One-dimensional (1-D) flow equations

1. Conservation of mass
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2. Conservation of momentum

Assumption: no radial velocity component (v << u)
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Newton’s law: EFX =m-a,
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Note: Q = A V and assuming that d(A-V)=dA-V+A-dV =A-dV
Finally,
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where A= % f ‘L;—zsz is a velocity profile shape factor. The shape factor varies between
the value of A =1 for a flat profile to the value of A = 4/3 for a parabolic profile. One of
the main problems of the 1-D flow equations is that both A and 7 = u% depend on the
velocity profile which is in principle not known. The usual approximati(;;Rs are A = 1 (flat

4
profile) and 7 = ;;g (Poiseuille’s law).

The continuity and momentum equations describe pressure and flow wave propagation in
an arterial segment. They contain three variables: pressure (P), flow (Q) and area (A). In
order to close the system of equations we need one more equation, which is usually given
in terms of a constituitive equation describing the relationship between pressure and
cross-sectional area: A = f(p). Typically, this relationship for an artery is nonlinear as
shown in the following figure
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Figure 1. Area-pressure, (A(p), left) and compliance-pressure (C4(p), right)
for the human aorta and for pressures of 0 tot 200 mmHg (after
Langewouters 1984). Compliance is defined as the slope of the area-
pressure curve.

Equations 1 and 2 together with a constitutive equation between area (A) and pressure (p)
form a closed system of nonlinear first order differential equations, which can be solved
using standard numerical schemes (i.e., method of characteristics or finite difference
schemes). These equations hold for arterial flow in an arterial segment. One needs,
however, to specify the boundary conditions at the beginning of the arterial network
(typically the ascending aorta), at branching points, as well as at termination sites. These
boundary conditions are usually as follows:



Upstream boundary condition: Specify either the (aortic) pressure or flow waveform.

Most often the aortic flow waveform is used as the upstream boundary condition (Figure
2).
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Figure 2. Aortic flow in a young subject as a function of heart cycle

Downstream boundary condition: Specify either pressure or flow waveform or the
terminal (distal) impedance (Z;). The terminal impedance model of vasculature beyond
the terminal point and characterizes the relation between pressure and flow at the
terminal point.
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Boundary condition at bifurcation: Most commonly apply a simple continuity in pressure
and flow, such as described below. Indices i, j and k denote the last node of mother
branch I and the first node of daughter branch II and III, respectively.
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