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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6
Classical structural
elements

Bars and trusses Project 2 statement
7 Beams
8 Frames and grids
9 Kirchhoff-Love plates Project 2 submission



Summary

Kirchhoff-Love plate theory

Shell elements

Example: first fundamental frequency of simply supported plate

Recommended readings

(L) Logan, A first course in the finite element method, 6th ed. (chap. 12)

(N) Neto et al., Engineering Computation of Structures (chap. 6)

(O) Ochsner, PDE for classical structural members (chap. 6)

(G) Gmür, Dynamique des structures (chap. 3)



Classic plate theory



Plate structure

Plate structures are geometrically similar to structures of the 2D plane stress
problem, but it usually carries only transversal loads that lead to bending
deformation of the plate.

For example: floors of a building, aerospace and ships structures, etc...

(Credit: (O))
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Plate models

Kirchhoff (1888) and Love (1945)

Shear free plates: thin plates where
the contribution of shear force on
the deformations is neglected.

Two-dimensional extension of the
Bernoulli-Euler beam theory.

Mindlin (1951) and Reissner (1945)

Shear deformable plates: thick plates
where the contribution of shear force
on deformations is considered.

Two-dimensional extension of the
Timoshenko beam theory.

1888

Gustav Kirchhoff

1945

Augustus Love
Eric Reissner

1951

Raymond Mindlin
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Geometry assumptions

The thickness of the plate h is constant and much smaller than the planar
dimensions a and b: h/a < 0.1 and h/b < 0.1.

Inextensibility of transverse fibers: h is constant and ε33 = 0,

(Credit:(G))
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Material and loads assumptions

Material

The material is homogenous and linear-elastic according to Hooke’s law for a
plane stress state (σ33 = σ13 = σ23 = 0),

Loads

External forces act only perpendicular to the x− y plane, the vector of
external moments lies within the x− y plane.

Displacement u3(x, y, t) is small compared to h: u3 < 0.2h.
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Kirchhoff assumption

Rectilinearity of the normals: Bernoulli’s hypothesis is valid, i.e. a
cross-sectional plane stays plane and unwrapped in the deformed state.
This means that the shear strains ε13 and ε23 due to the distributed shear forces qx
and qy are neglected.

A straight fiber that is perpendicular to the middle plane of the plate before
deformation remain straight and normal to it after deformation.

(Credit: (N))
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Kinematics assumptions

−φ2 ≈ sin(−φ2) = −u1
z

−φ2 ≈ tan(−φ2) =
du3
dx

=⇒ u1 = −z
du3
dx

φ1 ≈ sin(φ1) = −u2
z

φ1 ≈ tan(φ1) =
du3
dy

=⇒ u2 = −z
du3
dx

Transverse displacement
u3 is the only
independent variable:

u =


−z

∂u3
∂x

−z
∂u3
∂y

u3


Deformation is exaggerated
in the figures for better
illustration.
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Strain-displacement relation

Using classical engineering definitions of strain:

εii = ∂iui and γij = ∂iuj + ∂jui

we obtain ε11ε22
γ12


︸ ︷︷ ︸

ε

= −z


∂2
xx

∂2
yy

2∂2
xy


︸ ︷︷ ︸

∇k

u3 = z

 κx
κy
κxy


︸ ︷︷ ︸

κ

κ is the matrix that contains the changes in the curvature of the plate, given
as κ = −∇ku3.

Note that ε12 = ε23 = 0 due to Kirchhoff assumptions and ε33 = 0 due to the
inextensibility of transverse fibers assumption.
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Constitutive equation for isotropic material

Classical plate theory assumes a plane stress state: σ33 = σ13 = σ23 = 0.

Constitutive equation for isotropic material is σ = Cε or ε = Dσ whereσ11σ22
σ12

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

ε11ε22
γ12

 ,

or ε11ε22
γ12

 =
1

E

 1 −ν 0
−ν 1 0
0 0 2(ν + 1)

σ11σ22
σ12

 .

C is the elasticity matrix and D = C−1 is the elastic compliance matrix.
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Constitutive equation for orthotropic material

The constitutive equation for orthotropic material is σ = Cε or ε = Dσ whereσ11σ22
σ12

 =

Q11 Q12 0
Q12 Q22 0
0 0 Q33

ε11ε22
γ12


where

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q33 = G12

The orthotropic properties of the lamina are given: E1, E2, ν12, G12 and
ν21 = ν12E2/E1 applies.
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External forces

Consider a plate cell of dimensions dx1 × dx2 × h that is submitted to external
forces, here denoted by f3, and inertial force proportional to the material density.
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Distributed normal and shear stresses

Normal and shear stresses distributions through the
thickness of the plate element:

linear distributed normal stresses σ11 and σ22,

linear distributed shear stresses σ12 and σ21,

parabolic distributed shear stresses σ23 and σ13.
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Moments and shear forces

Moments and shear forces acting along the edge of the
plate:

bending moments M11 and M22,

twisting moment M12,

shear forces N13 and N23.

M =

M11

M22

M12

 =

∫ h
2

−h
2

x3

σ11σ22
σ12

 dx3 =

∫ h
2

−h
2

x3 σ dx3 = −C∇ku3

∫ h
2

−h
2

x23 dx3 = −h3

12
C∇ku3
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Dynamic equilibrium equation

Equilibrium condition for the vertical forces:

∂N13

∂x1
+

∂N23

∂x2
+ f3 − ρhü3 = 0

Equilibrium of moments:

∂M11

∂x1
+

∂M12

∂x2
−N13 = 0

∂M22

∂x2
+

∂M12

∂x1
−N23 = 0

In matrix form:
∇T

kM+ f3 = ρhü3
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Strong form for Kirchhoff-Love plate bending

Let Ω = [−a, a]× [−b, b]. Find the transverse displacement u3 ∈ C4(Ω× [0, T ])
such that

h3

12
∇T

kC∇ku3 + ρhü3 = f3 on Ω×]0, T [ (1)

boundary conditions (simply supported):

u3 = 0 in ∂Ω×]0, T [

Mn = 0 in ∂Ω×]0, T [

initial conditions:

u3(·, 0) = u0 in Ω

u̇3(·, 0) = v0 in Ω

In case of isotropic material equation (1) reduces to

D

(
∂4u3
∂x41

+ 2
∂4u3

∂x21∂x
2
2

+
∂4u3
∂x42

)
+ ρhü3 = f3

where D = Eh3/(12(1− ν2)).
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Approximated boundary conditions

x

y

Ω

∂Ω1

∂Ω2

∂Ω1

∂Ω2

Simply supported on all 4 edges:

No vertical displacement:

u3 = 0 in ∂Ω×]0, T [

No moment resistance (free to rotate):

M11 = −D(∂xφ2 + ν∂yφ1) = 0 in ∂Ω1×]0, T [

M22 = −D(ν∂xφ2 + ∂yφ1) = 0 in ∂Ω2×]0, T [

These conditions are replaced by the approximated
conditions:

φ2 = −∂xu3 = 0 in ∂Ω1×]0, T [

φ1 = ∂yu3 = 0 in ∂Ω2×]0, T [
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Weak form for Kirchhoff-Love plate bending

The weak form consists of finding the transverse displacement u3 ∈ U such that
the following equation is satisfied for every δu3 ∈ V:

h3

12

∫
Ω
∇ku3C∇kδu3 dΩ+

∫
Ω
ρh ü3 δu3 dΩ =

∫
Ω
f3 δu3 dΩ

U =
{
u3(·, t) ∈ H2(Ω) | u3 = 0 in ∂Ω×]0, T [

}
V =

{
δu3 ∈ H2(Ω) | δu3 = 0 in ∂Ω

}
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Shell element



Shell element formulations

There are at least two methods of formulating shell elements:

Combining a membrane element with a plate bending element to for a flat
shell element.
→ Governing equation is the Kirchhoff plate bending equation:

h3

12
∇T

kC∇ku3 + ρhü3 = f3 on Ω×]0, T [

Deriving a curved element which is a degenerate solid element to form a thick
shell element.
→ Governing equation is the elastodynamic equilibrium equation:

∇TC∇u+ f = ρü on Ω×]0, T [

where Ω is characterized by the degenerate hypothesis that one dimension
(suppose ξ3) is significantly smaller than the other two.
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Elasticity, linearity and isotropic hypothesis

Linear strain-displacement relationship: ε = ∇u with ε33 = 0

∇ =



∂x1 0 0
0 ∂x2 0
0 0 ∂x3

0 ∂x3 ∂x2

∂x3 0 ∂x1

∂x2 ∂x1 0


Generalized Hooke’s law: σ = Cε:

C =
E

1− ν2



1 ν 0 0 0 0
ν 1 0 0 0 0
0 0 0 0 0 0
0 0 0 k(1− ν)/2 0 0
0 0 0 0 k(1− ν)/2 0
0 0 0 0 0 k(1− ν)/2


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Degenerate solid (3d) finite elements

Rectilinearity of the normal vectors assumption is not respected
(Credit:(G))
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Degenerate solid (3d) finite elements

Poor conditioning: excessive deformation
(Credit:(G))
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Coordinate transformation

Finite solid element with linear edges along the ξ3 direction.

Nodes only on top and bottom faces in pairs. Let eq = 16 the total number of
nodes.

eT : x(ξ) =

eq∑
i=1

ahi(ξ1, ξ2, ξ3)
exi =

eq/2∑
i=1

ahi(ξ1, ξ2)

[
1− ξ3

2
exi

− +
1 + ξ3

2
exi

+

]
(Credit:(G))
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Coordinate transformation

Let ep = eq/2 the total number
of nodes on the shell midsurface.
ex̃i coordinate of node i on the

midsurface of eΩ
eti3 thickness at node i
evi

3 normal vector to the
midsurface at node i

eT : x(ξ) =

ep∑
i=1

ahi(ξ1, ξ2)

[
1

2
(exi

− + exi
+) +

1

2
ξ3(

exi
− − exi

+)

]

=

ep∑
i=1

ahi(ξ1, ξ2)

[
ex̃i +

1

2
ξ3

eti3
evi

3

]
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Approximate displacements

Analogy with transformation of coordinates:

uh(ξ) =

ep∑
i=1

ahi(ξ1, ξ2)

[
edi +

1

2
ξ3

eti3
(
−eθi1

evi
2 +

eθi2
evi

1

)]

edi = [edi1,
edi2,

edi3]
T

edi1,
edi2,

edi3 displacements of
node i, oriented along the global
axis.
eθi1,

eθi2 rotations of node i,
oriented along the local axis.
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Construction of local vectors

We have:

evi
3 =

exi
− − exi

+

the normal vector to the midsurface
at node i.

We define the local vectors:

evi
1 =

{
e2 ∧ evi

3 if evi
3 ̸= ±e2

±e3 if evi
3 = ±e2

evi
2 =

evi
3 ∧ evi

1
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Shell element

Shell elements:

have 5 DOFs per node, no rotation eθi3.

lead to huge computational time savings since allow modeling with fewer mesh
elements.

less prone to negative Jacobian errors which might occur when using
extremely thin 3d solid elements.
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Shape functions matrix

uh(ξ) =

ep∑
i=1

ahi(ξ1, ξ2)

[
edi +

1

2
ξ3

eti3
(
−eθi1

evi
2 +

eθi2
evi

1

)]

=

ep∑
i=1

aHi(ξ)
eqi(t)

=

ep∑
i=1


ahi 0 0 −1

2
ξ3

eti3
ahi

evi21
1

2
ξ3

eti3
ahi

evi11

0 ahi 0 −1

2
ξ3

eti3
ahi v

i
22

1

2
ξ3

eti3
ahi

evi12

0 0 ahi −1

2
ξ3

eti3
ahi

evi23
1

2
ξ3

eti3
ahi

evi13


︸ ︷︷ ︸

aHi


edi1
edi2
edi3
eθi1
eθi2


︸ ︷︷ ︸

eqi
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Deformation matrix

aBi =∇aHi

=



∂ehi
∂x1

0 0 egi11
ef i

11

0 ∂ehi
∂x2

0 egi22
ef i

22

0 0 ∂ehi
∂x3

egi33
ef i

33

0 ∂ehi
∂x3

∂ehi
∂x2

egi23 +
egi32

ef i
23 +

ef i
32

∂ehi
∂x3

0 ∂ehi
∂x1

egi31 +
egi13

ef i
31 +

ef i
13

∂ehi
∂x2

∂ehi
∂x1

0 egi12 +
egi21

ef i
12 +

ef i
21


(i = 1, 2, . . . , ep)
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Deformation matrix

Derivative with respect to global variables:

∂ehi
∂xk

=
∂ahi
∂ξ1

∂ξ1
∂xk

+
∂ahi
∂ξ2

∂ξ2
∂xk

= eJ−1
k1

∂ahi
∂ξ1

+ eJ−1
k2

∂ahi
∂ξ2

and

ef i
jk =

1

2
eti3v

i
1j

∂(ξ3
ehi)

∂xk
,

egijk = −1

2
eti3v

i
2j

∂(ξ3
ehi)

∂xk
∂(ξ3

ehi)

∂xk
= ξ3

∂ehi
∂xk

+ ahi
∂ξ3
∂xk

= ξ3

(
eJ−1

k1

∂ahi
∂ξ1

+ eJ−1
k2

∂ahi
∂ξ2

)
+ eJ−1

k3
ahi
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Examples: quadrangular and triangular shell elements
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Example: 8 nodes quadrangular shell element
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Example: flat shell element

x(ξ) =

ep∑
i=1

ahi(ξ1, ξ2)

exi
eyi

0

+
1

2
ξ3

eti3

00
1


uh(ξ) =

ep∑
i=1

ahi(ξ1, ξ2)

 0
0

edi3

+
1

2
ξ3

eti3

−eθi1

01
0

+ eθi2

10
0


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Example: modal analysis of simply
supported plate



Simply supported isotropic plate

Discretization with 4 bilinear quadrilateral shell elements (4 nodes each).

1Ω

2Ω

3Ω

4Ω

x

y

a a

a

a

x1

x2

x3

x4

x5

x6

x7

x8

x9

2a length

2a height

e thickness

E Young’s modulus

ν Poisson’s ratio

ρ material density

Objective: determine the first natural
frequency of the plate and compare it
with the exact one.
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Approximate displacements for flat shell elements

Nodal displacements in the plane of the elements are suppressed:

edi = [0, 0, edi3]
T

Thus only 3 DOFs per node: eqi = [edi3,
eθi1,

eθi2].

Local vectors are oriented along the principal axes of the shell:

evi
1 = [1, 0, 0]T , evi

2 = [0, 1, 0]T , evi
3 = [0, 0, 1]T

Local shape functions matrices:

aHi =


0 0

1

2
ξ3e

ahi

0 −1

2
ξ3e

ahi 0
ahi 0 0

 (i = 1, 2, 3, 4)
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Coordinate transformation for 1Ω

Bilinear base functions for quadrilateral shell element:

ah1(ξ1, ξ2) = (1− ξ1)(1− ξ2)/4
ah2(ξ1, ξ2) = (1 + ξ1)(1− ξ2)/4
ah3(ξ1, ξ2) = (1 + ξ1)(1 + ξ2)/4
ah4(ξ1, ξ2) = (1− ξ1)(1 + ξ2)/4

Coordinates 1x̃ = [[0, 0, 0], [a, 0, 0], [a, a, 0], [0, a, 0]]

1T : x(ξ) =

4∑
i=1

ahi(ξ1, ξ2)

(
ex̃i +

1

2
ξ3

eti3
evi

3

)
=

[
a
1 + ξ1

2
, a

1 + ξ2
2

, e
ξ3
2

]T
Jacobian matrix 1J = diag(a/2, a/2, e/2) and determinant 1j = a2e/8.
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Local mass matrices

1Mij =
ρa2e

8

∫ 1

−1

∫ 1

−1

∫ 1

−1

aHT
i
aHjdξ1dξ2dξ3

=
ρa2e

4

∫ 1

−1

∫ 1

−1

ahi
ahj 0 0
0 e2ahi

ahj/12 0
0 0 e2ahi

ahj/12

 dξ1dξ2

Local mass matrix for 1Ω via exact integration:

1M =


1M11

1M12
1M13

1M14
1M22

1M23
1M24

1M33
1M34

sym. 1M44


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Local deformation matrices

1Bi = ∇aHi =


∂x1

0 0
0 ∂x2

0
0 0 ∂x3

0 ∂x3 ∂x2

∂x3 0 ∂x1

∂x2
∂x1

0




0 0
1

2
ξ3e

ahi

0 −1

2
ξ3e

ahi 0
ahi 0 0



=



0 0
e

a
ξ3

∂ahi

∂ξ1

0 − e

a
ξ3

∂ahi

∂ξ2
0

0 0 0
2

a

∂ahi

∂ξ2
−ahi 0

2

a

∂ahi

∂ξ1
0 ahi

0 − e

a
ξ3

∂ahi

∂ξ1

e

a
ξ3

∂ahi

∂ξ2


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Local stiffness matrices

1Kij =
a2e

8

∫ 1

−1

∫ 1

−1

∫ 1

−1

1BT
i C

1Bjdξ1dξ2dξ3

Local stiffness matrix for 1Ω via exact integration

1K =


1K11

1K12
1K13

1K14
1K22

1K23
1M24

1K33
1K34

sym. 1K44


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Assembly

Since eJ = 1J and thus ej = 1j for every e = 2, 3, 4, we have

eK = 1K and eM = 1M

The assembly of the global stiffness K (27× 27) and mass matrices M
(27× 27) can be performed using the connectivity table:

eΩ 1Ω 2Ω 3Ω 4Ω

1 1 2 4 5
2 4 5 7 8
3 5 6 8 9
4 2 3 5 6

The following 20 DOFs are constrained due the the fact that the plate is
simply supported along its perimeter:

d13, θ11, θ12 d33, θ31, θ32 d73, θ71, θ72 d93, θ91, θ92

d23, θ21 d43, θ42 d63, θ62 d83, θ81
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Modal analysis

The semi-discrete weak form is a system of 27− 20 = 7 differential equations
for the 7 free DOFs: d53, θ51, θ52, and θ22, θ41, θ61, θ82

Kq(t) +Mq̈(t) = 0

The first fundamental frequency ω1 =
√
λ1 (in rad/s) can be computed solving

the generalized eigenvalue problem: (K+ λM)p = 0.

Assuming a thin plate e/2a = 0.01 and a shear coefficient k = 5/6 we obtain

ω1 = 0.6620
√
E/(1− ν2)ρa

From the analytical solution we obtain

ωexact
1 = 0.0285

√
E/(1− ν2)ρa

Exact integration of transverse shear terms in the stiffness matrix K leads to
element locking.
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Selective integration

Separate the transverse shear contributions terms eBτ
i in the deformation

matrix:
eBi =

eBσ
i + eBτ

i

Split the stiffness matrix into flexural stiffness eKσ
ij and transverse shear

stiffness eKτ
ij :

eKij =
eKσ

ij +
eKτ

ij =

∫
Ω

eBσ
i C

eBσ
j dΩ+

∫
Ω

eBτ
iC

eBτ
j dΩ

Perform a selective integration: exact integration of bending contributions
eKσ

ij and reduced integration (a single Gauss point located at the center of the
element) for shear contributions eKτ

ij .

Assuming a thin plate e/2a = 0.01 and a shear coefficient k = 5/6 with
selective integration we obtain

ω1 = 0.0383
√

E/(1− ν2)ρa (error ≈ 34%)
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Error estimates

Assuming a thin plate e/2a = 0.01 and a shear coefficient k = 5/6 with selective
integration we obtain:

ω1 = 0.0383
√

E/(1− ν2)ρa (Rel. error ≈ 34%)

Meshing Integration Elements Rel. error

2× 2 Exact bilinear > 20′000%
2× 2 Selective bilinear 34%
4× 4 Selective bilinear 7.2%
1× 1 Selective biquadratic 6.2%
2× 2 Selective biquadratic 1.0%
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