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Chapter 10: Elasticity 
Exercise 10.1 - Solution 
The first objective of this problem is to show that, even for a Hookean material, the 
pressure-radius relationship is non-linear. We assume that the wall of the tube is thin and 
incompressible, and that the deformations are small. 

From the Law of Laplace, 

T = p·r 

where T is the tension, p is the pressure and r is the radius. Taking the differential gives: 

dT = p·dr + r·dp (2) 

so that changes in tension depend on the pressure and radius as well as the changes in these 
quantities. 

From the behavior of a Hookean material under small deformations: 

dσ = E0·dε (3) 

where σ is the stress, E0 is Young's modulus and ε is the strain.  For a cylindrical geometry, 
the strain is the change in circumference divided by the circumference, or 

(4) 

The last piece of information is the relationship between tension and stress: 

(5) 

where h is the wall thickness. Taking the differential gives: 

(6) 

Since the wall is assumed incompressible we can apply the incompressibility condition: 

r·h = r0·h0 = ct (7) 

2 d dd
2

r r
r r

e p×
= =

p×

T
h

s =

2

1d d dTT h
h h

s = -



ME-481 Biomechanics of the Cardiovascular System 

 

 
 

2 

 
where r0 and h0 are the radius and thickness, respectively, at zero pressure. In differential 
form we can write: 
 
 h·dr + r·dh = 0 (8) 
 
Using equations (2), (3), (4), (6), (7) and (8) we can write the following differential equation 
relating the radius and pressure: 
 

  (9) 

 
Solving this first order differential equation and applying the boundary condition r=r0 at p=0 
we obtain the solution: 
 

  (10) 

 
Graphically, the relationship looks like this: 
 

 
 
Note that at r/r0 = 1.65 the tube explodes (slope becomes zero). 
 
For the second part, the goal is to propose a radius dependent Young's modulus that yields a 
pressure - radius curve similar to that found for an artery. Due to the collagen in the arterial 
wall, the vessel becomes harder to distend with increasing pressure. One possible radius 
dependent Young's modulus which would satisfy this behaviour is: 
 

  (11) 

 
where n>0. Using an approach similar to that outlined above, the pressure - radius 
relationship is: 
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  (12) 

 
The results for n = 0 (previous case) and n = 2, 3, 4 and 5 are shown below: 
 

 
 
Clearly, to obtain a pressure-stiffening (dp/dr>0) relationship like in real arteries we have to 
use a relationship with n>3. 
 
 
 
Exercise 10.2 – Solution 
If we had a blood vessel of constant radius, r, Poiseuille’s law would give us the expression 
for the flow, Q: 
 

 Q =  (1) 

 
where z is the axis of symmetry of the vessel. We now have to find the relationship between 
r(z) and p(z) when the arterial wall provokes conicity. 
 
Law of Laplace: 
 

 σθ =  (2) 

 
where h is the wall thickness. Law of Hooke: 
 
 σθ = ε0 Ε (3) 
 
where ε0 is the circumferential strain given by: 
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 ε0 =  (4) 

and r0 is a reference value for the radius, let’s say r(z=0) = r0. From Eqs. (2)-(4) we obtain: 
 

  (5) 

 
If we substitute the expression for the radius from Eq. (5) into Eq. (1) we have: 
 

  (6) 

 
Integration of Eq. 6 along vessel length, L, yields: 
 

  (7) 

 
Hence the flow, Q, is not a linear function of the pressure gradient any more. 
 
 
 
 
 
Exercise 10.3 – Solution 
The vascular resistance of a Poiseuille’s flow is given by: 
 

  (1) 

 
In case the diameter oscillates (vasomotion): 
 

  (2) 

 
So the ratio κ (Θ) is equal to: 
 

κ(Θ) =
R'()*+,,

R'
-+.+/ = (1 + 𝛼sin𝛩)78 (3) 
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where α = δ/D. The flow is obtained by inversing Eq. (3). The following is graphically 
obtained: 
 

 
 
The mean ratio, 𝜅̅, is calculated by integrating Eq. (3) over a cardiac cycle: 
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The figure below depicts the variation of  𝜅̅ for different values of α. We observe that the 
mean ratio increases due to vasomotion. The mean flow increases as well. This paradox is 
due to the particular expression of the resistance as a function of Θ (previous graph) and the 
fact that flow varies inversely proportionally to the resistance. 
 

 
 
Attention: The results were obtained by using Poiseuille’s law for the pulsatile flow. 
 

1 2 3 4 5 6

1

2

3

4

ðR( )

ðQ( )
κ(Θ) 

q(Θ) 

Θ 

0.05 0.1 0.15 0.2 0.25

1.05

1.1

1.15

1.2

1.25

1.3

1.35
R( )vRD𝜅̅ 


