

Series 3 (04 March 2025)

Prof: Nikos Stergiopoulos

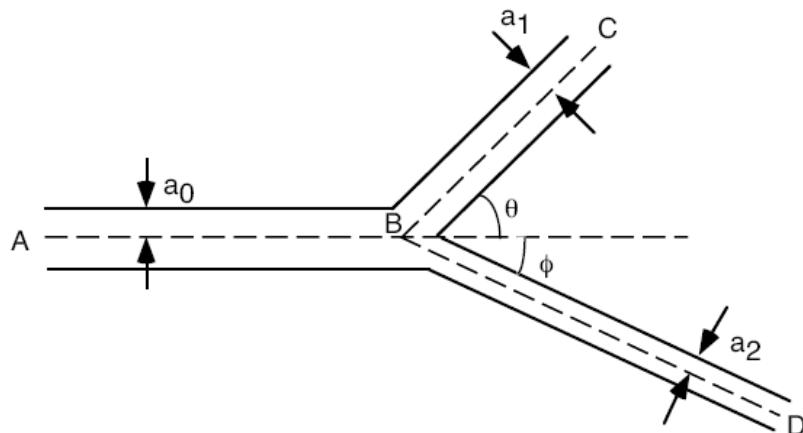
TA: Sokratis Anagnostopoulos

Chapter 2: Law of Poiseuille**Exercise 2.3**

Murray (1926) proposed a «cost» function, the minimum of which describes an optimum geometry of a blood vessel. The latter is modeled as a rigid tube of radius a , the length L and flow Q of which are imposed. The cost function P , expressed in [W], is obtained considering the work provided to the blood as well as the metabolic energy absorbed by the wall:

$$P = Q\Delta p + k\pi a^2 L, \text{ where } p = \text{pressure and } k = \text{constant}$$

- 1) Determine the optimum relation between radius and flow when minimizing the cost function of a Poiseuille flow.
- 2) If the cost functions of different segments of the vascular tree are additive, determine the optimum geometry at point B, i.e., the angles θ and ϕ , of the bifurcation shown below, wherein the flows Q_0 , Q_1 and Q_2 and the points A, C and D are fixed.
- 3) Supposing bifurcations with $a_1 = a_2$ (i.e., $\theta = \phi$), determine the number of successive bifurcations to pass from the aorta ($a_0 = 1.3$ cm) to the capillaries ($a = 5 \cdot 10^{-4}$ cm). Deduct the total number of capillaries and compare it with physiological data.

**Exercise 2.4**

Shear stress is considered to be an important biological stimulus for the endothelial cells. Under augmented shear stress the proliferation of the smooth muscle cells (which could potentially provoke a restenosis after dilation caused by angioplasty) is strongly reduced. An efficient way to locally increase the shear stress is to place in the artery a flow deflector which has a cylindrical shape of radius r_i . Hypothesizing a developed flow, calculate the velocity profile and the shear stress as a function of the flow Q , the viscosity μ and the radii r_i and r_o .

