ME-481 Biomechanics of the Cardiovascular System

Series 3 — Solutions
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Exercise 2.3: Solution
1. First let us consider a single arterial segment, as shown in Fig. 1 below.

Figure 1. Parameters for a single arterial segment.

Assuming that the metabolic rate is proportional to the wall mass, it follows that the cost
function Pm for the metabolic part will be

Pm = k1 (2raLh) (1)

where h is the wall thickness and therefore the term within the parenthesis is the wall
volume. Assuming that the wall thickness is proportional to the radius a, the total cost
function P is then given by

P =QAp + kna’L (2)

The first part of the total cost function is the energy loss due to flow. If we assume that the
law of Poiseuille applies, the cost function is finally given by

SuL
na’

pP=

Q?* + kna’l (3)

We look now for the optimum value of the radius a, that is the value that minimizes, for a
given flow, the cost function. The condition is

op _ —32—M5LC22+2thaL=O (4)
oa ma
which yields the optimum radius
a=6 16_“3/@ or Q*= a’kn’ (5)
n’k 16p
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Hence, substituting into Eq. 3, we obtain the minimum cost function

Pmin = 377[ kl_az (6)

2. Now let us consider the bifurcation problem as given in Fig. 2 that follows.

Figure 2. Parameters for the bifurcation problem.

We assume that the flows of the three segments (Qo, Q1, Q;) are given and the end points of
the three segments (A, C, D) are fixed. Therefore, we seek the optimum position for the
intersection point B, which will obviously lie on the ACD plane. We note that the cost
functions of the three vessels are additive, so using the results of Question 1 we obtain the
minimum cost function of the bifurcation:

3Ty

P ayL,+a;L, +a3L,) (7)

Since Eq. 5 relates the radii ap, a1 and az to the fixed flows Qo, Q1 and Qa, respectively, the
only parameters that change are the individual lengths Lo, L1 and L, of each branch. If we
assume that the position B is optimum, then any infinitesimally small change in the position
of B will produce no change in the value of the cost function, hence:

Apzﬁ(

aiAL +a]AL +aAL, ) =0 (8)

Referring to Fig. 3, we consider a small movement of point B to B’ in the direction of AB.
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Figure 3. Variation of individual artery lengths

The variation of each segment length will be ALo = , AL1 = -6-cos8 and AL, = -6-cos ¢ . So
substituting into Eg. 8 the following condition is obtained:

a;—a’ cos0—a’cosdp=0 (9)

If we now move point B to B’ in the direction of CB (see Fig. 4), we obtain ALy = -6:cos6, AL; =
& and AL; = -6-cos(0+ ¢ ), which results in the following relationship:

-a; cosO+a; +ajcos(0+¢)=0 (10)

Figure 4. Variation of individual artery lengths

To obtain enough mathematical conditions, we move for a third time point B in the direction
of DB, so that ALp =-6-cos ¢, ALy = &-cos(6+¢ ) and AL, = §, yielding the following equation:

-agcosh+a; cos(B+¢)+a; =0 (11)

The system of Egs. 9-11 can be solved to give the values of the angles 8 and ¢:

4 4 4
a,+a; —a
cosf=—"—-—2 (12)
2a;a;
4 4 4
a,—a, +a
COS(I):% (13)
2a;a;
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The mass conservation law requires that Qo = Q1 + Q2, which using Eqg. 5 implies that
a)=a +a) (14)

Thus, Egs. 12 and 13 can be rewritten to express 8 and ¢ as functions of radii ap and a1 only:

4
a; +a; —3 (aé—af)
cos0O =

15
2aja; (15)

4
4 4, 3(.3 3
ay—a; +3/(a; -a))
2
23[(.3 3
2am/(a0—al)

3. If the radii of the two daughter branches are equal (a1 = a3), it follows from Egs. 12 and 13
that the angles 8 and ¢ are equal. From Eq. 14 we obtain

cosd = (16)

2a; =a, = a, =30.5a, =0.7%4a, (17)

If for all generations of arteries the bifurcations are of the same type so that the above
condition applies for each bifurcation, the radius an at the n'" generation of arteries will be

a,=0.794"a, (18)

Based on that, to go from the aorta with ap = 1.3 cm to the capillaries with a, = 5:10% cm, the
necessary number of generations of arteries is

a
In
4y

n=——=" - (19)
In0.794

Since in each generation the number of vessels doubles, 34 generations would yield 234 =

1.7-10%° capillaries. This number is not far from the estimated number of capillaries (5-10°)

which was given in the class notes (slide 5, Introduction to CV system).

Exercise 2.4: Solution
Consider the situation depicted in Fig. 1 below.
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Figure 1. Schema of one of the possible configurations of the improved stent design.

Assuming developed flow, the x-momentum equation of the Navier-Stokes equations is
given by

Lo(,0) 1% "
ror\ or W Ox
Integrating twice we obtain
u(r)=ia—pr2+cllnr+c2 (2)
4u Ox

Applying the boundary conditions u(r=ri) = u(r=ro.) = 0, we come up with the final expression
for the velocity distribution:

2 2
u(l”):Lﬁ—p rz—roz+ri s 1111 , LST=r, (3)
4“ ox 1 ro T
ni o
]’i

The flow Q can then be derived by simple integration:

i 22y
Q:J.u(an)dr:—ig—i rf—rf—w (4)

r
5 In2
]’;

The shear stress T acting on the arterial wall is given by

ou

a]" r=r,

T=-H (5)

which, using Eq. 3 for u(r), yields
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22
SN AP, iy (6)

4 ox 7, ll’lrfo

K

Equation 6 can also be expressed in terms of the flow Q if we substitute for the pressure
gradient from Eq. 4:

2 1 .2_ 2
T Y P (7)

& (72_ | In’o

ry == r

To get a “better feeling” of the magnitude of intimal shear stress, it is convenient to
normalize it with respect to the shear stress under laminar flow for an open artery and for
the same flow Q. This is given by Poiseuille’s law:

4
TPois =- M3Q (8)
nr;
Hence, we can write:
1 3 1 72 -2
i -3 | 2= :0 (9)
TPois r. —r ro _o
r04—ri4—(0 rl lnri
In—2
ki
If we definey as
7
y=-+ (10)
rO
Eg. 9 can be rewritten in dimensionless form as
2
1+ Y 11
2In—
T Y
- — (11)
TPois 4 (1—'Y )
In—
Y
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The dependence of the relative shear stress t/tpois ON parameter y is shown in Fig. 2 below.

Relative intimal shear
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Figure 2. Relative shear stress t/tpois as a function of parameter y=ri/ro.



