domains 

• 3 major discretization methods:

– Finite difference method (FDM): simplest form

– Finite volume method (FVM): mainly for fluids, heat

– Finite element method (FEM): more general



Finite Element Method (FEM)

• PDE with dependent (solution) variable u(x)

• Strong form (PDE) → weak form (integral)

• Discretization: u(x) = ∑ui vi(x)        vi: basis functions

• Discretized (weak) form → Matrix form: Ku = L

• Matrix solving

• Non-linearity (convergence criteria)

• Time integration



Example

• Strong form: - uxx = 1, u(0) = u(1) = 0

• Exact solution: (x - x2)/2

• Weak form: -∫uxx v = - ux v|+ ∫ux vx = ∫ux vx = ∫ v

v(0)=v(1)=0

=
0

Integration by parts
↓

↓

Test function v

↓

Test function v

Strong form → week form: Multiply by a test function and integrate over the domain

( ∫f’ g = f g| - ∫f g’ ) 



Discretization: basis functions vi

u(x) ≈ ∑ui vi(x)

v1 v2 v3 v4

u1

u2

u4

x

u(x) u3

0 1

1
v5

x1 x5

u5

5 nodes (DOF), 4 elements

E1 E4x3



Matrix form

• ∫ux vx = ∫ v (weak form)

• For each element : ∑ui ∫vxi vxj = ∑∫vj

• K = (Kij) = (∫vxi vxj), vxi = dvi/dx

• u = (ui) 

• L = (Lj) = (∫vj)

• K u = L

• Find u with K and L known



Stiffness matrix

• K = (Kij) = (∫vxi vxj)

• vx1 = dv1/dx = -1/(1/4) = -4   →   K11= (-4)(-4)(1/4) = 4

• vx2 = dv2/dx = ± 4   →   K22= (4)(4)(1/4) 2 = 8

• K=

• Stiffness matrix of each element → assembly
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Solution



Matrix form

E u’’ + D u’ + Ku = L

• E: mass matrix

• D: damping matrix

• K: stiffness matrix

• L : load vector

 u’ = du/dt

 u’’ = d2u/dt2



FEM

• Discretization of the domain

• Evaluate the local displacement

• Evaluate the locale force

• Sum local forces

• Assembly of the matrices

• Solve the matrix system



Nonlinear Partial Differential Equations

Linear Algebraic Equations

Nonlinear Ordinary Differential Equations

Linear Ordinary Differential Equations

FEM

Newton method (nonlinearity)

Euler method (time)

Solution

Ku = L (direct/iterative, preconditioning)



Nonlinear Partial Differential Equations

Solution

FEM



Nonlinearity

• PDE     Navier-Stokes

• Geometrical: E = E(u)  Large displacement

• Material: S = S(E)   Soft tissues

• Contact: interfaces between device and tissue

• Plasticity, wear, etc.

→ Newton method



Nonlinearity

Newton method

• Solve R(u) = Ku - L = 0   (R: Residue)

• Iterative method (linearization)

 R(ui+1) ≈ R(ui)+Ki(ui+1 - ui) = 0
 
 Ki = estimate of dR/du(ui)
 
 ui+1 = ui + u         (u : correction)

• Convergence test: R/F <  u/u < 
(F is an average force)

• Typical  = 



Nonlinearity

• Provide (good) initial values

• Use a parametric solver (auxillary sweep) 

• Use a time-dependent instead of stationary solver

• Check for singularities

• Refine mesh in regions of high gradient

• Solve physics sequentially, and then coupled

• Stabilization techniques (artificial diffusion, viscosity, 
damping, etc.)



Time dependency

• Solve time dependency of PDE

• Linear Ordinary Differential Equations

• Time dependency in coefficient ui

• u(x,t) = ∑ui(t) vi(x)

• Euler method



Time dependency

Euler method → Jupyter notebook: https://go.epfl.ch/course-nmb-euler

• u’(t) = f[u(t)], u(0) = u0

• ui+1 = ui + (1-a) Δt vi + a Δt vi+1 

vi    = f(ui)
vi+1 = f(ui+1) 

a = 0     : explicit (Euler)
a = 1     : implicit (backward Euler) unconditionally stable
a = 1/2 : Crank-Nicolson

• Generalization with Runge-Kutta method

https://go.epfl.ch/course-nmb-euler


Contact

• Source-destination (master-slave) approach
– Destination (slave) can’t penetrate source (master)
– Source on stiffer boundary
– Source on concave boundary
– Destination mesh 2 times finer than source

• Iterative algorithm
– Find contact region (penetration)
– Apply forces to push back penetration

• Normal direction discontinuities
 → oscillations (contact chatter)



Elements

• Element type:
– (1D) Edge,
– (2D) Triangle, Quadrilateral,
– (3D) Tetrahedron, Hexahedron, Prism, Pyramid  

• Element (shape function) shape and order
– 1 (linear) to 5-order polynomial (Lagrange, …)

• Meshing techniques, optimal element type
– Structured/unstructured
– Seeding (size)
– Avoid sharp corners
– Tools: sweep, boundary layers (fluid)
– Mesh quality (Jacobian: ideal (1), bad (0), inverted (<0)

Default
unstructured

mesh

Structured
mesh



Error control

• Error = O(hp+1)

• h: size of the mesh (element)

• p: order of the polynomial basis functions

• Adaptive meshing based on error indicator

h-adaptive refinement (mesh size)

p-adaptive refinement (polynomial order)

• A posteriori methods (energy)



Default
unstructured

mesh

Structured
mesh

Example: Hollow cylinder

• Element size
• Linear vs. quadratic
• Degrees of freedom
• Structured mesh
• Mesh quality
• Linear vs. nonlinear solver

– Study 1/Stationary solver/Linearity

• Direct vs. iterative solver (Ku = L)
– Study 1/Stationary solver (right click)/Direct or Iterative

• Adaptive mesh
– Study 1/Step 1: Stationary/Study Extensions/Adaptation and error estimates



Verification and Validation

Verification: solving the equations right

Validation: solving the right equations

Check moodle documents



Verification

• Poor sister of validation

• Code/Calculation verification

• Mesh convergence (discretization error)

• Expected smoothness of solution

• Expected physical behavior

• Sensitivity analysis of (critical) model parameters

• Compare with (semi-) analytical solution 
(simplified model)



Validation

• Accuracy assessment (error between num. & exp.)
• Experimental error: random + systematic (value ± SD)
• Numerical error: solver type, input parameters (value ± SD)
• Statistical analysis: linear regression, slope, ordinate, correlation 

coefficient, Root Mean Square Error, Bland-Altman, Kolmogorov-
Smirnov test

• Predictive capability of the model
• Limitations, field of application
• Validation ≠ (experimental) identification (calibration)
• Direct validation: comparison with specific experimental data
• Indirect validation: comparison with literature



Since 2016…



General advices

• Start VERY simple

• Add complexity gradually

• Verify while adding complexity

• Use symmetry (as much as possible)

• Avoid over-complex model (question-based)

• Evaluate the range of validity of the model



Screw pullout test

F F



FEM software

• Comsol (www.comsol.com)
– Multiphysics

• Ansys (www.ansys.com)
– Solid, fluid (Fluent), heat, electromagnetics

• Abaqus (www.simulia.com)
– Solid, heat, (fluid, electromagnetics)

• Elmer (www.csc.fi/elmer)
– Multiphyisics, free

• FEniCS Project (fenicsproject.org)
– Multiphyisics, free

• FreeFEM (www.freefem.org)
– Multiphysics, free

• FEBiO (www.febio.org/)
– Solid, free

• BETA CAE (www.beta-cae.com)
– Solid, multiphysics

• ArtiSynth (artisynth.magic.ubc.ca/artisynth/)
– Coupling Rigid body dynamics & Solid deformation, free
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