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Series 10 – Solutions 

Prof:  Nikos Stergiopulos 
TA:         Sokratis
              Anagnostopoulos

Chapter 20: Wave Travel and Reflection 
Exercise 21.1 – Solution 
1) The reflected power Pr at a reflection site is proportional to the square of the reflection 
coefficient R. For two tubes of slightly different inner diameters (D1 ≈ D2 with D1 > D2) the 
reflection coefficient will be:

(1) 

where Zn = ρ·c/An (n = 1,2) is the characteristic impedance (blood density ρ times pulse wave 
velocity c divided by the lumen area An = π /4). If the lumen areas A1 and A2 are nearly 
equal (as are the densities and wave speeds) the impedances Z1 and Z2 will be nearly equal. 
This gives a reflection coefficient which is very small (R << 1). Since the square of a small 
number is even smaller, the reflected power or energy (integral of power) will be nearly 
zero. 

2) In order to show that the pressure pn depends on the inverse of the diameter Dn, one
must consider from question 1 that almost all of the power is transferred across each
reflection site. The power is:

(2) 

which is equal to a constant P = ct if all of the power is transmitted along the tube (no power 
is reflected). Therefore, 

(3) 

Hence, as the diameter Dn decreases the pressure amplitude pn increases. 

3) For the flow Qn:

(4) 

But, the average velocity  would be: 

2 1

2 1

Z ZR
Z Z
-

=
+

2
nD

2
n

n

pP
Z

=

2 1n
n n

n n n

p cct p ct Z
Z A D

r
= Þ = µ µ

nn
n n

n n n

n

ct Zp ct ctQ D
Z Z Z c

A
r

= = = = µ

nU



ME-481 Biomechanics of the Cardiovascular System 

 

 
 

2 

 

  (5) 

 
Hence, as the diameter Dn decreases the average velocity  increases. 
 
 
Exercise 21.2 – Solution 
1. In the first part of this problem, the objective is to calculate the pressure at any point z 
due to multiple reflections of an initial wave. The primary, non-attenuated wave is: 
 
 p1 = p0 eiωt-γz (1) 
 
where γ=ib. The first reflected wave travels back from B to A: 
 
 p2 = R2p0 ei(ωt-2bL+bz) (2) 
 
The second reflection occurs at point A, going back toward B: 
 
 p3 = R1R2p0 ei(ωt-2bL-bz) (3) 
 
The third: 
 
 p4 = R1 p0 ei(ωt-4bL+bz) (4) 
 
and so on. The total pressure at any point z will be the sum of all the above waves, or 
 
 p(z,t) = p1 + p2 + p3 +... (5) 
 
After adding the waves together, the sum may be separated into forward and backward 
traveling parts: 
 
 p(z,t) = p0 ei(ωt-bz) (1 + R1R2 e-2ibL + ...) + R2p0 ei(ωt-2bL+bz) (1 + R1R2 e-2ibL + ...) (6) 
 
Using the relationship 
 
 1 + a + a2 + a3 + ... = 1/(1-a) (7) 
 
the terms in the brackets may be simplified: 
 

  (8) 

 

2
2

1n n n
n

n n n
n

Q Q DU
A D DD

= = µ µ
p
4

nU

2
2R

( )
( ) ( )i i 2

2
0 2i

1 2

,
1

t bz t bL bz

bL

e R ep z t p
R R e

w w- - +

-

+
=

-



ME-481 Biomechanics of the Cardiovascular System 

 

 
 

3 

2. If the reflection coefficients are R1 = R2 = 1, the Eq. (8) may be simplified. Multiplying by 
eibL and using the complex exponential definition eiωt = cos(ωt) + isin(ωt), Eq. (8) will give: 
 

  (9) 

 
This is referred to as “standing wave” because it does not propagate along the artery. The 
pressure oscillates at each point along the artery, but the spatial waveform remains the 
same. Note that if bL = nπ, where n is an integer, the amplitude will become very large 
(resonance). 
 
3. For the case of an attenuated wave, one may simply substitute a complex expression for 
the wave number γ: 
 γ = a + ib (10) 
 
The pressure at any point, from Eq. 8, is: 
 

  (11) 
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