
Exercise 10: Protein concentration in a flow chamber

- Blanc Model
- Add Component/2D
- Geometry/Length unit: μm
- Geometry/Add Rectangle: Width = 1200 [μm], Height = 250 [μm]
- Geometry/Add Point: x = 400 [μm], y = 0 [μm]
- Geometry/Add Point: x = 600 [μm], y = 0 [μm]
- Material/Add Material from Library/ Built-in/Water, liquid
- Global parameters/Parameters 1/Load from file/File: exerciseParameters.txt
- Definitions/Variables/Geometric entity: Boundary, Selection: cell layer (edge 4), react_surf = $\text{kon}^*(\text{Rt}-\text{cs1})*\text{c-koff}*\text{cs1}$
- Add Physics/Fluid/Flow/Single-Phase Flow/Laminar Flow (spf)
- Laminar Flow/Inlet/Fully developed flow/Boundary: left side (edge 1), Flow rate: vin
- Laminar Flow/Outlet/ Fully developed flow/Boundary: right side (edge 6), Average pressure: Pav = 0
- Add physics/Chemical Species Transport/Transport of Diluted Species (tds)
- Transport of Diluted Species/Transport properties/Velocity field/u: Velocity field (spf), Diffusion Material: Water, Diffusion coefficient: D
- Transport of Diluted Species/Initial Values/Concentration: c = c0
- Transport of Diluted Species/Flux/General inward flux/ (Species c): -react_surf + paracrine, Selection: cell layer (segment 4)
- Transport of Diluted Species/Reactions/Domain: all (surface 1), Reaction rates: Rc = -c/tau
- Transport of Diluted Species/Outflow/Boundary selection: outlet (segment 6)
- Add Physics/Chemical Species Transport/Surface Reactions (sr)
- Surface Reactions/Domain: cell layer (segment 4)
- Surface Reactions/Surface Properties: Density of sites: Ts = Rt, Site occupancy number = 1, Surface diffusion = D
- Surface Reactions/Initial Values/Surface concentration: cs1 = cs0
- Surface Reactions/Reaction Rate for surface species: Rs,cs = react_surf
- Mesh/Physics-controlled mesh/Element size: Extra fine
- Add study/Empty Study
- Study 1/Parametric Sweep/Parameter name: vin (inflow rate), Parameter value list: 0 3 [ml/min]
- Study 1/Study step/Stationary/Stationary/Laminar Flow (spf)
- Study 1/Study step/Stationary/Stationary/Surface Reaction (sr), Transport of Diluted Species (tds)
- Add Study/Stationary/Laminar flow
- Add study/Stationary/Surface Reaction and Transport of diluted species
- Results/2D/Surface/Expression: c
- Results/Concentration (c)/Line graph/Selection: cell layer (Edge 4), Expression: c, x-Axis expression: x
- Results/Concentration (c)/Parameters section (vin): All