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Series 3 – Solutions 

Prof:  Nikos Stergiopulos 
TA:  Sokratis Anagnostopoulos

Exercise 2.3: Solution 
1. First let us consider a single arterial segment, as shown in Fig. 1 below.

Figure 1. Parameters for a single arterial segment. 

Assuming that the metabolic rate is proportional to the wall mass, it follows that the cost 
function Pm for the metabolic part will be 

Pm = k1 (2πaLh) (1) 

where h is the wall thickness and therefore the term within the parenthesis is the wall 
volume. Assuming that the wall thickness is proportional to the radius a, the total cost 
function P is then given by 

P = QΔp + kπa2L (2) 

The first part of the total cost function is the energy loss due to flow. If we assume that the 
law of Poiseuille applies, the cost function is finally given by 

P = Q2 + kπa2L (3) 

We look now for the optimum value of the radius a, that is the value that minimizes, for a 
given flow, the cost function. The condition is 

 = Q2 + 2kπaL = 0 (4) 

which yields the optimum radius 

a =   or  (5) 
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Hence, substituting into Eq. 3, we obtain the minimum cost function 
 

 Pmin = kLa2 (6) 

 
2. Now let us consider the bifurcation problem as given in Fig. 2 that follows. 
 

 
 

Figure 2. Parameters for the bifurcation problem. 
 
We assume that the flows of the three segments (Q0, Q1, Q2) are given and the end points of 
the three segments (A, C, D) are fixed. Therefore, we seek the optimum position for the 
intersection point B, which will obviously lie on the ACD plane. We note that the cost 
functions of the three vessels are additive, so using the results of Question 1 we obtain the 
minimum cost function of the bifurcation: 
 

  (7) 

 
Since Eq. 5 relates the radii a0, a1 and a2 to the fixed flows Q0, Q1 and Q2, respectively, the 
only parameters that change are the individual lengths L0, L1 and L2 of each branch. If we 
assume that the position B is optimum, then any infinitesimally small change in the position 
of B will produce no change in the value of the cost function, hence: 
 

  (8) 

 
Referring to Fig. 3, we consider a small movement of point B to B’ in the direction of AB. 
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Figure 3. Variation of individual artery lengths 
 
The variation of each segment length will be ΔL0 = δ, ΔL1 = -δ·cosθ and ΔL2 = -δ·cos . So 
substituting into Eq. 8 the following condition is obtained: 
 
  (9) 
 
If we now move point B to B’ in the direction of CB (see Fig. 4), we obtain ΔL0 = -δ·cosθ, ΔL1 = 
δ and ΔL2 = -δ·cos(θ+ ), which results in the following relationship: 
 
  (10) 
 

 
 

Figure 4. Variation of individual artery lengths 
 
To obtain enough mathematical conditions, we move for a third time point B in the direction 
of DB, so that ΔL0 = -δ·cos , ΔL1 = δ·cos(θ+ ) and ΔL2 = δ, yielding the following equation: 
 
  (11) 
 
The system of Eqs. 9-11 can be solved to give the values of the angles θ and : 
 

  (12) 

  (13) 
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The mass conservation law requires that Q0 = Q1 + Q2, which using Eq. 5 implies that 
 
  (14) 
 
Thus, Eqs. 12 and 13 can be rewritten to express θ and  as functions of radii a0 and a1 only: 
 

  (15) 

  (16) 

 
3. If the radii of the two daughter branches are equal (a1 = a2), it follows from Eqs. 12 and 13 
that the angles θ and  are equal. From Eq. 14 we obtain 
 
  (17) 
 
If for all generations of arteries the bifurcations are of the same type so that the above 
condition applies for each bifurcation, the radius an at the nth generation of arteries will be 
 
  (18) 
 
Based on that, to go from the aorta with a0 = 1.3 cm to the capillaries with an = 5·10-4 cm, the 
necessary number of generations of arteries is 
 

  (19) 

 
Since in each generation the number of vessels doubles, 34 generations would yield 234 = 
1.7·1010 capillaries. This number is not far from the estimated number of capillaries (5·109) 
which was given in the class notes (slide 5, Introduction to CV system). 
 
 
 
Exercise 2.4: Solution 
Consider the situation depicted in Fig. 1 below. 
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Figure 1. Schema of one of the possible configurations of the improved stent design. 
 
Assuming developed flow, the x-momentum equation of the Navier-Stokes equations is 
given by 
 

  (1) 

 
Integrating twice we obtain 
 

  (2) 

 
Applying the boundary conditions u(r=ri) = u(r=ro) = 0, we come up with the final expression 
for the velocity distribution: 
 

  (3) 

 
The flow Q can then be derived by simple integration: 
 

  (4) 

 
The shear stress τ acting on the arterial wall is given by 
 

  (5) 

 
which, using Eq. 3 for u(r), yields 
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  (6) 

 
Equation 6 can also be expressed in terms of the flow Q if we substitute for the pressure 
gradient from Eq. 4: 
 

  (7) 

 
To get a “better feeling” of the magnitude of intimal shear stress, it is convenient to 
normalize it with respect to the shear stress under laminar flow for an open artery and for 
the same flow Q. This is given by Poiseuille’s law: 
 

  (8) 

 
Hence, we can write: 
 

  (9) 

 
If we define γ as 
 

  (10) 

 
Eq. 9 can be rewritten in dimensionless form as 
 

  (11) 
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The dependence of the relative shear stress τ/τPois on parameter γ is shown in Fig. 2 below. 
 

 
 

Figure 2. Relative shear stress τ/τPois as a function of parameter γ=ri/ro. 
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