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The linkage of cells to their microenvironment is mediated by a series of bonds
that dynamically engage and disengage, in what has been conceptualized as
the molecular clutch model. Whereas this model has long been employed to
describe actin cytoskeleton and cell migration dynamics, it has recently been
proposed to also explain mechanotransduction (i.e., the process by which cells
convert mechanical signals from their environment into biochemical signals).
Here we review the current understanding on how cell dynamics and mecha-
notransduction are driven by molecular clutch dynamics and its master regu-
lator, the force loading rate. Throughout this Review, we place a specific
emphasis on the quantitative prediction of cell response enabled by combined
experimental and theoretical approaches.

The Molecular Clutch Hypothesis: A Means to Conceptualize Cell Adhesion
Dynamics
Cells in almost any physiological setting, from bacteria infecting a tissue to neurons within the
brain, are constantly exerting mechanical forces and transmitting them to neighboring cells and
the extracellular matrix (ECM) [1–3]. These forces direct cell functions such as differentiation [4]
or migration [5], and drive processes in development [6], cancer [7], and the physiology of the
cardiovascular system [8]. Unravelling the mechanisms and implications of these mechanical
interactions requires the understanding of how cells exert forces, how those are transmitted to
the cell microenvironment, and how they trigger downstream events affecting cell function. In
most eukaryotic settings, cells exert forces largely through actin polymerization, and the
contraction of the actin cytoskeleton by myosin molecular motors. Once force is exerted to
actin, it is transmitted first to a series of adaptor proteins (see Glossary) linked to actin, and
then to transmembrane proteins linking adaptor proteins to the cell microenvironment (Figure 1).
These transmembrane proteins consist mostly of integrins (which bind to the ECM) [9] and
cadherins (which bind to neighboring cells) [10], and the molecular assemblies composed of
actin, adaptor proteins, and integrins or cadherins are known respectively as cell–matrix or
cell–cell adhesion complexes.

From actin to integrins/cadherins, adhesion complexes exhibit a precise spatial molecular
organization [11,12], and are responsible for the specific adhesion of cells to their environment,
which is otherwise dominated by nonspecific repulsive interactions [13]. A fundamental aspect
of adhesion complexes is that they are extremely dynamic. Myosin-powered contractility, and
actin polymerization pushing against the membrane [14,15], drive a constant flow of actin,
generally termed ‘retrograde flow’ because it moves from the cell edge where cell–ECM
adhesions form towards the cell center [16,17]. This flow, which can be observed for different
types of actin structures, from lamellipodia to stress fibers, is only partially transmitted to
adaptor proteins and integrins, leading to progressively slower retrograde speeds as the
molecules get closer to the ECM [18,19]. Even though they are far less characterized, similar
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Glossary
Adaptor proteins: term usually
employed to refer to the proteins
linking actin to either integrins or
cadherins in cell–matrix or cell–cell
adhesion complexes, respectively.
Binding/unbinding rates: for a
given binding event [such as an
integrin–extracellular matrix (ECM)
bond], this is the inverse of the
average time required to bind/unbind
the bond, respectively. Binding
occurs at zero force, whereas
unbinding rates depend on the force
applied to the bond.
Catch bond: more precisely defined
as a catch–slip bond, a catch bond
is a bond in which unbinding rates
decrease with applied force up to a
given threshold, and then increase.
Catch bonds thus have an optimal
stability (minimum unbinding rate)
when a specific value of force is
applied to the bond. Importantly, this
concept can also be applied to
molecular events other than
unbinding, such as protein unfolding.
Contractility: ability of a cell to
contract its actin cytoskeleton via
myosin motors. In a situation with
very low cell adhesion, contractility
would power fast retrograde flows. In
a context of high adhesion,
contractility is transmitted to the
substrate, leading to cell–matrix (or
cell–cell) force transmission.
Durotaxis: directional cell migration
towards areas of increased substrate
rigidity.
Frictional slippage: regime with low
cell–matrix adhesion, in which
transient clutch engagement is
unable to significantly slow
retrograde flow.
Load and fail/stick–slip: regime
with high cell–matrix adhesion, in
which simultaneous engagement of
several clutches leads to repeated
cycles of progressive buildup of
force, followed by complete
disengagement and force release.
Loading rate: in units of force/time,
rate at which applied force increases
for a given clutch or clutch
ensemble.
Molecular clutch: link between
actin and an ECM ligand (or a
neighboring cell) which can be
bound (engaged) or unbound.
Usually assumed to represent the
serial link between actin, an individual
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Figure 1. Cartoon Depicting the Serial Connection between the Extracellular Matrix, Integrins, Mechan-
osensitive Adaptor Proteins, and Actin. As myosin pulls on actin filaments, force is transmitted to the different
elements, leading to conformational changes in adaptor proteins and affecting unbinding events.
flows apply in cadherin-based cell–cell adhesions [20], and even nonactin based systems [21].
This progressively reduced flow points at a dynamic formation and release of bonds between
the different molecular elements, which only transmit movement and force when the system is
engaged. Consistently, retrograde flows inversely correlate with cell migration speed
[14,16,22]. This suggests that when the system is engaged, force transmitted to the ECM
counters myosin contractility, slowing actin retrograde flow (as observed in fish keratocytes
[23]) and fostering actin protrusion away from the cell center. The dynamic nature of the
cytoskeleton–ECM linkage, and its relationship to cell movement, led Mitchison and Kirschner
[24] to introduce the term ‘molecular clutch’ to describe it, in an analogy to the dynamic
linkage between different shafts of a mechanical engine.

Because it regulates both force transmission and cell movement, this molecular clutch between
actin and the ECM (or neighboring cells) controls the mechanical balance within a tissue, its
remodeling, and the onset of mechanotransduction events. Importantly, because there is
significant knowledge on the biochemical and mechanical properties of the molecular elements
involved, quantitative modeling can be carried out, and quantitative mechanistic predictions
can be obtained. This review focuses on how the molecular clutch concept, and its quantitative
predictions, provides a framework to understand how cells respond to mechanical signals like
forces or tissue rigidity. Thus, we do not discuss details of the complex molecular regulation of
cell–cell and cell–ECM adhesions or the actin cytoskeleton, on which there are excellent recent
reviews [25–27]. First, we summarize the molecular pathway that force must follow from actin to
integrins/cadherins, and evidence for mechanical tension in the molecules involved. We note
that, whereas most of the examples and discussion refer to the better-studied case of integrin-
based cell–ECM adhesion, the concepts discussed are generalizable to cell–cell, and poten-
tially almost any type of specific adhesion. Second, we describe the behavior of the clutch
model, and how it responds to its main mechanical and molecular parameters. In this regard,
we discuss the fundamental notion that molecular clutch response is not driven by forces per se
(which constantly change due to their dynamic nature) but by the force loading rate. Third, we
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adaptor protein, an integrin, and an
ECM ligand.
Molecular mechanosensor:
molecule that responds to force
application in any way (domain
unfolding, unbinding from ligands,
conformational changes, or others).
Retrograde flow: movement of
actin filaments from the edge
towards the center of cells. It can be
powered by myosin contractility,
actin polymerization, or both. It is
important to note that in the context
of a migrating cell, the relevant flow
that drives force transmission to the
substrate is the one measured with
respect to substrate (and not cell)
position.
Slip bond: bond in which unbinding
rates increase monotonically with
applied force. Importantly, this
concept can also be applied to
molecular events other than
unbinding, such as protein unfolding.
review how clutch mechanics couple to mechanosensitive proteins to enable cell mechanor-
esponse. Finally, we address these implications in cell migration.

Molecular Pathways of Force Transmission through the Clutch
Despite the molecular complexity of cell–ECM adhesions, the fundamental components of a
molecular clutch system can be summarized as: (i) actin filaments, (ii) myosin motors pulling on
actin filaments, (iii) adaptor proteins, (iv) integrins/cadherins, and (v) extracellular ligands at the
ECM or other cells (Figure 1). Numerous proteins from both the cell–cell and cell–ECM
adhesome are potentially involved in force transmission. As to cell–ECM interactions, force
is transmitted through: (i) direct interactions between the ECM and integrins [28,29]; (ii) adaptor
proteins that directly connect integrins to the actin cytoskeleton, including a-actinin [30], filamin
[31], tensin [32], kindlin [33], and talin [34–36]; and (iii) indirect interactions between integrins
and actin, mediated by vinculin [34,37–39], FAK, paxillin, and kank [40], among others.
Regarding intercellular interactions, an equivalently complex network of adaptors connects
cadherins to actin [41]. Recently, some of these adaptors (such as vinculin) have been shown to
be shared between cell–ECM and cell–cell interactions [12]. Only a few of the several proteins
linking actin to integrins and cadherins have been experimentally verified to be submitted to
force, although potentially several more could be. For instance, experiments pulling on integrin–
ECM or cadherin–cadherin bonds with magnetic tweezers, or measuring tension on ECM
ligands through fluorescence reporters or tension gauges (that dissociate above a given force)
have shown that integrins [29,42–47] and cadherins [48–51] withstand forces. Also, fluores-
cence tension probes have confirmed with piconewton resolution that not only integrins [52,53]
and cadherins [54] are under force, but also intracellular proteins like vinculin [37] and talin
[35,36] in cell–matrix adhesions and alpha-catenin [55] in cell–cell adhesions.

Regulation of Force Transmission through the Clutch
The fundamental property of the molecular clutch connecting actin to the ECM is its dynamic
nature, that is, the more engaged the different components are to each other, the more
effectively force will be transmitted. However, the interplay between the different elements leads
to interesting nontrivial behaviors, which can be understood through mathematical models [56]
that initially emerged inspired by the similar and better-studied system of muscle contraction.
These models can be in the form of computational simulations [57–60] or analytical solutions
[60–63], and all consider the effect of dynamic bonds between a surface and a sliding filament.
In the form proposed by Chan and Odde [57], model response rests on two key properties
under force of the molecules involved. First, myosin motors will contract actin filaments at a
fixed speed (of about 120 nm/s) if their action is unopposed by force [29,57]. If a force opposes
myosin action, its contraction speed will decrease with force until stalling completely if the force
applied matches the maximum force that a myosin motor can apply (2 pN) [64]. This inverse
relationship between actin speed and force has been widely reported [29,34,57,65], although it
is worth noting that a direct relationship has been observed below speeds of 10 nm/s [65],
possibly due to changes in myosin density in cell lamellae [66]. Second, as force is transmitted
to molecular bonds (actin–adaptor proteins, adaptor proteins–integrins, or integrins–ECM), the
lifetime of the bonds will be affected, eventually destabilizing bonds when submitted to
sufficiently high forces (see section below for the distinction between slip bonds and catch
bonds). In most models, only one type of bond is considered, which is assumed to correspond
to the weakest link in the actin–adaptor protein–integrin–ECM chain. This ‘weakest link’ has
been attributed both to intracellular bonds involving adaptor proteins [57,67], or to the integrin–
ECM link [29,68,69]. In any case, the fact that different clutch components show different
retrograde flow speeds [18] suggests that all bonds play a role, and that modeled bonds likely
reflect an integrated response of the entire clutch rather than a weakest link.
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In a typical molecular clutch simulation, the system begins with myosin freely contracting an
actin filament, containing several adaptor protein–integrin complexes (clutches) which are not
bound to the substrate (Figure 2A,B). With time, clutches begin binding to the substrate
according to a given binding rate. Once the system is engaged, myosin contractility pulls
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Figure 2. Force Transmission through the Molecular Clutch. (A) Cartoon summarizing the fundamental elements of the system. (B) From top to bottom,
sequence of events in a typical ‘load and fail’ cycle of a molecular clutch (rectangles represent integrins). As clutches bind, myosin contractility deforms the substrate,
building force on the substrate and each bound clutch. At some point, force leads to bond destabilization, all clutches disengage, and the cycle starts again. (C) Typical
plots of force exerted versus time for molecular clutches on low, intermediate, and high rigidity. (D) From top to bottom, sequence of events in a typical ‘frictional
slippage’ cycle of a molecular clutch, observed on a high-rigidity regime. As a clutch binds, myosin contractility builds force very quickly due to the high rigidity, leading to
clutch disengagement before others have time to bind. This limits overall force transmission to the substrate. (E) Clutch model predictions of average force transmission
to the substrate as a function of substrate rigidity. Top, middle, and bottom graphs show the changes in the curve induced by increasing myosin activity, increasing ECM
ligand density, and simultaneously increasing binding and unbinding rates, respectively. Abbreviation: ECM, Extracellular matrix.
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on the substrate, deforming it if it is compliant, and exerting a force which distributes among the
different bound clutches. As force keeps on building, bonds eventually fail, leading to a
catastrophic event which quickly releases all force and disengages all bonds, allowing the
cycle to start again (Figure 2B,C). Such cycles are termed ‘load and fail’ or ‘stick–slip’
behavior, and have been observed in neuronal growth cones [57], focal adhesions [70], and the
leading edge of mouse embryonic fibroblasts [71,72].

Interestingly, the cycles of force generation are finely regulated by the properties of both the
molecular players involved and the cell microenvironment, endowing cells not only with
exquisite mechanosensitivity but also with the ability to tune it. The fundamental factor driving
clutch mechanosensitivity (and response to both cellular and extracellular parameters) is the
force loading rate (i.e., the speed at which force in clutches builds once they engage). This is
nicely exemplified in the case of cell response to substrate rigidity, a microenvironmental factor
that drives cell differentiation [4] or tumor progression [73]. Substrate rigidity directly controls
the loading rate, which in simple terms can be understood as the product of the substrate
rigidity times the speed of retrograde flow. In clutch models, force transmission is maximized for
a specific value of rigidity, or loading rate. Above the optimal rigidity, force in individual clutches
loads so fast upon binding that clutches become destabilized and disengage before additional
clutches can bind. That is, unbinding rates (off rates) become faster than binding rates (on
rates), the number of clutches simultaneously engaged drops drastically, and overall force
transmission decreases (Figure 2C,D). This is a regime known as ‘frictional slippage’,
characterized by high retrograde flow, low forces, and no load and fail cycles, and observed,
for instance, in neuronal growth cones [57] or the trailing edge of migrating keratocytes [74].
Below the optimal rigidity, force loading becomes so slow that clutches eventually disengage
before high forces can be reached. Thus, the molecular clutch model predicts a biphasic
relationship between rigidity (loading rate) and force, in which forces first increase and then
decrease with rigidity. Such behavior has indeed been observed in neuronal growth cones and
glioma cells [57,75], but in several other systems a monotonically increasing rigidity/force
relationship has been reported instead [28,76–78]. This discrepancy is due to the fact that in
many cases, cells grow focal adhesions above a threshold in rigidity (due to talin unfolding; see
below). Large adhesions increase integrin clustering, the effective binding rate of the system,
and the number of bound clutches, preventing the entry into the frictional slippage regime and
maintaining high force transmission [34].

Other than rigidity, several cellular and extracellular parameters tune the mechanosensitivity of
the molecular clutch. In most cases, the effects can also be understood through the regulation
of the loading rate. First, reducing myosin contractility lowers the loading rate. Consequently, in
myosin inhibition conditions, reaching the optimal loading rate for force transmission requires a
higher substrate rigidity. Therefore, whereas myosin inhibition of course reduces overall
contractility, there is a specific range of substrate rigidity in which force transmission can
be increased (Figure 2E). This counterintuitive prediction, which has been observed experi-
mentally [34], occurs at a rigidity where the loading rate is optimal in myosin-inhibited con-
ditions, but too high and already within the frictional slippage regime in control conditions.
Second, decreasing ECM ligand density reduces binding sites and therefore overall force
transmission (Figure 2E). However, since myosin contractility is now distributed among less
clutches, the loading rate experienced by each molecular clutch increases. In turn, this
decreases the substrate rigidity corresponding to the optimal loading rate, and optimal force
transmission [34]. Third, altering different parameters at the same time can lead to combined
effects that also shift optimal force transmission (Figure 2E). This can be achieved, for instance,
by binding to the ECM through different integrin types (with different binding and unbinding
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rates) [29], or simultaneously altering the numbers of myosin motors and available clutches
[75,79].

While less well characterized, it is tempting to speculate on how different integrin and focal
adhesion regulators could impact molecular clutch behavior. For instance, we recently reported
[44] that ZO-1, an adaptor protein normally present in cell–cell adhesions but that can also bind
a5b1 integrins [80], increases the binding and unbinding rates of a5b1 to fibronectin. This then
fosters the formation of adhesions in a manner consistent with molecular clutch predictions
[44]. Other adaptor proteins, such as the recently characterized sharpin [81], shank [82], kank
[40], or kindlin [33] also regulate integrin properties and could therefore have similar effects.
Finally, it is interesting to note that whereas the effect of rigidity has largely been studied with
purely elastic substrates, adding a viscoelastic behavior has a significant effect [83]. In this
regard, we have recently shown that cell response to purely viscous environments can also be
understood through a molecular clutch mechanism driven by force loading rates [84].

Regulation of Force Transduction by the Clutch
Once we understand how the molecular clutch regulates cell–ECM force transmission, the next
pressing question is to determine how force then triggers mechanosensing events, (i.e., how
cells convert force into biochemical signals that will eventually affect cell function). This process
is generally believed to occur through mechanosensing molecules, in which force alters their
conformation and biochemical properties. The best known example is that of the actin–integrin
adaptor protein talin, which unfolds under force and exposes binding sites to vinculin [85,86].
Other proteins such as a-catenin [87] or filamin [88] also change binding partner affinities under
force, and force-induced molecular events include changes in integrin conformation [89], ion
channel activity [90,91], or kinase activity [92] (see [3,93] for recent reviews). However, it is
important to note that in the context of a continuously contracting cell, none of these
molecular mechanosensors is sufficient on its own to build an effective cell mechanosensing
mechanism. Taking talin as an example, if a given actin–talin–integrin clutch engages to the
substrate, myosin contractility will start pulling on it. This will eventually load force sufficiently to
induce talin unfolding, regardless of substrate rigidity or any other external mechanical stimulus.

To properly discriminate between different levels of rigidity, a system of at least two mecha-
nosensors with different properties is required. In the case of the actin–talin–integrin–ECM
clutch, this is provided by the different properties under force of talin unfolding, and of integrin–
ECM binding [34]. Talin unfolding responds to force according to the bell model [13] as a
classical slip bond. That is, when a constant force is applied to a single talin molecule, the time
required to unfold decreases exponentially with force [86]. By contrast, the binding between
a5b1 [94] or avb3 [34,89] integrins and the ECM protein fibronectin behaves as a catch bond
(or more accurately, a catch–slip bond). That is, the time required to break the bond first
increases and then decreases with force. This differential behavior leads to a crossover
between the two force/lifetime curves, such that for low forces integrin unbinding is faster
than talin unfolding, and for high forces the opposite holds (Figure 3A). Upon integrin unbinding,
force would be released and no longer pull on talin, therefore this system effectively triggers talin
unfolding only above a force threshold. Talin unfolding then leads to vinculin binding, which in
turn triggers focal adhesion growth through mechanisms that are not fully elucidated [38,95].

A relevant nuance is that, for simplicity, we have referred to force to reason on the differential
response of the mechanosensors, whereas (as discussed above) a molecular clutch system
controls force loading rate rather than force itself. However, the dependency of unfolding/
unbinding rates on loading rate can be readily calculated if force/lifetime curves are known [96],
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Figure 3. Force Transduction through the Molecular Clutch. (A) Bottom, effect of either a constant force or a constant force loading rate on the average times
required for protein unfolding or bond unbinding. Typical curves for a slip or catch bond are shown. Top, expected effect on a system in which force is applied to a serial
link between a molecule that unfolds as a slip bond (such as talin) and a bond that unbinds as a catch bond (such as an integrin–fibronectin bond). Unbinding occurs first
when force is below the threshold, and unfolding (and subsequent mechanotransduction) occurs first when force is above the threshold. (B) From top to bottom,
sequence of events in a typical ‘load and fail’ cycle of a molecular clutch, including mechanotransduction (reinforcement) events. As clutches bind and force builds,
some clutches surpass the threshold force required for mechanotransduction, leading to the recruitment of additional integrins. This increases the number of bound
clutches, reducing the force applied per clutch, delaying the failure of the system, and increasing average force transmission. (C) Examples of predicted force/rigidity
curves in the presence and absence of reinforcement. Reinforcement only affects force transmission above a threshold in rigidity, which corresponds to the loading rate
threshold from (A). Then, the increase in integrin recruitment prevents the reduction in force (and increase in actin flows) normally expected in a molecular clutch system.
leading to the same crossover behavior (Figure 3A). Thus, all the factors described above,
controlling the loading rate experienced by individual molecules (substrate rigidity, myosin
contractility, ECM coating, integrin binding kinetics) will determine not only force transmission
but also force transduction, the activation of downstream signals such as focal adhesion
formation, and the nuclear localization of the transcriptional regulator YAP [34,97]. In the case of
rigidity, for instance, talin unfolding only occurs above a given threshold. Subsequent focal
adhesion growth (reinforcement) then increases the clutch binding rate, simply because there
are more integrins to bind to. This then prevents the decrease in force and increase in actin
retrograde flows that would be otherwise expected at high rigidities (Figure 3B,C). Below the
rigidity threshold, integrin unbinding (rather than talin unfolding) predominates, as supported by
experiments using ECM ligands attached to tension gauge tethers [46]. Other than rigidity, we
have recently shown that cell sensing of the nano-scale distribution of ECM ligands, and
subsequent formation of focal adhesions, can also be explained by a clutch model considering
two differential mechanosensors, and the spatial arrangement of ligands [98].
362 Trends in Cell Biology, May 2018, Vol. 28, No. 5



Whereas this clutch-mediated differential mechanosensing mechanism has so far been dem-
onstrated only for the talin unfolding versus integrin–ECM unbinding system, it could apply in
several other instances. Potential examples include cadherin–cadherin unbinding versus
a-catenin unfolding [87] (in cell adhesions), glycoprotein Ib (GPIb)–von Willebrand factor
unbinding versus GPIb unfolding (in platelets) [99], or stretch-induced conformational changes
in the actin cross-linker filamin [88], which could add an additional mechanosensor in series
with the integrin–talin system. Importantly, the fundamental feature in enabling mechanosen-
sitivity is the crossover between the lifetimes of the two mechanosensors, and not necessarily
slip bond/catch bond behavior per se. Thus, in principle, mechanosensitivity could also be
achieved with two slip bonds, as long as their sensitivities to force were different.

Summarizing, the fundamental parameter that determines the response of a molecular clutch
system is the force loading rate, which is sensitive to factors both external (substrate rigidity,
ECM, or cadherin ligand density) and internal (myosin contractility, type and clustering of
integrins), and varies greatly in different physiological conditions [100]. This endows cells with
exquisite mechanosensitivity, which results in regulation of both force transmission and in the
activation of mechanosensors. Supporting this hypothesis of the loading rate as the key
ingredient, experiments have shown that it controls integrin adhesion [101,102] and focal
adhesion formation [103]. Interestingly, this hypothesis also proposes an alternative to an old
debate in the field, which is whether cells sense rigidity by applying a given deformation (strain)
to the substrate and measuring the resulting force (stress), or vice versa [78,104,105].
Measuring force loading rates may be more optimal than measuring forces or deformations
per se, for two fundamental reasons. First and as noted theoretically [106,107], if time
dependency (and loading rate) is ignored, the magnitude of force that cells can apply depends
on their contractility but not necessarily on the mechanical properties of the cell environment,
precluding proper mechanosensing. Second, cell-applied forces continuously fluctuate, as
observed at scales ranging from cell collectives [108], to focal adhesions [70], to local 100 nm-
scale contractions in the leading edge of fibroblasts [109]. In fact, molecular clutch mechanisms
driven by loading rates have been proposed to explain force fluctuations at the level of cell
collectives [5] and focal adhesions [110]. The mechanics of nano-scale contractions, which are
associated with altered response to substrate rigidity [111], and altered activity of receptor
tyrosine kinases [112], is less clear. However, both the contractions and the trigger of
mechanosensing events affecting kinase activity may also be controlled by the loading rate.

Regulation of Cell Migration by the Clutch
Since the clutch model predicts cell–substrate forces, one could think that this can directly
explain cell migration. Yet, cells generate tractions that are orders of magnitude higher than
those needed to migrate, and tractions generated by a migratory single cell add up to zero
within measurement noise [113]. Tractions should thus not be interpreted as propulsion forces.
However, tractions are linked to migration speed through the retrograde flow [14,16,22]. For a
given actin polymerization rate, cells exhibiting the slowest retrograde flow, and therefore the
highest traction, should be the ones that migrate faster. This relationship is well captured by
early clutch models, which focused only on dynamics of the leading edge [57]. A more general
formulation of cell migration in terms of clutch models requires taking into account not only the
leading edge, but also how all protrusions pull on the cell body. Such a formulation was
accomplished by Bangasser et al. [75], who showed that a generalized clutch model predicts
an optimal rigidity for migration as a function of the number of clutches and motors. These
predictions were successfully tested for neurons and glioma cells, which exhibit a biphasic
behavior of their migratory properties [75]. We note, however, that these cells do not exhibit
Trends in Cell Biology, May 2018, Vol. 28, No. 5 363



Outstanding Questions
How is force transmitted across the
complex molecular assemblies at cell-
–cell and cell–matrix adhesions, what
are the corresponding force-induced
molecular events, and how can they
be introduced in molecular clutch
models?

Do clutch-like adhesive mechanisms
take place outside of cell adhesions,
such as in nuclear–cytoskeletal links?

How is the molecular clutch concept
affected by the three-dimensional dis-
tribution of cytoskeletal and adhesive
structures in physiological scenarios?
adhesion reinforcement, so the general ability of clutch models to predict a relationship
between migration speed and rigidity needs to be further assessed.

Besides contributing to the understanding of single cell migration, clutch models have also
been successful at explaining collective durotaxis; this is, the ability of groups of cells to follow
gradients of rigidity [5]. When a group of epithelial cells was seeded on a substrate with a rigidity
gradient, cells moved preferentially towards the stiff area of the substrate. Collective durotaxis
was lost when force generation was inhibited with blebbistatin and when cell–cell junctions
were abrogated. Traction maps revealed that cells exerted inward forces of the same magni-
tude but opposite sign only at the two edges of the monolayer. This force pattern implies long
range force transmission through cell–cell junctions. To explain collective durotaxis, we mod-
eled the cell monolayer as a contractile continuum adhered to the substrate through two
clutches, located at the stiff and soft edges. Force balance implies that cells on soft and stiff
areas of the substrate generate the same force, and therefore cell–matrix adhesions are
subjected to the same loading rate. The model then predicts that dynamics at both edges
are identical but that substrate displacement is larger on the soft edge than on the stiff one. As
such, contraction of the monolayer systematically shifts the center of the cell cluster, thereby
resulting in durotaxis. This simple model, designed to explain collective durotaxis, is also
applicable to single cell durotaxis [114], which is predicted to be more efficient for cells that are
large and highly contractile.

Concluding Remarks
The dynamic nature of the cytoskeleton and adhesion complexes has long been acknowl-
edged, and the molecular clutch concept has been demonstrated to be a useful framework to
understand the underlying mechanisms. Further, recent developments have shown that
quantitative modeling of the different molecular elements in the clutch provides a powerful
tool to predict how cells detect cues from their environment, and respond by tuning their
migration, but also adhesive and signaling events. However, several outstanding questions
remain (see Outstanding Questions). First, how force is transmitted and distributed through the
very complex molecular assemblies at cell–matrix and cell–cell adhesions (i.e., which adaptor
molecules are directly submitted to force, and to what degree) remains largely unknown.
Addressing this question, and understanding the force-induced molecular events involved, will
enable the refining of clutch models to predict cell response in a much more general way.
Second, it is highly likely that dynamic clutch-like adhesion occurs not only at cell adhesions but
also throughout cells, for instance, in cytoskeletal–nuclear coupling. Exploring such events and
their implications is also a major area of exploration. Finally, whereas the molecular clutch
concept has been largely explored in cells seeded on flat two-dimensional substrates, the
interaction between actin structures, myosin, and adhesive complexes is known to be largely
affected by the three-dimensional setting found in most physiological conditions. While the
effect of this three-dimensional setting in the molecular clutch concept has begun to be
explored [19], its implications remain largely uncharted. Addressing these and other open
questions is thus likely to lead to new exciting developments in the coming years.
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