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2.11 Viscoelrarsrtircirty

When a body is suddenly strained and then the strain is maintained constant
afterward, the corresponding stresses induced in the body decrease with
time. This phenomena is called stress relaxation. or relaxation for short. If
the body is suddenly stressed and then the stress is maintained constant
afterward, the body continues to deform, and the phenomenon is called
creep. If the body is subjected to a cyclic loading, the stress-strain relationship
in the loading process is usually somewhat different from that in the un-
loading process, and the phenomenon is called hysreresis.
The features of hysteresis, relaxation, and creep are found in many
materials. Collectively, they are called features of riscoelasticity.
Mechanical models are often used to discuss the viscoelastic behavior
of materials. In Fig. 2.11:1 are shown three mechanical models of material
behavior, namely, the Maxwell model. the Voigrt model. and the Kelrin model
(also called the standard linear solid). all of which are composed of combina-
tions of linear springs with spring constant u and dashpots with coeficient
viscosity 1. A linear spring is supposed 10 produce instantaneously a
deformation proportional to the load. A dashpot is supposed to produce a
velocity proportional to the load at any instant. Thus if F is the force acting
inaspring and u is its extension, then F = uu. If the force F acts on a dashpot,
it will produce a velocity of deflection . and F = nu. The shock absorber
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(c) A Kelvin body (a standard linear solid)
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Figure 2.11:1 Three mechanical models of viscoelastic material. (a) a Maxwell body,
(b) 2 Voigt body, and (c) a Kelvin body (a standard linear solid).
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on an airplane’s landing gear is an example-efa-dashpet-Now-imaMaxwet

model, shown in Fig. 2.11:1(a), the same force is transmitted from the spring
to the dashpot. This force produces a displacement F/u in the spring and
a velocity F/n in the dashpot. The velocity of the spring extension is F/u
if we denote a differentiation with respect to time by a dot. The total velocity
is the sum of these two:

U= —+ (Maxwell model). (1)

=

F
n

Furthermore, if the force is suddenly applied at the instant of time r = 0,
the spring will be suddenly deformed to u(0) = F(0)/u. but the initial dashpot
deflection would be zero, because there is no time to deform. Thus the initial
condition for the differential equation (1) is
F(0)
u(0) = —. (2)
u
For the Voigt model, the spring and the dashpot have the same displace-
ment. If the displacement is u, the velocity is u, and the spring and dashpot
will produce forces uu and ni, respectively. The total force F is therefore

2
~

F = pu+nu (Voigt model). ’ (
If F is suddenly applied, the appropriate initial condition is
u(0) = 0. (4)

For the Kelvin model (or standard linear model), let us break down the
displacement u into u, of the dashpot and ] for the spring, whereas the total
force F is the sum of the force Fy from the spring and F) from the Maxwell
element. Thus

(a)u=u1+11'1 (b)F=F0+F1. (\_)
() Fo = pou, d) Fy=mu, = My} i
From this we can verify by substitution that
F=pou + pyuty = (o + py) u — pyu,.
Hence
M r . M , . .
F+—F=(u+ Hiu = puy + 2 (Ho + py)it — MUy
Hy Hy
Replacing the last term by 1,1} and using Eq. (5a), we obtain
i .
F+£F=pou+;h<1+-"—°)u. 6)
H Hy

This equation can be written in the form

F 4t F = Eglu + 1,u), (Kelvin model) (7)
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where

7:5:’_71, Ta=’_71<1 +'#_O>s ER=/JO' (8)
Hy Ho H

For a suddenly applied force F(0) and displacement u(0), the initial condition
1s

7. (0) = Eg7,u(0). 9)
For reasons that will become clear below, the constant 7, is called the
relaxation time for constant strain, whereas t, is called the relaxation time
for constant stress.

If we solve Egs. (1), (3), and (7) for u(1) when F(1) is a unit-step function
1(z), the results are called creep funcrions, which represent the elongation
produced by a sudden application at r = 0 of a constant force of magnitude
unity. They are:

Maxwell solid:

c(r) = <l + l r> 1(1), (10)
noon
1 o
c(t) == (1 —e~“")1(), (11)
U

Standard linear solid:

o) = —El— [1 - <1 _ ;'—) e "’Jl(r): (12)
R o

where the unit-step function 1(r) is defined as [see Fig. 2.11 :2(a)]

1 whent >0,
1(1) =<% whent =0, (13)
0 whenr <.

(a) A unit-step function 1(1)
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Figure 2.11:2 (a) A unit-step function 1(1). (b) A unit-impulse function &(1). The central
spike has a height tending to sc but the area under the curve remains to be unity.
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—Abody that obeys 3 Toad-deflection relation Like that given by Maxwell’s
model is said to be a Maxwell solid. Since a dashpot behaves as a piston
moving in a viscous fluid, the above-named models are called models of
viscoelasticity.
Interchanging the roles of F and u, we obtain the relaxation Junction as

a response F(r) = k(r) corresponding to an elongation u(r) = 1(z). The re-
laxation function k(z) is the force that must be applied in order to produce
an elongation that changes at t = 0 from zero to unity and remains unity
thereafter. They are
Maxwell solid:

k(1) = ue~®mr1(p), (14)
Voigt solid:

k(@) =né(1) + ul(), (15)

Standard linear solid:

k(z)=ER[1 —(1 —?)e‘“c}(z). (16)

Here we have used the symbol 6(1) to indicate the unit-impulse function or
Dirac-delta function, which is defined as a function with a singularity at the
origin (see Fig. 2.11:2(b)):

é(1)=0 (forr < 0,and > 0),
_ JWé@dr = f(0) (e > 0),

where f(1) is an arbitrary function. continuous at ¢ = 0. These functions,
c(r) and k(r), are illustrated in Figs. 2.11:3 and 2.11 -4, respectively, for which
we add the following comments.

For the Maxwell solid, the sudden application of a load induces an
immediate deflection by the elastic spring, which is followed by “creep”
of the dashpot. On the other hand, a sudden deformation produces an
immediate reaction by the spring, which is followed by stress relaxation

(17)
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Figure 2.11:3 Creep functions of (a) a Maxwell, (b} a Voigt, and (c) a standard linear
solid. A negative phase is superposed at the time of unloading.
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Figure 2.11:4 Relaxation functions of (a) a Maxwell, (b) a Voigt. and (c) a standard
linear solid.

according to an exponential law [see Eq. (14)]. The factor n/u, with the
dimension of time, may be called the relaxation rime: it characterizes the
rate of decay of the force.

For the Voigt solid, a sudden application of force will produce no im-
ediate deflection, because the dashpot, arranged in parallel with the spring,
will not move instantaneously. Instead, as shown by Eq.(11) and Fig. 2.11 13,
a deformation will be gradually built up, while the spring takes a greater
and greater share of the load. The dashpot displacement relaxes expo-
nentially. Here the ratio 5/u is again a relaxation time: it characterizes the
rate of relaxation of the dashpot.

For the standard linear solid, a similar interpretation is applicable. The
constant 7, is the time of relaxation of load under the condition of constant
deflection [see Eq. (16)], whereas the constant 7, 1s the time of relaxation
of deflection under the condition of constant load [see Eq. (12)]. Ast— =,
the dashpot is completely relaxed, and the load-deflection relation becomes
that of the springs, as is characterized by the constant Eg in Egs. (12) and
(16). Therefore, Ey is called the relaxed elastic modulus.

Maxwell introduced the model represented by Eq. (3), with the idea that
all fluids are elastic to some extent. Lord Kelvin showed the inadequacy of
the Maxwell and Voigt models in accounting for the rate of dissipation of
nergy In various materials subjected to cyclic loading. Kelvin's model is
commonly called the standard linear model because it is the most general
relationship that includes the load, the deflection, and their first (commonly
called “linear™) derivatives.

More general models may be built by adding more and more elements
to the Kelvin model. Equivalently, we may add more and more exponential
terms to the creep function or to the relaxation function.

The most general formulation under the assumption of linearity between
cause and effect is due to Boltzmann (1844-1906). In the one-dimensional
case, we may consider a simple bar subjected to a force F(1) and elongation
u(1). The elongation u(r) is caused by the total history of the loading up to
the time ¢. If the function F(1) is continuous and differentiable, then in a

2.12 Response of a Viscoelastic Body to Harmonic Excitation

Since biological tissues are all viscoelastic, and since one of the simplest ways
to experimentally determine the viscoelastic properties is to subject the
material to periodic oscillations, we shall discuss this case in greater detail.

* See Fung (1963), Solid Mechanics, p. 448 for details.
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Figure 2.12:1 Complex representation of a harmonic motion.

Consider a quantity x, which varies periodically with frequency w (radians
per second) according to the rule

x = 4 cos(wr + ). (1)

This 1s a simple harmonic motion; 4 is the amplitude and ¢ is the phase angle.
We may consider x to be the projection of a rotating vector on the real axis
(see Fig. 2.12:1). Since a vector is specified by two components, it can be
represented by a complex number. For example, the vector in Fig. 2.12:1
can be specified by the components x = .4 cos(wr + @)and y = Asin(wt +~ @),
and hence by the complex number x = iy. But

ei(wr-(-cp) — COS(C’)I - (p) -+ I.S].D(C)t + (;D)- (2)

so the rotating vector can be represented by the complex number

T (ot + o 1
X+ iy = 4“9 = Belwt, (3)

where
B = 4e'°. (3a)

Equation (1) is the real part of Eq. (3), and the latter is said to be the complex
representation of Eq. (1). B is a complex number whose absolute value is the
amplitude, and whose polar angle ¢ = arc tan(Im B;R1 B) is the phase angle
of the motion.

The vector representation is very convenient for “composing” several
simple harmonic oscillations of the same frequency. For example, if

x = Ajcos(wr + ¢;) + A, cos(wt + @) = Acos(wt + o), (4)

then x is the real part of the resultant of two vectors as shown in Fig. 2.12:2.

Now, if the force and displacement are harmonic functions of time, then
we can apply complex representation. Let u = Ue'". Then by differentiation
with respect to 7, we have 4 = iwUe™" = jou. In this case a differentiation



2.12 Response of a Viscoelastic Body to Harmonic Excitation 49

X

Figure 2.12:2 Vector sum of two simple harmonic motions of the same frequency.

with respect to t is equivalent to a multiplication by iw. Applying this result
to Eq. (1) of Sec. 2.11, we obtain

oF  F
iou = el +—. (%)
( u n
This can be written in the form
F = G(iw)u, (©)
which is the same as
Fe'' = G(iw)ue', (6a)
where G(iw) is called the complex modulus of elasticity. In the case of the
Maxwell body,
- , 1 — 1
Gliw) = iw (ic—) + —) . (7)
o

In a similar manner, Egs. (3), (7), (19),(20), (22), and (23) of Sec. 2.11 can all be
put into the form of Eq. (6), and the complex modulus of each model can be
derived.

The complex modulus of elasticity of the Kelvin body (standard linear
lid), corresponding to Eq. (7) of Sec. 2.11,1s

. I +iwt,
Writing
G(iw) = |Gle®, ©)

where |G| is the amplitude of the complex modulus and § is the phase shift,
we have

G = ______‘_,_0’ E s t 5 = o : .
o] (1 + w‘rf) R an 1+ w(1,1,) (19)
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Figure 2.12:3 The dynamic modulus of elasticity |G| and the internal damping tané
plotted as a function of the logarithm of frequency w for a standard linear solid.

The quantity tan 6 is a measure of “Internal friction.” When |G| and tan § are
plotted against the logarithm of ©, curves as shown in Fig. 2.12:3 are ob-
tained. The internal friction reaches a peak when the frequency o is equal to
(t,7)" 1% Correspondingly, the elastic modulus |G| has the fastest rise for

frequencies in the neighborhood of (z,7) " 12




