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Clinical background: joint degeneration
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e Osteoarthritis (OA) world’s most common joint disease

o
.

e Currently no cure

Scapula <~ * Glenohumeral osteoarthritis (GHOA) accounts for

Glenoid 5%-17% of patients with shoulder complaints

Humerus < T - Etiology of GHOA is multifactorial
Healthy Shoulder Arthritic Shoulder
https://centenoschultz.com/condition/shoulder-arthritis/ https://doi.org/10.1177/1457496920935018



Clinical background

Anatomic Total Shoulder Arthroplasty Reverse Total Shoulder Arthroplasty
(ATSA) (RTSA)

Sanchez-Sotelo et al., doi: 10.2174/1874325001105010106, Valsamis et al., doi: 10.1136/bmj-2023-077939



Complications of Shoulder Arthroplasty

* Meta-analysis of Bohsali etal. (2017)
2006 - 2015, 122 studies, mean follow-up 40.3 months

* ATSA (3360 cases)

e Complication rate: 10.3%
* Most frequent: component loosening, glenoid wear, instability

* RTSA (4142 cases)
* Complication rate: 16.1% for RTSA
* Most frequent: instability, periprosthetic fracture, infection

Bohsali Kl, Bois AJ, Wirth MA. Complications of Shoulder Arthroplasty. J Bone Joint Surg Am. 2017 Feb 1;99(3):256-69.



Methods to understand/reduce complications

* Clinical trials (randomized multicenter double-blind)
* Strongest evidence, but time-consuming and expensive

 Cadaveric experiments
* Realistic anatomy and biomechanics, but not cheap, not clinical reality

* Numerical modeling
* Fast, cheap, control all variables, but simplification, validation

* In-silico trials
* Same as above +
* Personalization, ethical, but requires a lot of (high-quality) data



Clinical trial example

Is preoperative glenoid bone mineral density associated with aseptic glenoid implant loosening in
anatomic total shoulder arthroplasty?
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Cadaveric experiment example
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Numerical model example

Simulated joint and muscle forces in reversed and anatomic shoulder prostheses
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Assessing the Credibility of Computational Modeling and Simulation in Medical Device Submissions (2023)

Refer to
Section VI.A.(1)

Refer to
Section VLA.(3)

Refer to
Section VI.B

Refer to
Section VI.D

Refer to
Appendix 2

Refer to
Section VI.D

Step 1: State question of interest

Example (abridged): Is the device family resistant to fatigue fracture under

anticipated worst-case radial loading conditions?

Ste

2: State context of use (COU):
Example: Finite element analysis will be performed to identify worst-case device sizes
for fatigue fracture. These devices will then be tested on the bench.

Refer to
Section VILA.(2)

Step 3: Assess model risk:

1. Decision consequence: e.g., the severity of possible harmis ..., probability of occurrence is ..., so overall decision consequence is ...
2. Model influence: e.g., model results will be a major but not only source of information in making the decision, so model influence is ...

Overall risk: choose
from e.g., low to high

e.g.

Code verification results (Cat. 1): testing to confirm that.{-
numerical algorithms and associated code have been
correctly implemented without errors

Model calibration results (Cat. 2): results showing that |
the constitutive model output matches experimental -~
stress-strain measurements when material parameters
are calibrated accordingly.

Bench test validation results (Cat. 3): comparison of ------M

model results with experimental measurements of force-
displacement on the bench.

Calculation verification results using COU simulations
(Cat. 8): mesh convergence analysis using the final COU ~
simulations

]
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Step 5: State credibility factors:

= Software quality assurance

* Numerical code verification (NCV)

* Goodness of fit* .
* Quality of experimental data*
+ Relevance of calibration results to COU*

* Model form

* Model inputs

* Test samples

* Test conditions

* Equivalency of inputs
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Step 5 (continued): State gradations and
select credibility goals:
(a) NCV not performed.
(b) Solution compared to a solution
from another verified code.
(c) Discretization error quantified by
comparison to an exact solution

. (d) Observed order of accuracy

quantified and compared to the
theoretical order of accuracy.

Selected Credibility Goal (based on
assessed model risk): level ...

* Discretization error
* Numerical solver error
* Use error

Refer to

Section
VI.C

Plan for achieving Credibility Goal: ...

Step 6: Perform prospective adequacy assessment

Rationale for why the planned evidence will be sufficient to support using the model for the COU given the risk assessment.

Rationale

sufficient?

Optional: Submit pre-submission to receive FDA feedback on proposed plan.

r 3

See Section V
for options

Step 7: Generate credibility evidence by executing proposed study(ies) and/or analyzing previously generated data

Results and analysis for studies listed above.

Step 8: Perform post-study adequacy assessment
Rationale for why all the evidence collected supports
using the model for the COU given the risk assessment.

Step 9: Prepare final Credibility Assessment Report

Rationale
sufficient?

Report using the recommended structure, summarizing results
of previous steps, to be included in the regulatory submission.

Refer to
Appendix 2

See Section V for options

[p2Y U.S. FOOD & DRUG
ADMINISTRATION

CENTER FOR DEVICES & RADIOLDGICAL HEALTH



Assessing the Credibility of Computational Modeling and Simulation in Medical Device Submissions (2023)

Refer to
Section VI.A.(1)

Refer to
Section VLA.(3)

Step 1: State question of interest

Example (abridged): Is the device family resistant to fatigue fracture under
anticipated worst-case radial loading conditions?

Step 2: State context of use (COU):
Example: Finite element analysis will be performed to identify worst-case device sizes
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1. Decision consequence: e.g., the severity of possible harmis ..., probability of occurrence is ..., so overall decision consequence is ...
2. Model influence: e.g., model results will be a major but not only source of information in making the decision, so model influence is ...

Overall risk: choose
from e.g., low to high

evidence to be collected: Step 5: State credibili

El s com o select credibili

The FDA promotes the use of in silico clinical trials using

factors: Step 5 (continued): State gradations and

oals:
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CENTER FOR DEVICES & RADIOLDGICAL HEALTH

Computational Modeling and Simulation (CM&S),

In which a device is tested on a cohort of virtual patients,
which is anticipated to replace or supplement clinical trials.

Refer to Step 6: Perform prospective adequacy assessment
Section VIL.D Rationale for why the planned evidence will be sufficient to support using the model for the COU given the risk assessment. Rationale See Section V
Refer to sufficient? for options
Appendix 2 Optional: Submit pre-submission to receive FDA feedback on proposed plan. <

Step 7: Generate credibility evidence by executing proposed study(ies) and/or analyzing previously generated data

Results and analysis for studies listed above.

: ~ i . . e
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. Rationale for why all the evidence collected supports fficient? Report using the recommended structure, summarizing results )

Section VI.D . . . sutficients Appendix 2

using the model for the COU given the risk assessment.

of previous steps, to be included in the regulatory submission.

See Section V for options



Comments on FDA recommendations

* Risk analysis
* Uncertainty of simulation predictions
* Potential adverse effect of false prediction

* Virtual vs real patients
* Link with real outcome (for virtual patients)

* Link between simulated quantities and clinical quantities

12



Computational modeling

* Importance of Finite Element Modeling (FEM)

* Create FEM from cadaveric data (one or few cases)
* Create FEM from patient data (one or few cases)

* Create FEM from (many) virtual/real patients

* Difficulty in automating the process for a large number of patients
* Importance of statistical methods
* Manage patient variability

13



Project: Effect of preop on TSA complications
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Deep Learning Model for segmentation
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Preop CT scan > surface + anatomical landmarks of scapula + humerus

modified U-Net architecture for segmentation & landmark localizations
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» 3x3x3 Conv (ReLu + Group Normalization)
- Max Pooling
-» 3x3x3 Transposed Conv (ReLu + Group Normalization)

—» Concatenate
—» Dense Layer + Softmax

Satir etal., doi:10.1016/j.ejrad.2024.111588
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Morphological analysis

APA:15.64°

* Glenoid version angle (GVA)

* Glenoid inclination angle (GIA)

* Glenoid bone mineral density (BMD)
* Acromion angle (AA)

* Acromion posterior angle (APA)

* Acromion tilt angle (ATA)

* Acromion length angle (ALA)

* Acromion axial tilt angle (AXA)

* Rotator Cuff Degeneration

* Bone quality

Eghbali et al., doi: 10.1002/jor.25379



MusculoSkeletal Model

A Matlab toolbox for scaled-generic modeling of shoulder and elbow
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easured joint force

lewwﬂrthoLoad.com * Loading of the Shoulder Joint * Julius Wolff Institut * Charité Berlin

www.OrthoLoad.com * Julius Wolff Institut * Charité Berlin * Forces and Moments
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Musculoskeletal Model = Deep Learning Model

Glenohumeral joint force prediction with deep learning

Patient Joint Force

Parameters
Sex
Weight
Height
Daily activity (3)

Elevation angle

. . GHFx
Glenoid version
glenoid inclination () GHFy
. GHFz
CSA of SS
CSAof SC
CSAof IS
CSAof TM

Surgery (aTSA, rTSA)
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Musculoskeletal Model = Deep Learning Model

* 959 virtual subjects
* Sampling from clinical registry with Markov-Chain-Monte-Carlo

* Training (80% of subjects)

* Fully-connected neural network
* Training: backpropagation algorithm, descent gradient, minimize loss function

* Validation: hyperparameters tuning with Bayesian optimization
» k-fold validation (k=5 = 80% training & 20% validation)
- 7 hidden layers of 250, 20, 250, 160, 90, 90, 100 neurons

* Monte-Carlo drop-out (to avoid overfitting)

* Testing (20% of subjects, unseen by training)
* Evaluating model efficiency

20



Musculoskeletal Model = Deep Learning Model
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Automated Finite Element Model

* Bone geometry from DL segmentation TS

* Implant selection and positioning
(From preoperative planning)

* Scapula and implant tetrahedral mesh (Gmsh)
* Bone reaming (PyMesh)

* Bone inhomogeneous linear elastic properties
from preoperative CT
(Python code)

 Force from DL MSM

22



Preoperative planning

GlenoidImplant PartNumber;DWJ1585; ;DWI585

GlenoidImplant_PerformReversedPerforation;8; ;@8
GlenocidImplant_PerformReversedBasePlate;ledge;Type de platine;ledge
GlenoidImplant_PerformReversedBasePlatelsStandard;®; ;0
GlenoidImplant_PerformReversedDiameter;25;0iamétre de la platine;25 mm

GlenoidImplant PerformReversedOffset;8;0ffset de la platine;8® mm

GlenoidImplant PerformReversedingle;Full;fAngle de la platine;Full
GlenocidImplant_PerformReversedFixation;Central Screw;Fixation;Vis centrale
GlenocidImplant_PerformReversedFixationIsCentralPost;@; ;0
GlenoidImplant_PerformReversedScrewDiameter;6.5;Diamétre de vis;6.5 mm

GlenoidImplant PerformReversedScrewlength;38;longueur de wis;38 mm

GlenoidImplant PerformReversedCentralScrewPartNumber;DW]1538; ;0W]1538
GlenoidImplant_Depth;-1;Médialisation;1l mm

GlenocidImplant_Inclination;4;Inclinaison glénoidienne sup;4°
GlenoidImplant_WVersion;-9;Rétroversion glénoidienne;9°

GlenoidImplant_EntryPoint; (66.598668, 92.8@4176, 129.965637);;(66.590668, 92.804176, 129.965637)
GlenoidImplant DrillPoint;(66.598668, 92.884176, 129.965637);;(66.59B668, 92.804176, 129.965637)
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Automated Finite Element Model

ATSA RTSA

Cumulative Bone Volume (%)

Absolute Maximum Principal Strain (ug)

Volume Of Interest (VOI): 10 mm around the prosthesis
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Effect of screws in baseplate stability

* 4 (standard) vs 2 screws (inf & sup)

* 10 patients (5 females, 56-87 years) planned for RTSA
* Joint force at 60 degrees of abduction

* Bone volume exceeding 1000 pe (BVACS)

* Difference in %BVACS between 4 & 2 screw < 1%

* Results suggest safe to only use the sup. & inf. screws

25



Automation

* Entire process controlled by Python workflow

* CT, patient clinical data (sex, age, weight)

Deep-Learning Model - Bone and muscle anatomy, quality

Musculoskeletal model - Muscle and joint force

FE = Bone strain

Merge the clinical and biomechanical data of patients

26



Project: Effect of preop on TSA complications
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Statistics

e Why?
* Accounting for patient variability

e Association inference

* Correlation between bone morphology/quality and mechanical strength

* Problem of confounding variables in correctly estimating an effect
* Both cause and effect variables dependent on a third confounding variable

* Causalinference
* |s aging causing bone strength to decrease?

e “Association is not causation”
* Counterfactual “what if” questions

28
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WINNER OF THE TURING AWARD

AND DANA MACKENZIE

THE
BOOK OF
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O o el

THE NEW SCIENCE
OF CAUSE AND EFFECT

(3. COUNTERFACTUALS

ACTIVITY:  Imagining, Retrospection, Understanding

QUESTIONS:  What if 1 had done ...2 Why?
(Wias it X that caused Y? What if X had not
occurred? What if T had acted differently?)

EXAMPLES:  Wias it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if I had not smoked for the

last 2 years?

[ 2. INTERVENTION
ACTIVITY: Doing, Intervening

QUESTIONS:  What if 1do ...2 Hon?
(What would Y be if I do X?
How can I make Y happen?)

EXAMPLES:  If T take aspirin, will my headache be cured?

What if we ban cigarettes?

(1. ASSOCIATION

ACTIVITY:  Seeing, Observing

QUESTIONS:  What if 1 sec ...?
(How are the variables related?
How would seeing X change my belief in Y?)

EXAMPLES:  What does a symptom tell me about a disease?

What does a survey tell us abour the

election results?

MHAREL

ISBN-13: 9780141982410
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Causal associations between

scapular morphology and shoulder
condition estimated with Bayesian
statistics

Shoulder Co@
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Conclusion

* Computer modeling and simulation for in silico clinical trials
* Engineering background

* Link with clinical world (Surgeon, Patient, Ethics,...)
 Question-driven research

* Critical thinking

31
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