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Series 2 – Solutions 

Prof:  Nikos Stergiopulos 
TA:          Sokratis
               Anagnostopoulos

 

Chapter 2: Law of Poiseuille 
Exercise 2.1: Solution 
From Poiseuille’s law derivation we have: 

 (1) 

We find the value of constant c by applying the boundary condition @ r = R: 

u(r = R) = 0 

If we substitute the value of c into Eq. 1, we obtain the following expression for the velocity: 

or 

(2) 

where 

umax = u(r = 0) = 

Equation 2 describes qualitatively the velocity distribution along the radius. For n = 1, we 
have parabolic profiles − Poiseuille’s type of flow, as can be seen easily from Eq. 2: 

As n increases, the profiles tend to be “more linear”. For n >> 1, then n+1 ≈ n and in that 
case: 
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which is a linear distribution of velocity along r (see Figure below). 
 

 
 
Exercise 2.2: Solution 
a) Let us consider a fluid (any kind of fluid!) flowing in a tube of radius R. For generality let us 
consider only a part of the fluid volume, namely a cylinder of length Δx and radius r<R, as 
shown in the figure: 
 

 
 
The balance of forces yields 
 

p π r2 - (p - Δp) π r2 = 2 π r Δx τ 
or 

 τ =  (1) 

 
which is valid for all r. Thus, for a given pressure drop (Δp/Δx) the distribution of shear stress 
is given and is independent of the fluid properties. 
 
b) The equation relating the shear stress to shear rate for blood is given in the course notes: 
 

1 1
n
n

max

u r r
u R R

æ ö= - = -ç ÷
è ø

2
p r
x

D
D

R L

p p+(?p/?x)L

xr

τ

Δx 

p−Δp 



ME-481 Biomechanics of the Cardiovascular System 

 

 
 

3 

 

 
Solving for the shear rate we obtain 
 

γ =  =      ,     with     γ =  

 
Note that the pressure gradient (Δp/Δx) is a constant, independent of x and r. Thus, the 
above differential equation can be integrated with respect to r to yield: 
 

 

  (2) 

 
We find the value of constant c by applying the boundary condition @ r = R: 
 

u(r = R) = 0  

 
If we substitute the value of c into Eq. 2, we obtain the following expression for the velocity: 
 

 u =  (3) 

 
The above profile would have been equal to Poiseuille (parabolic) profile if the yield stress, 
τy, was equal to zero (verify). Now a certain yield stress exists, which means that below the 
yield stress level the fluid will behave as a solid. Since shear stress is highest at the wall and 
smallest towards the middle, there will be a part of the fluid, the core, occupying the central 
part of the tube up to a radius, rc, where the fluid will be moving as a rigid body. The radius rc 
is the point where shear stress equals the yield stress, therefore, by virtue of Eq. 1: 
 

 τy = rc = 2 τy  (4) 

 
As the pressure gradient increases, more of the fluid in the tube shears and thus the extent 
of core diminishes. Using Eqs 3 and 4, the velocity can be expressed by means of rc: 
 

u(r) =  

 

yt t µg= +

( )2yt t

µ

-

2

2 y
r p
x

t

µ

æ öD
-ç ÷Dè ø u

r
¶

-
¶

1 2
2 y y

u p r p r
r x x

t t
µ
æ ö¶ D D

= - + - Þç ÷ç ÷¶ D Dè ø
32
21 2 2

4 3y y
p r pu r r c
x x

t t
µ
æ öD D

= - + - +ç ÷ç ÷D Dè ø

32
21 2 2

4 3y y
p R pc R R
x x

t t
µ
æ öD D

Þ = + -ç ÷ç ÷D Dè ø

( )
3 32 2
2 21 2 2

4 3y y
p R r pR r R r
x x

t t
µ
é ùæ öD - D

+ - - -ê úç ÷D Dê úè øë û

2
crp

x
D

Þ
D

1p
x

-Dæ ö
ç ÷Dè ø

( )
3 3

2 2 2 21 82
4 3c c

p R r r R r r R r
xµ
é ùæ öD

- + - - -ê úç ÷D ê úè øë û



ME-481 Biomechanics of the Cardiovascular System 

 

 
 

4 

A typical profile for a fluid with rc / R = 0.3 is given in the figure below: 
 

 
 
c) The core velocity is the velocity at r = rc: 
 

uc =  

 
d) Flow is obtained by integrating the velocity over the cross-sectional area of the tube 
 

 

 
which finally yields: 
 

 

 
 
The terms outside the brackets give exactly the relation for Poiseuille flow. The terms inside 
the brackets, therefore, represent the change (diminish) in flow, as compared to Poiseuille 
flow. Defining Y as the relative strength of the yield stress 
 

 

 
and plotting the relative flow 
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as a function of Y, we obtain: 
 

 
 
Chapter 6: Resistance 
Exercise 6.1: Solution 
In this problem, the systemic circulation is represented by a series of resistors. Voltage is 
analogous to pressure, current to flow and electrical resistance to fluid resistance. 
 

 
 
The voltage source is the heart, with the “voltage” at point A being the mean arterial 
pressure, or 100 mmHg. The “voltage” at point B is 6 mmHg. So, the “voltages” at points 1, 2 
and 3 are: 
 

 = 100 - (100-6) · 0,19 = 82 mmHg 

 

4

8

Q
R p

xµ
p D

D

1 2 3

Rarteries R capillaries

Rarterioles
Rveins

A

B

( )
1

A B arteries
A

total

V V R
V V

R
-

= -

Y 

Re
la

tiv
e 

Fl
ow

 



ME-481 Biomechanics of the Cardiovascular System 

 

 
 

6 

 = 82 - (100-6) · 0,47 = 38 mmHg 

 

 = 38 - (100-6) · 0,27 = 13 mmHg 

 
where Rtotal = Rarteries + Rarterioles + Rcapillaries + Rveins. 
 
Graphically, the pressure distribution is: 
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