

## Series 12 – Solutions

Prof: Nikos Stergiopoulos  
 TA: Sokratis Anagnostopoulos

### Chapter 26: Transfer of Pressure

#### Exercise 26.1 – Solution

1) Pressure wave propagation of a single harmonic can be described as:

$$p(z,t) = p_0 e^{i\omega t - \gamma z} \quad (1)$$

To include attenuation we assume that  $\gamma$  is a complex number:

$$\gamma = a \cdot f + i k \quad (2)$$

where  $a \cdot f$  is the function we apply to describe the attenuation in dependency of frequency  $f$ , and  $k = 2\pi f/c$  is the wave number with phase velocity  $c$ . The transfer function  $T_{12}$  between two points  $z_1$  and  $z_2$  is defined as the ratio (output / input):

$$T_{12} = \frac{p(z_2,t)}{p(z_1,t)} \quad (3)$$

If we take into consideration the first wave reflection, the pressure at point  $z_1 = 0$  is:

$$p(z_1,t) = p_0 e^{i\omega t} + p_0 \Gamma e^{i\omega t - \gamma(2L)} = p_0 e^{i\omega t} \left( 1 + \Gamma e^{-af2L - i\frac{2\pi f}{c}2L} \right) \quad (4)$$

Similarly, the pressure at point  $z_2 = L$  is:

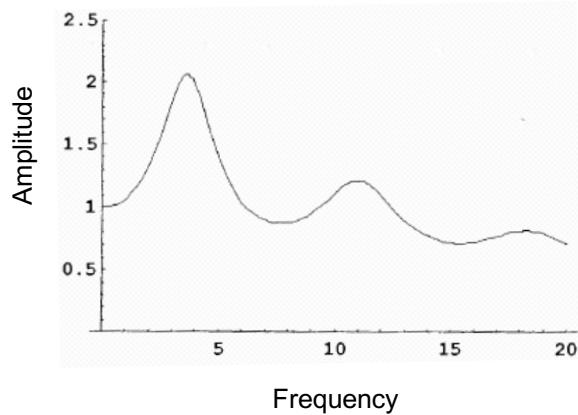
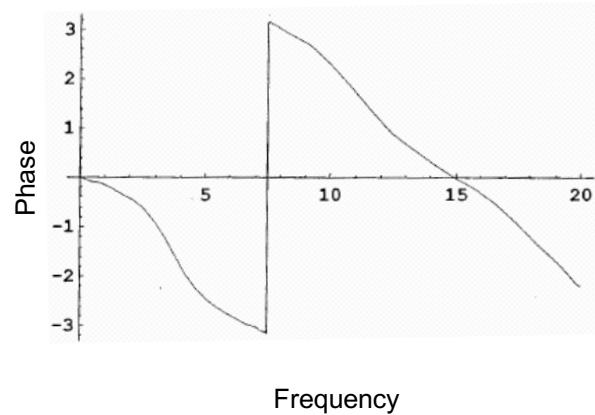
$$p(z_2,t) = p_0 e^{i\omega t - \gamma L} + p_0 \Gamma e^{i\omega t - \gamma L} = p_0 e^{i\omega t} (1 + \Gamma) e^{-afL - i\frac{2\pi f}{c}L} \quad (5)$$

Thus Eq. (3) now becomes:

$$T_{12} = \frac{p_0 e^{i\omega t} (1 + \Gamma) e^{-afL - i\frac{2\pi f}{c}L}}{p_0 e^{i\omega t} \left( 1 + \Gamma e^{-af2L - i\frac{2\pi f}{c}2L} \right)} = \frac{(1 + \Gamma) e^{-afL - i\frac{2\pi f}{c}L}}{1 + \Gamma e^{-af2L - i\frac{2\pi f}{c}2L}} \quad (6)$$

We notice that  $T_{12}$  is independent of both time  $t$  and pressure amplitude  $p_0$ . However,  $T_{12}$  depends on the frequency  $f$ .

2) We plot the amplitude  $|T_{12}(f)|$  and phase of  $T_{12}$  over range of 0 ... 20 Hz:



3) We find (numerically) the first maximum of  $|T_{12}(f)|$  at 3.62 Hz. This is the 'resonance' frequency of this aortic model which we can estimate directly.

4) For the lowest 'resonance' mode, the open node (entry at  $z_1$ ) and closed node ( $z_2$ ) are  $\frac{1}{4}$  of a wavelength apart:

$$\frac{\pi}{2} = \frac{2\pi f}{c} L \quad (7)$$

Solving Eq. (7) for frequency  $f$  we get:

$$f = \frac{c}{4L} = 3.75 \text{ Hz} \quad (8)$$

This is slightly more than the 3.62 found in  $T_{12}$ , since our estimate does not account for the attenuation.