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Dynamic analysis of Kirchhoff plates
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Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission
6 Bars and trusses Project 2 statement
7 Classical structural | Beams
8 elements Frames and grids
9 Kirchhoff-Love plates Project 2 submission




Summary
m Kirchhoff-Love plate theory
m Shell elements

m Example: first fundamental frequency of simply supported plate

Recommended readings

(L) Logan, A first course in the finite element method, 6th ed. (chap. 12)
(N) Neto et al., Engineering Computation of Structures (chap. 6)

(O) Ochsner, PDE for classical structural members (chap. 6)

(G)

Gmiir, Dynamique des structures (chap. 3)



Classic plate theory



Plate structure

m Plate structures are geometrically similar to structures of the 2D plane stress
problem, but it usually carries only transversal loads that lead to bending
deformation of the plate.

m For example: floors of a building, aerospace and ships structures, etc...
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(Credit: (0))
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Plate models

Kirchhoff (1888) and Love (1945) Mindlin (1951) and Reissner (1945)
m Shear free plates: thin plates where m Shear deformable plates: thick plates
the contribution of shear force on where the contribution of shear force
the deformations is neglected. on deformations is considered.
m Two-dimensional extension of the m Two-dimensional extension of the
Bernoulli-Euler beam theory. Timoshenko beam theory.

Augustus Love

R d Mindli
Eric Reissner aymon e

Gustav Kirchhoff

1951

1888
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Geometry assumptions

m The thickness of the plate h is constant and much smaller than the planar
dimensions a and b: h/a < 0.1 and h/b < 0.1.

m Inextensibility of transverse fibers: h is constant and e33 = 0,

833:0

Straight and inextensible fibers
(Credit:(G))
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Material and loads assumptions

Material
m The material is homogenous and linear-elastic according to Hooke’s law for a
plane stress state (033 = 013 = 023 = 0),

Loads
m External forces act only perpendicular to the z — y plane, the vector of
external moments lies within the x — y plane.
m Displacement us(z,y,t) is small compared to h: ug < 0.2h.
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Kirchhoff assumption

Rectilinearity of the normals: Bernoulli’s hypothesis is valid, i.e. a
cross-sectional plane stays plane and unwrapped in the deformed state.

This means that the shear strains 13 and €93 due to the distributed shear forces ¢,
and g, are neglected.

undeformed

- ﬁ _________ |1 ........ f __________ |w __________ S Middle Surface

deformed

Middle Surface

A straight fiber that is perpendicular to the middle plane of the plate before
deformation remain straight and normal to it after deformation.

(Credit: (N))
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Kinematics assumptions
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. U1
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Transverse displacement
ug is the only

independent variable:

811,3_
—Z——

ox

Deformation is exaggerated

in the figures for better

illustration.
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Strain-displacement relation

m Using classical engineering definitions of strain:

€ = Oju; and Yij = 8,~uj + 8jul-

we obtain )
15)
€11 o Ry
€| = —2 ﬁgy Uz =2 | Ky
Y12 252 Ry
\,—/ xy \,—/
€ N—— K
Vi

m K is the matrix that contains the changes in the curvature of the plate, given
as k = —Vyus.

m Note that 19 = €93 = 0 due to Kirchhoff assumptions and £33 = 0 due to the
inextensibility of transverse fibers assumption.
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Constitutive equation for isotropic material

m Classical plate theory assumes a plane stress state: o33 = 013 = 023 = 0.

m Constitutive equation for isotropic material is & = Ce or € = Do where

011 E 1 v 0 €11

g92 | = 1_ .2 v 1 0 e\

012 0 0 2] |2
€11 1 1 -V 0 011
€| = = |V 1 0 0992
Y12 = 0 0 2(V + 1) 0192

m C is the elasticity matriz and D = C~! is the elastic compliance matriz.
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Constitutive equation for orthotropic material

m The constitutive equation for orthotropic material is o = Ce or € = Do where

o1 Qu Q2 O €11
o22| = [Qi2 Q2 0 €92
o12 0 0 @s33] |2
where
Eq V1ol Es
Qu=7—"—"—, Qu=7—""—"—, Qu=——"— @33=0GCG1
1 — viovo 1 — v1o101 1 — v12101

m The orthotropic properties of the lamina are given: Ej, Fs, v, Gi2 and
vo1 = v12F>/ Eq applies.
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External forces

Consider a plate cell of dimensions dx; X drs X h that is submitted to external
forces, here denoted by f3, and inertial force proportional to the material density.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i
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Distributed normal and shear stresses

X3

Normal and shear stresses distributions through the
thickness of the plate element:

m linear distributed normal stresses o117 and o099,

m linear distributed shear stresses oi2 and o091,
0y, +doy, . . .
m parabolic distributed shear stresses o253 and o;3.

Ty, +
o, +doy, oy +doy

0.12 +do.|2
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Moments and shear

M,, +dM,,

h

h 011

= €r3 (022
_h

2 012

Classic plate theory

forces

plate:
Ny +dN,, m bending moments Mp; and Moo,

m twisting moment Mo,

m shear forces N13 and Nog.

h h
2 2 h3
drsy = / . r30odrs = —C’Vku?,/
-3

VTR

Dynamic analysis of Kirchhoff plates

Moments and shear forces acting along the edge of the

x?,, drg = —ECVkU3
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Dynamic equilibrium equation

m Equilibrium condition for the vertical forces:

ON13  ONa3 .
— phiiz =0
. e + f3 — phiis
m Equilibrium of moments:
OMy1  OMy2
—Ni3=0
a$1 + 81‘2 13
OMay  OMi2
— Noz3 =0
8952 + 81‘1 23

In matrix form:

VEIM + f3 = phiis
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Strong form for Kirchhoff-Love plate bending

Let Q = [—a,a] x [~b,b]. Find the transverse displacement ug € C*(Q x [0,T1])

such that 3
EV%CV}{LL?, + phiis = f3 on QX]O, T[

boundary conditions (simply supported): initial conditions:

usz =0 in 8QX]O,T[
M, =0  in dQx]0,T]

In case of isotropic material equation (1) reduces to

_l’_

(04U3 8411,3 8411,3

oz} * 2836%81% ox} ) - phiis = f3

where D = Eh3/(12(1 — v?)).
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Approximated boundary conditions

Simply supported on all 4 edges:

m No vertical displacement:

y . us=0  in 9Qx]0,T]|

00, 99, ® No moment resistance (free to rotate):

My = _D(ax@2 + Vay@l) =0 in 891X]0,T[

2 x Moy = —D(v0yp2 + Oyp1) =0  in 009 x]0, T
These conditions are replaced by the approximated
conditions:

o g = —0Ozuz =0 in 094 x]0, T[
1 = Oyuz =0 in 0Q9x]0, T
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Weak form for Kirchhoff-Love plate bending

The weak form consists of finding the transverse displacement us € U such that
the following equation is satisfied for every dug € V:

3
h—/ VkU3CVk(SU3dQ+/philg(su;;dQ:/f3(5U3dQ
12 Jq Q Q

U= {us(-,t) € H*(Q) | uz = 0 in 99x]0,T[}
V= {dus € H*(Q) | 6uz =0 in o0}
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Shell element




Shell element formulations

There are at least two methods of formulating shell elements:

m Combining a membrane element with a plate bending element to for a flat
shell element.
— Governing equation is the Kirchhoff plate bending equation:

h3
EV{CVM + phiiz = f3 on 0x]0, T

m Deriving a curved element which is a degenerate solid element to form a thick
shell element.
— Governing equation is the elastodynamic equilibrium equation:

VICVu+f=pit  onQx]0,T]

where €2 is characterized by the degenerate hypothesis that one dimension
(suppose &3) is significantly smaller than the other two.

Shell element Dynamic analysis of Kirchhoff plates 20 / 44



Q)
I

Shell element

1—12

1

S O O O R

OO OO

O O O O oo

m Generalized Hooke’s law: o = Ce:

Elasticity, linearity and isotropic hypothesis
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m Linear strain-displacement relationship: € = Vu with €33 = 0

e e e e e

k(1 —v)/2]
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Degenerate solid (3d) finite elements

X

Rectilinearity of the normal vectors assumption is not respected
(Credit:(G))
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Degenerate solid (3d) finite elements

X

Poor conditioning: excessive deformation
(Credit:(G))
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Coordinate transformation

Finite solid element with linear edges along the &3 direction.

&

f ’
X;(X3)

‘ ;/ 1 &
I o/—o—lr X (X1)

Nodes only on top and bottom faces in pairs. Let ¢¢ = 16 the total number of

nodes.
°q °q/2
; 1-&3. ; , 1+&3
T ix(€) =D "hill1,6,6)% = Y hi(61, €2) [2%& + 2
i=1 =1
(Credit:(G))
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Coordinate transformation

Let “p = ©q/2 the total number
of nodes on the shell midsurface.

¢x' coordinate of node ¢ on the
midsurface of €2

°t% thickness at node i

“vi normal vector to the
midsurface at node 7

X1 (x1)

‘p
T:x(§) = Zahi(&,&) [;(exi + x4 ) + %53(‘3)(2 - exi)]
i=1

e

2l

“hi(&1,62) [eii + %fﬁ’)e ée"é]

=1
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Approximate displacements

Analogy with transformation of coordinates:

e

p
1 . L L
u"(€) =) “hil€1,6) [@d’ + €t (—°01°vE + “05°v1)

i=1

ed:l,;

edi:[ed dz e ’L]

m °di,cd}, °d} displacements of
node 1, orlented along the global
axis.

m °0%,¢0} rotations of node i,

X, (X3) orlented along the local axis.

X (Xy)

Shell element Dynamic analysis of Kirchhoff plates 26 / 44



Construction of local vectors

m We have:
evg —exl _e

the normal vector to the midsurface
at node 1.

m We define the local vectors:

() 2 @ 1)
eyi — ex N °vy  if Ovh # teo
1 — . i
:E83 if eVZr}) = :teg
e,

vy = “vi A V]

Shell element

Dynamic analysis of Kirchhoff plates
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Shell element

Shell elements:
m have 5 DOFs per node, no rotation ¢65.
m lead to huge computational time savings since allow modeling with fewer mesh
elements.
m less prone to negative Jacobian errors which might occur when using
extremely thin 3d solid elements.
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Shape functions matrix

i 1 . o o
=36 6 a0+ g6t (<01 + o)

@

p
= “Hi(£)°q'(t)
=1
_ah 0 0 1 eiahei 1 eiahei ] -e'i-
i _553 t3“h; “vgy 553 t3 “h; “viy o i
p 2
1 ; : 1 : ) :
= 0 “h; O —ifgetg Yhi V59 553%5 h v, € %
i=1 ent
1 . . 1 ) ) 1
| 00 thi| oGty thitly D&t hiuly | g
- ~——
H; eqz
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Deformation matrix

“B; =V*H;
A 7
r 0%h; @) e f£i 7
T 0 0 911 I
Behi ) 7
0 Oz 0 6952 efﬁQ
9°h; e i e ri
0 0 o 933 f33 _ .
= P ' ' ' ‘ (t=1,2,...,)
7 ) () () € £1 e f£1
0 Ff o 93T 93 “fizt+ [
oo 0 T 951t 913 “f3 +fis
L Oxso o0x1 0 egi2 + egél ef{Z + ef%l .

Shell element
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Deformation matrix

Derivative with respect to global variables:

0°h; _ 0%h; 061 0%h; 02 _ eyl 0%h; 4egn 10%;
Oz 06 Oxp 082 Oxp Fog, "0t
and
e ri e 6(53 ehi)
=g B g
i 9(&3 °hi)
egjk:_Qet?, 2]67%
0 hi) _, Ohi 4y 06 L%, L8R, .
_ PSS eJ ey ahi
o= o, T Mgy, =6 (Vi g T e 5, ) T ks
Shell element Dynamic analysis of Kirchhoff plates
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Examples: quadrangular and triangular shell elements

12

3

&
1 7 3
16 1
o | 0° O
o O 6
13 14
5 9 2,

Shell element

53
3
6 8
10
9 @) 5
€

O o

1 4 7 2
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Example: 8 nodes quadrangular shell element
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Example: flat shell element

95<0
%
T edé Xi
X; % i ‘ /
vy gl 14 epi
) % 3 B2 v % 0{>0
< X P)
= ‘ ! i 1 “d5 x,
1 /
ep —6.1.2-_ 1 ' 0
x(€) = “hi(€1,&) | || + 56t |0
i=1 0 1
°p [0 ] 1 4 ' 0 ' 1
wh(€) =Y hiler&) | | O | + 56tk | —0f |1] +°6 |0
i=1 _edé_ 0 0

Shell element Dynamic analysis of Kirchhoff plates 34 / 44



Example: modal analysis of simply
supported plate




Simply supported isotropic plate

Discretization with 4 bilinear quadrilateral shell elements (4 nodes each).

Y
a T a 2a length
2a height
e thickness
FE Young’s modulus
v Poisson’s ratio

p material density

Objective: determine the first natural
frequency of the plate and compare it
with the exact one.

X1 X4 X7

Example: modal analysis of simply supported plate Dynamic analysis of Kirchhoff plates
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Approximate displacements for flat shell elements

m Nodal displacements in the plane of the elements are suppressed:
edi _ [070’edé]T

Thus only 3 DOFs per node: ¢q’ = [¢d}, 6%, €63].
m Local vectors are oriented along the principal axes of the shell:

“vi=[1,0,0]",  evi=10,1,0", “vi=][0,0,1]"

m Local shape functions matrices:

1
0 0 ifgeahi
aH. — 1 2 —
Hi= |, —5536‘1111- 0 (1=1,2,3,4)
®h; 0 0

Example: modal analysis of simply supported plate Dynamic analysis of Kirchhoff plates
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Coordinate transformation for ')

m Bilinear base functions for quadrilateral shell element:

“h1(61,62) = (1= &1)(1 = &2)/4
Yho(&1,&) = (1+&)(1 — &) /4
“ha(€1,&2) = (1 +&1)(1+ &2)/4
“ha(€1,&2) = (1 —&)(1+&2)/4

m Coordinates 'x = [[0,0,0], [a, 0, 0], [a, a, 0], [0, a, 0]]
4

T
1T2X(€) :Zahi(fla€2) <e)~(i_’_;€36téevé> _ |:a1‘;£1’ al—;£2,€%))

m Jacobian matrix 'J = diag(a/2, a/2, e/2) and determinant 'j = a%e/8.
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Local mass matrices

aZe (1oLl
lMiJZPS ///aHiTadeﬁld&dﬁz
1))

2 1 [thih 0 0
-~ / / 0 €2hoh;/12 0 dédes
—L /=l 0 0 62ahiahj/12

Local mass matrix for 'Q via exact integration:

My My Mz My
My Mgz My

M3 M3y

sym. 1My

lM:
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Local deformation matrices

9, 0 0 )
0 612 0 0 0 *ggeahi
B=veg,= |0 0 O 1 2
v 0 Oay Oan| | O —58se%h 0
Ops 0 Ouy| |ohy 0 0
Oy, 0Oz, O
- a -
0 0 e, Lhi
gon, ©
e T h;
O —
a§3 9%, 0
0 0 0
= |2 0%h;
: —ap, 0
5 %
a 0 0 hs
(& 8ahi (& 8“hi
0 ——&3 —&3
L a 851 a 852 d
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Local stiffness matrices

T L L
K, = / / / B; C B;d{1d¢2dEs
8 =il /=1l /=1l

Local stiffness matrix for 1§ via exact integration

1 1 1
K "Ki2 "Kiz
Ky 'K
22 23

1
K=
K33

SYm.

Example: modal analysis of simply supported plate
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Assembly

m Since ¢J = 'J and thus ¢j = !5 for every e = 2,3, 4, we have
‘K='K and ‘M='M
m The assembly of the global stiffness K (27 x 27) and mass matrices M
(27 x 27) can be performed using the connectivity table:
€Q ‘ o 20 3 40
1171 2 4 5

214 5 7 8
315 6 8 9
412 3 5 6

m The following 20 DOFs are constrained due the the fact that the plate is
simply supported along its perimeter:

d3, 01, 65 d3, 07, 03 d, 01, 03 d, 07, 05

a2, 02 di, o4 a8, 08 ds, 68

Example: modal analysis of simply supported plate Dynamic analysis of Kirchhoff plates
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Modal analysis
m The semi-discrete weak form is a system of 27 — 20 = 7 differential equations
for the 7 free DOFs: d3, 63, 63, and 03, 601, 69, 65
Kq(t) + Mq(t) = 0

m The first fundamental frequency w; = /A1 (in rad/s) can be computed solving
the generalized eigenvalue problem: (K + AM)p = 0.

m Assuming a thin plate e/2a = 0.01 and a shear coefficient k£ = 5/6 we obtain
w1 = 0.6620v/E/(1 — 12)pa
m From the analytical solution we obtain
w§Feet = 0.0285\/ E/(1 — v2)pa

m Exact integration of transverse shear terms in the stiffness matrix K leads to
element locking.
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Selective integration

m Separate the transverse shear contributions terms “B] in the deformation
matrix:
‘B; = °‘BJ + °B]
m Split the stiffness matrix into flexural stiffness °K7; and transverse shear
stiffness “KJ:

°K;j = °KJ; + K], = / °B7C°BY dQ2 + / °BC°B] d)
Q Q

m Perform a selective integration: exact integration of bending contributions
eK‘i’j and reduced integration (a single Gauss point located at the center of the
element) for shear contributions “K7.

m Assuming a thin plate e/2a = 0.01 and a shear coefficient k = 5/6 with
selective integration we obtain

w; = 0.0383v/E/(1 —v?)pa (error ~ 34%)
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Error estimates

Assuming a thin plate e/2a = 0.01 and a shear coefficient k£ = 5/6 with selective

integration we obtain:

w1 = 0.0383\/E/(1 —v?)pa (Rel. error ~ 34%)

Meshing Integration  Elements Rel. error
2% 2 Exact bilinear > 20'000%
2 x 2 Selective bilinear 34%

4 x4 Selective bilinear 7.2%
1x1 Selective  biquadratic 6.2%
2% 2 Selective  biquadratic 1.0%

Example: modal analysis of simply supported plate
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