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Series 4 – Solutions 

Prof:  Nikos Stergiopulos 
TA:    Sokratis
              Anagnostopoulos

Chapter 4: Dimensional Analysis 
Exercise 4.1 – Solution 

The stenotic cardiac valve is shown schematically in Fig. 1. 

Figure 1. Schema of a stenotic cardiac valve 

Let us assume that the pressure drop, ΔP [FL-2], between points 1 and 3 is a function of the 
blood flow, Q [L3T-1], the stenosis area (at point 2), A2 [L2], and the blood density, ρ [ML-3 = 
FT2L-4]. The letters in brackets denote the units of each variable (F = force, L = length, T = 
time, M = mass). We assume that inertial effects (high acceleration through the stenosis) 
dominate and we can neglect viscous effects, so that viscosity does not come into play. This 
means that the pressure drop, ΔP, is in general given by: 

ΔP = f(Q, A2, ρ) (1) 

By virtue of the Buckingham Π-theorem, Eq. 1 can be written in dimensionless form using 4 
(# of variables) - 3 (# of dimensions) = 1 dimensionless Π-term. Since there is only one Π-
term, this can be only equal to a constant. So we can write: 

(2) 

or, solving for the stenotic area: 

(3) 
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where c2 is a constant to be determined experimentally. Eq. 3 is called the Gorlin equation, 
and it was actually used in clinical practice to estimate the stenotic area, A2. Nowadays, 
clinicians use ultrasonic and other imaging techniques for direct valve area assessment. 
 
We could also apply fluid mechanics principle to the problem. We can, for example, apply 
the Bernoulli equation for the converging part of the tube, namely between points 1 and 2: 
 

  (4) 

 
where V is the average velocity of the fluid. By continuity, A1V1 = A2V2 = Q. So, Eq. 4 can be 
rewritten as: 
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(5) 

 
 
because A1>>A2. From point 2 to 3 there is only little pressure recovery, because most of the 
kinetic energy is dissipated in turbulence. So we may write (ce: expansion loss coefficient): 
 

  (6) 

 
Eq. 6 is essentially the same as Eq. 2, with c1 = ce / 2. 
 
 
Exercise 4.2 – Solution 
a) In terms of units, the variables entering the problem can be written: 
 
p ~ FL-2 
x ~ L 
α [rad], i.e. dimensionless, i.e. Π-term 
D ~ L 
d ~ L 
U ~ LT-1 
μ ~ FL-2T 
ρ ~ FL-4T2 
Pa ~ FL-2 
 
p = p(x, α, D, d, U, μ, ρ, Pa) 
 
9 variables – 3 basic dimensions = 6 Π-terms 
 
The 6 Π-terms can be formed by inspection: 
 

Π1 = p/Pa 
Π2 = x/D 
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Π3 = d/D 
Π4 = α 
Π5 = DPa/(Uμ) 
Π6 = DρU/μ = Reynolds number 

 
We now have the equation Π1 = Φ(Π2, Π3, Π4, Π5, Π6) to solve. 
 
b) The fluid (blood) does not change, thus properties μ and ρ remain the same. Using Π6 
(Reynolds number) we have: 
 
Π6 = const  DρU/μ = D’ρ’U’/μ’ 
 
Substituting ρ = ρ’, μ = μ’, U’ = 5cm/s and D = 10D’, results in U = U’/10 = 5mm/s. 
 
 
Exercise 4.3 – Solution 
In terms of units, the variables entering the problem can be written: 
 
Pdia ~ FL-2 
Q ~ L3T-1 
R = P/Q ~ FL-2 / (L3T-1) = FL-5T 
C = dV/dp ~ L3 / (FL-2) = F-1L5 
ν ~ T-1 
 
Pdia = F(Q,R,C,ν) 
 
5 variables – 3 basic dimensions = 2 Π-terms 
 
The 2 Π-terms can be formed by inspection:     Π1 = Pdia/(QR)     and     Π2 = RCν 
 
We now have the equation Π1 = Φ(Π2) to solve. 
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