

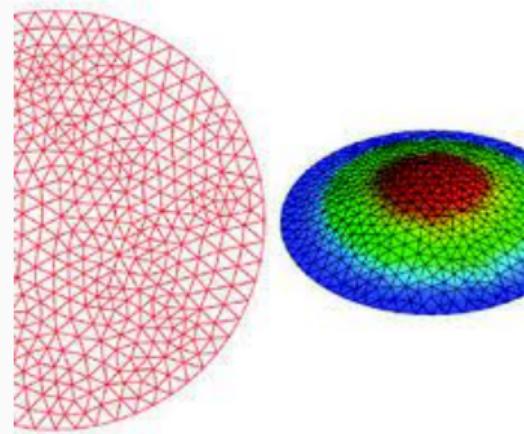
Dynamic analysis of Kirchhoff plates

Classical structural elements

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025



Where do we stand?

Week	Module	Lecture topic	Mini-projects
1	Linear elastodynamics	Strong and weak forms	
2		Galerkin method	Groups formation
3		FEM global	Project 1 statement
4		FEM local	
5		FEM local	Project 1 submission
6	Classical structural elements	Bars and trusses	Project 2 statement
7		Beams	
8		Frames and grids	
9		Kirchhoff-Love plates	Project 2 submission

Summary

- Kirchhoff-Love plate theory
- Shell elements
- Example: first fundamental frequency of simply supported plate

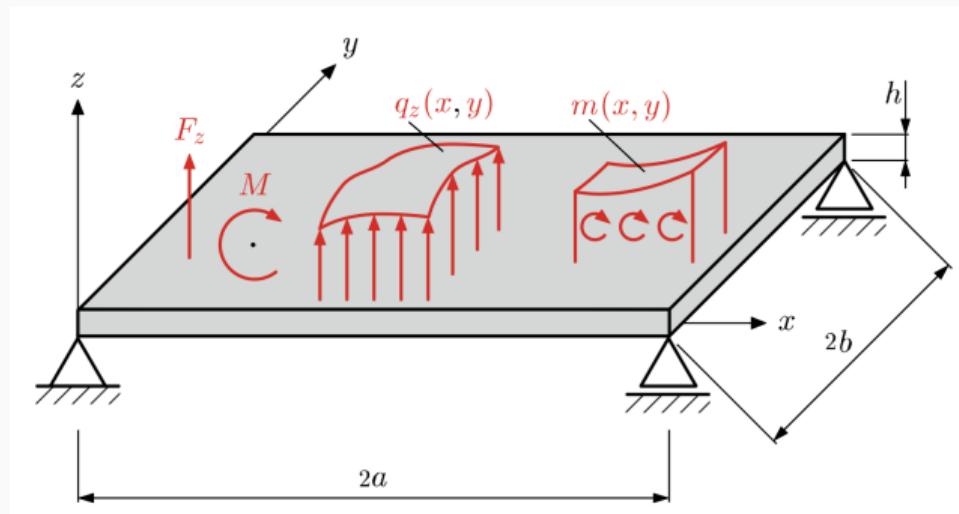
Recommended readings

- (L) Logan, A first course in the finite element method, 6th ed. (chap. 12)
- (N) Neto et al., Engineering Computation of Structures (chap. 6)
- (O) Ochsner, PDE for classical structural members (chap. 6)
- (G) Gmür, Dynamique des structures (chap. 3)

Classic plate theory

Plate structure

- Plate structures are geometrically similar to structures of the 2D plane stress problem, but it usually carries only transversal loads that lead to bending deformation of the plate.
- For example: floors of a building, aerospace and ships structures, etc...



(Credit: (O))

Plate models

Kirchhoff (1888) and Love (1945)

- *Shear free plates*: thin plates where the contribution of shear force on the deformations is neglected.
- Two-dimensional extension of the Bernoulli-Euler beam theory.

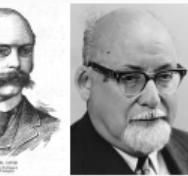
Gustav Kirchhoff

1888

Mindlin (1951) and Reissner (1945)

- *Shear deformable plates*: thick plates where the contribution of shear force on deformations is considered.
- Two-dimensional extension of the Timoshenko beam theory.

Augustus Love
Eric Reissner

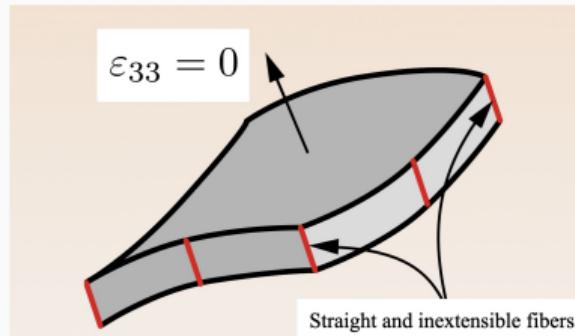


Raymond Mindlin

1951

Geometry assumptions

- The thickness of the plate h is constant and much smaller than the planar dimensions a and b : $h/a < 0.1$ and $h/b < 0.1$.
- **Inextensibility of transverse fibers:** h is constant and $\varepsilon_{33} = 0$,



(Credit: (G))

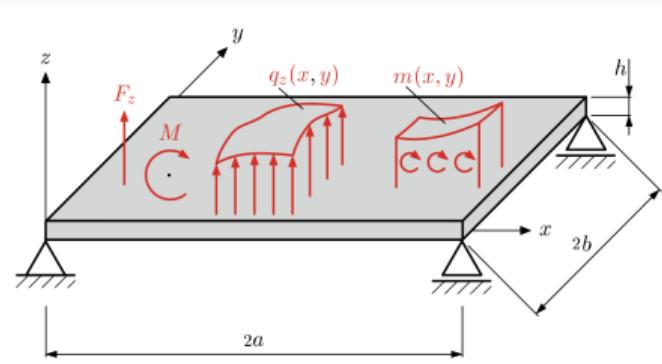
Material and loads assumptions

Material

- The material is homogenous and linear-elastic according to Hooke's law for a plane stress state ($\sigma_{33} = \sigma_{13} = \sigma_{23} = 0$),

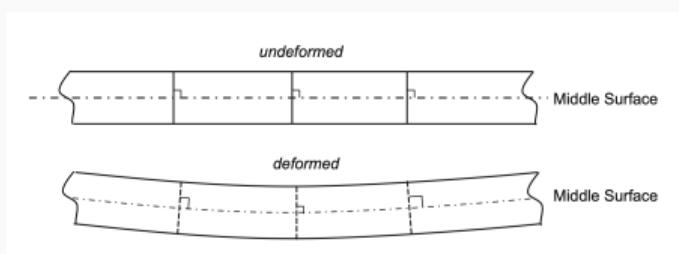
Loads

- External forces act only perpendicular to the $x - y$ plane, the vector of external moments lies within the $x - y$ plane.
- Displacement $u_3(x, y, t)$ is small compared to h : $u_3 < 0.2h$.



Kirchhoff assumption

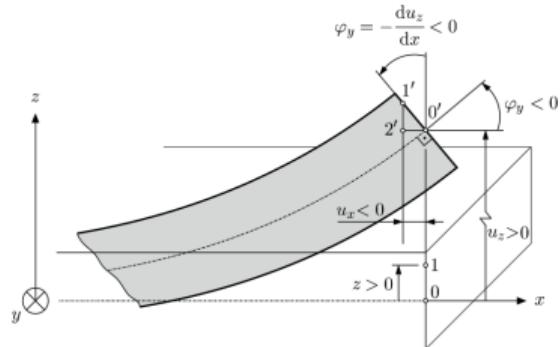
Rectilinearity of the normals: Bernoulli's hypothesis is valid, i.e. a cross-sectional plane stays plane and unwrapped in the deformed state. This means that the shear strains ε_{13} and ε_{23} due to the distributed shear forces q_x and q_y are neglected.



A straight fiber that is perpendicular to the middle plane of the plate before deformation remain straight and normal to it after deformation.

(Credit: (N))

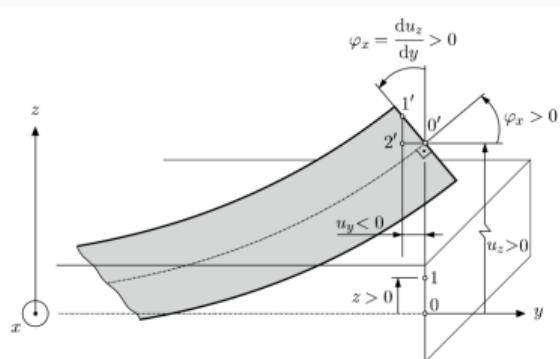
Kinematics assumptions



$$\varphi_y = -\frac{du_z}{dx} < 0$$

$$-\varphi_2 \approx \tan(-\varphi_2) = \frac{du_3}{dx}$$

$$\Rightarrow u_1 = -z \frac{du_3}{dx}$$



$$\varphi_x = \frac{du_z}{dy} > 0$$

$$\varphi_1 \approx \tan(\varphi_1) = \frac{du_3}{dy}$$

$$\Rightarrow u_2 = -z \frac{du_3}{dx}$$

Transverse displacement u_3 is the only independent variable:

$$\mathbf{u} = \begin{bmatrix} -z \frac{\partial u_3}{\partial x} \\ -z \frac{\partial u_3}{\partial y} \\ u_3 \end{bmatrix}$$

Deformation is exaggerated in the figures for better illustration.

Strain-displacement relation

- Using classical engineering definitions of strain:

$$\varepsilon_{ii} = \partial_i u_i \quad \text{and} \quad \gamma_{ij} = \partial_i u_j + \partial_j u_i$$

we obtain

$$\underbrace{\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix}}_{\boldsymbol{\varepsilon}} = -z \underbrace{\begin{bmatrix} \partial_{xx}^2 \\ \partial_{yy}^2 \\ 2\partial_{xy}^2 \end{bmatrix}}_{\nabla_k} u_3 = z \underbrace{\begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix}}_{\boldsymbol{\kappa}}$$

- $\boldsymbol{\kappa}$ is the matrix that contains the changes in the curvature of the plate, given as $\boldsymbol{\kappa} = -\nabla_k u_3$.
- Note that $\varepsilon_{12} = \varepsilon_{23} = 0$ due to Kirchhoff assumptions and $\varepsilon_{33} = 0$ due to the inextensibility of transverse fibers assumption.

Constitutive equation for isotropic material

- Classical plate theory assumes a plane stress state: $\sigma_{33} = \sigma_{13} = \sigma_{23} = 0$.
- Constitutive equation for isotropic material is $\boldsymbol{\sigma} = \mathbf{C}\boldsymbol{\varepsilon}$ or $\boldsymbol{\varepsilon} = \mathbf{D}\boldsymbol{\sigma}$ where

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix},$$

or

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(\nu+1) \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}.$$

- \mathbf{C} is the *elasticity matrix* and $\mathbf{D} = \mathbf{C}^{-1}$ is the *elastic compliance matrix*.

Constitutive equation for orthotropic material

- The constitutive equation for orthotropic material is $\sigma = \mathbf{C}\varepsilon$ or $\varepsilon = \mathbf{D}\sigma$ where

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix}$$

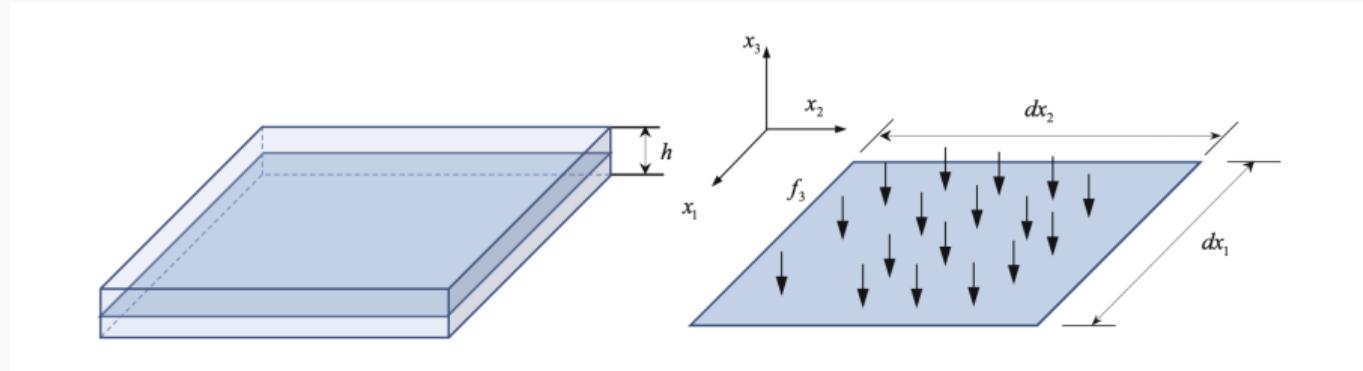
where

$$Q_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}}, \quad Q_{12} = \frac{\nu_{12}E_2}{1 - \nu_{12}\nu_{21}}, \quad Q_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}}, \quad Q_{33} = G_{12}$$

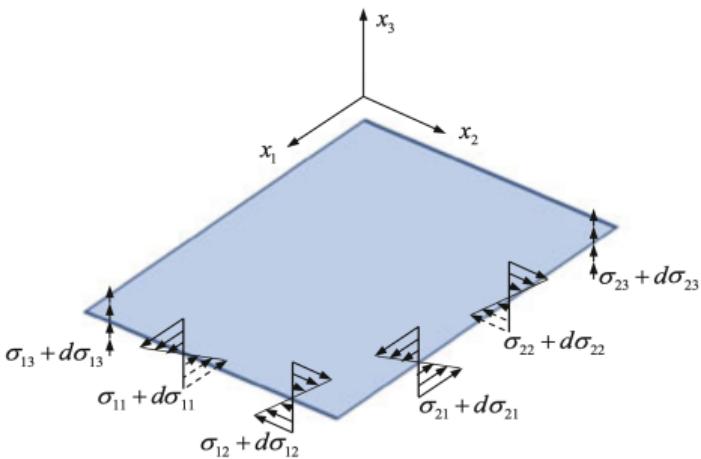
- The orthotropic properties of the lamina are given: E_1 , E_2 , ν_{12} , G_{12} and $\nu_{21} = \nu_{12}E_2/E_1$ applies.

External forces

Consider a plate cell of dimensions $dx_1 \times dx_2 \times h$ that is submitted to external forces, here denoted by f_3 , and inertial force proportional to the material density.



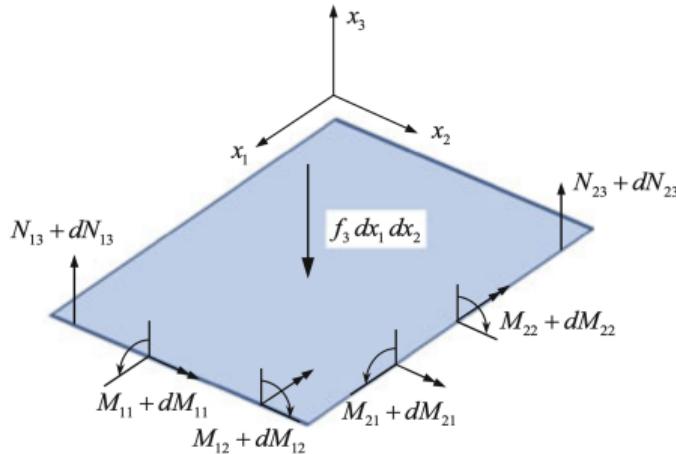
Distributed normal and shear stresses



Normal and shear stresses distributions through the thickness of the plate element:

- linear distributed normal stresses σ_{11} and σ_{22} ,
- linear distributed shear stresses σ_{12} and σ_{21} ,
- parabolic distributed shear stresses σ_{23} and σ_{13} .

Moments and shear forces



Moments and shear forces acting along the edge of the plate:

- bending moments M_{11} and M_{22} ,
- twisting moment M_{12} ,
- shear forces N_{13} and N_{23} .

$$\mathbf{M} = \begin{bmatrix} M_{11} \\ M_{22} \\ M_{12} \end{bmatrix} = \int_{-\frac{h}{2}}^{\frac{h}{2}} x_3 \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} dx_3 = \int_{-\frac{h}{2}}^{\frac{h}{2}} x_3 \boldsymbol{\sigma} dx_3 = -C \nabla_k u_3 \int_{-\frac{h}{2}}^{\frac{h}{2}} x_3^2 dx_3 = -\frac{h^3}{12} C \nabla_k u_3$$

Dynamic equilibrium equation

- Equilibrium condition for the vertical forces:

$$\frac{\partial N_{13}}{\partial x_1} + \frac{\partial N_{23}}{\partial x_2} + f_3 - \rho h \ddot{u}_3 = 0$$

- Equilibrium of moments:

$$\frac{\partial M_{11}}{\partial x_1} + \frac{\partial M_{12}}{\partial x_2} - N_{13} = 0$$

$$\frac{\partial M_{22}}{\partial x_2} + \frac{\partial M_{12}}{\partial x_1} - N_{23} = 0$$

In matrix form:

$$\nabla_k^T \mathbf{M} + f_3 = \rho h \ddot{u}_3$$

Strong form for Kirchhoff-Love plate bending

Let $\Omega = [-a, a] \times [-b, b]$. Find the transverse displacement $u_3 \in C^4(\Omega \times [0, T])$ such that

$$\frac{h^3}{12} \nabla_k^T C \nabla_k u_3 + \rho h \ddot{u}_3 = f_3 \quad \text{on } \Omega \times [0, T] \quad (1)$$

boundary conditions (simply supported):

$$u_3 = 0 \quad \text{in } \partial\Omega \times [0, T]$$

$$\mathbf{M}_n = 0 \quad \text{in } \partial\Omega \times [0, T]$$

initial conditions:

$$u_3(\cdot, 0) = u_0 \quad \text{in } \Omega$$

$$\dot{u}_3(\cdot, 0) = v_0 \quad \text{in } \Omega$$

In case of isotropic material equation (1) reduces to

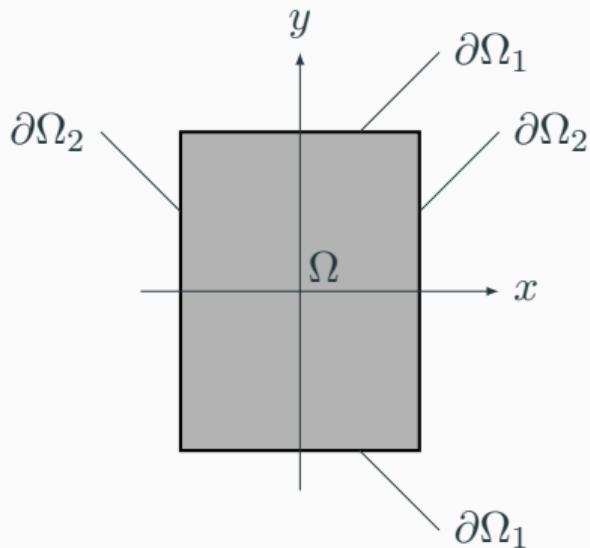
$$D \left(\frac{\partial^4 u_3}{\partial x_1^4} + 2 \frac{\partial^4 u_3}{\partial x_1^2 \partial x_2^2} + \frac{\partial^4 u_3}{\partial x_2^4} \right) + \rho h \ddot{u}_3 = f_3$$

where $D = Eh^3/(12(1 - \nu^2))$.

Approximated boundary conditions

Simply supported on all 4 edges:

- No vertical displacement:



$$u_3 = 0 \quad \text{in } \partial\Omega \times]0, T[$$

- No moment resistance (free to rotate):

$$M_{11} = -D(\partial_x \varphi_2 + \nu \partial_y \varphi_1) = 0 \quad \text{in } \partial\Omega_1 \times]0, T[$$

$$M_{22} = -D(\nu \partial_x \varphi_2 + \partial_y \varphi_1) = 0 \quad \text{in } \partial\Omega_2 \times]0, T[$$

These conditions are replaced by the approximated conditions:

$$\varphi_2 = -\partial_x u_3 = 0 \quad \text{in } \partial\Omega_1 \times]0, T[$$

$$\varphi_1 = \partial_y u_3 = 0 \quad \text{in } \partial\Omega_2 \times]0, T[$$

Weak form for Kirchhoff-Love plate bending

The weak form consists of finding the transverse displacement $u_3 \in \mathcal{U}$ such that the following equation is satisfied for every $\delta u_3 \in \mathcal{V}$:

$$\frac{h^3}{12} \int_{\Omega} \nabla_k u_3 \mathbf{C} \nabla_k \delta u_3 \, d\Omega + \int_{\Omega} \rho h \ddot{u}_3 \delta u_3 \, d\Omega = \int_{\Omega} f_3 \delta u_3 \, d\Omega$$

$$\mathcal{U} = \{u_3(\cdot, t) \in H^2(\Omega) \mid u_3 = 0 \text{ in } \partial\Omega \times]0, T[\}$$

$$\mathcal{V} = \{\delta u_3 \in H^2(\Omega) \mid \delta u_3 = 0 \text{ in } \partial\Omega\}$$

Shell element

Shell element formulations

There are at least two methods of formulating shell elements:

- Combining a membrane element with a plate bending element to form a flat shell element.
→ Governing equation is the Kirchhoff plate bending equation:

$$\frac{h^3}{12} \nabla_k^T C \nabla_k u_3 + \rho h \ddot{u}_3 = f_3 \quad \text{on } \Omega \times]0, T[$$

- Deriving a curved element which is a degenerate solid element to form a thick shell element.
→ Governing equation is the elastodynamic equilibrium equation:

$$\nabla^T \bar{\mathbf{C}} \nabla \mathbf{u} + \mathbf{f} = \rho \ddot{\mathbf{u}} \quad \text{on } \Omega \times]0, T[$$

where Ω is characterized by the degenerate hypothesis that one dimension (suppose ξ_3) is significantly smaller than the other two.

Elasticity, linearity and isotropic hypothesis

- Linear strain-displacement relationship: $\boldsymbol{\varepsilon} = \nabla \mathbf{u}$ with $\varepsilon_{33} = 0$

$$\nabla = \begin{bmatrix} \partial_{x_1} & 0 & 0 \\ 0 & \partial_{x_2} & 0 \\ 0 & 0 & \partial_{x_3} \\ 0 & \partial_{x_3} & \partial_{x_2} \\ \partial_{x_3} & 0 & \partial_{x_1} \\ \partial_{x_2} & \partial_{x_1} & 0 \end{bmatrix}$$

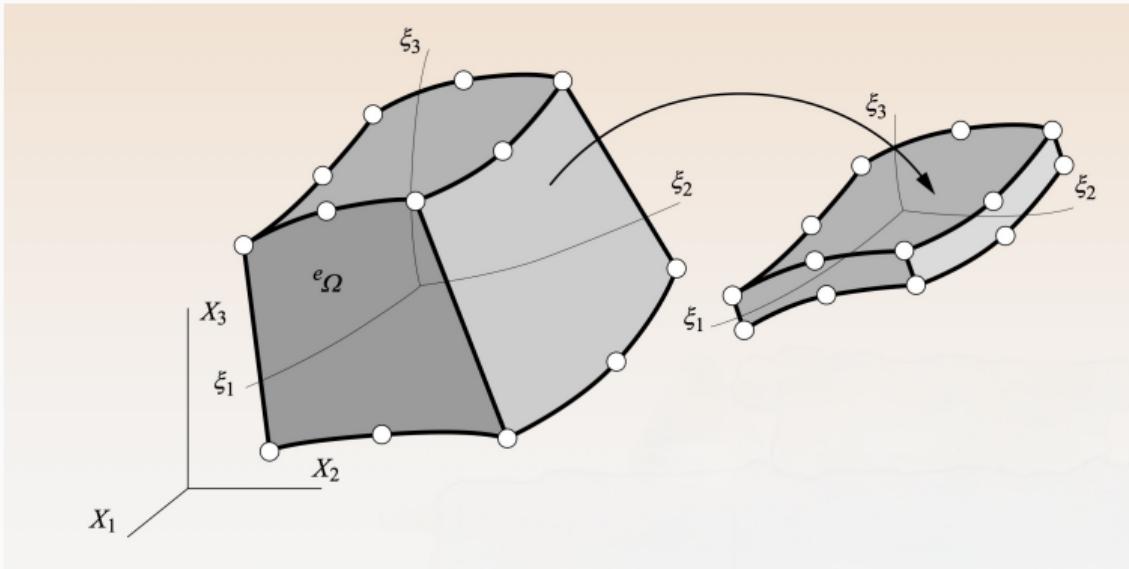
- Generalized Hooke's law: $\boldsymbol{\sigma} = \bar{\mathbf{C}} \boldsymbol{\varepsilon}$:

$$\bar{\mathbf{C}} = \frac{E}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 & 0 & 0 & 0 \\ \nu & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k(1 - \nu)/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & k(1 - \nu)/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & k(1 - \nu)/2 \end{bmatrix}$$

Degenerate solid (3d) finite elements

Rectilinearity of the normal vectors assumption is not respected
(Credit: (G))

Degenerate solid (3d) finite elements

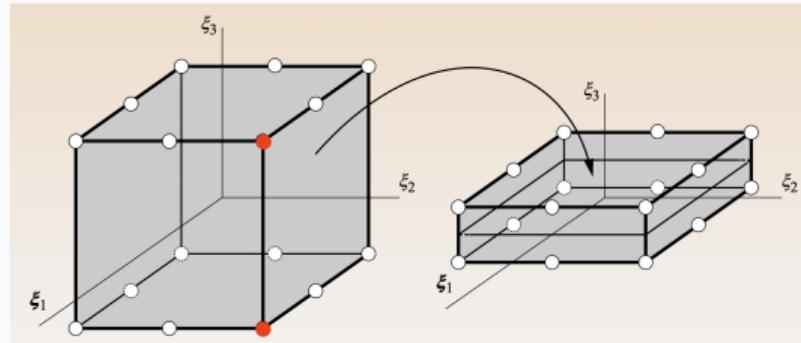
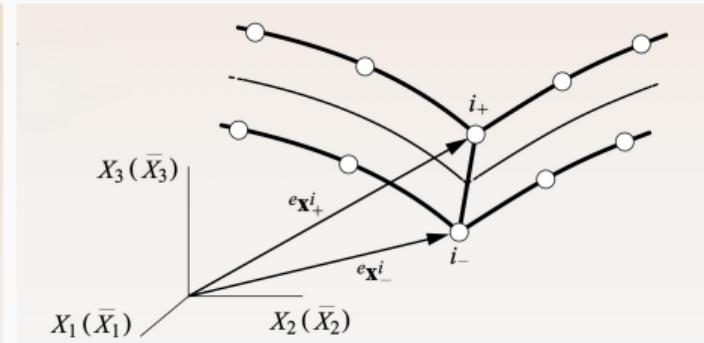


Poor conditioning: excessive deformation

(Credit: (G))

Coordinate transformation

Finite solid element with linear edges along the ξ_3 direction.

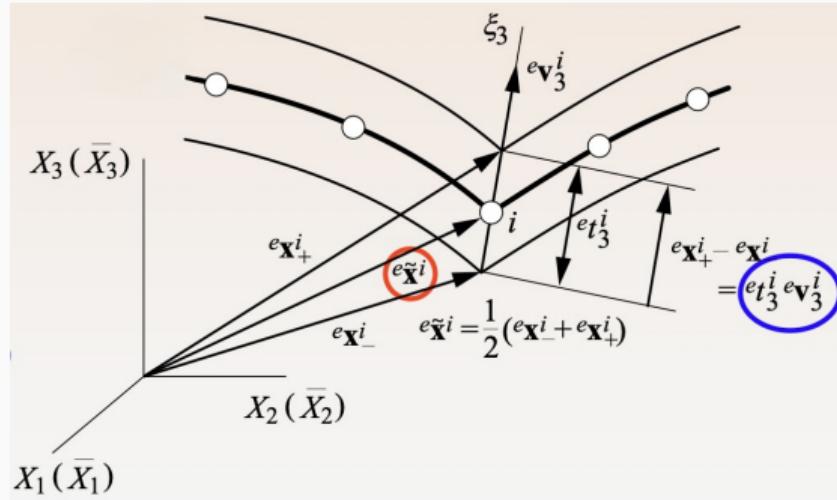


Nodes only on top and bottom faces in pairs. Let ${}^e q = 16$ the total number of nodes.

$${}^e T : \mathbf{x}(\xi) = \sum_{i=1}^{{}^e q} {}^a h_i(\xi_1, \xi_2, \xi_3) {}^e \mathbf{x}^i = \sum_{i=1}^{{}^e q/2} {}^a h_i(\xi_1, \xi_2) \left[\frac{1 - \xi_3}{2} {}^e \mathbf{x}_-^i + \frac{1 + \xi_3}{2} {}^e \mathbf{x}_+^i \right]$$

(Credit: (G))

Coordinate transformation



Let ${}^e p = {}^e q/2$ the total number of nodes on the shell midsurface.

${}^e \tilde{\mathbf{x}}^i$ coordinate of node i on the midsurface of ${}^e \Omega$

${}^e t_3^i$ thickness at node i

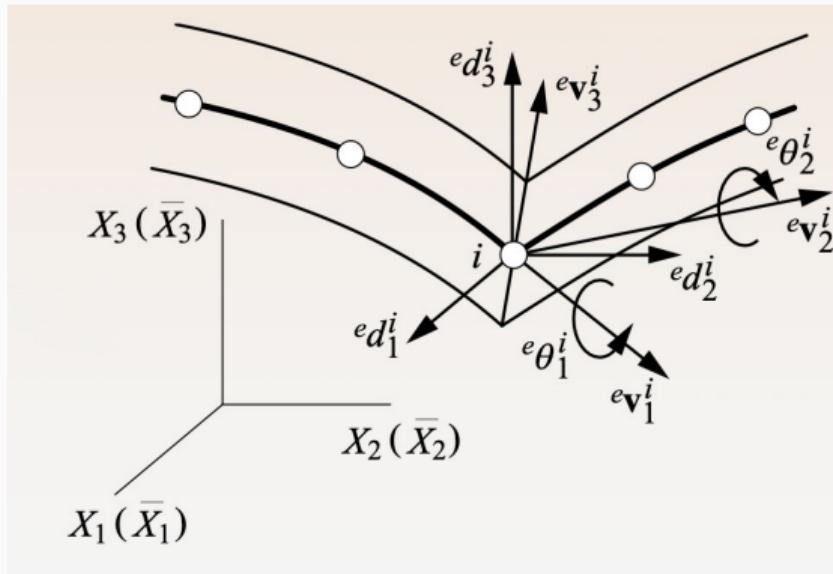
${}^e \mathbf{v}_3^i$ normal vector to the midsurface at node i

$$\begin{aligned}
 {}^e T : \mathbf{x}(\xi) &= \sum_{i=1}^{{}^e p} {}^a h_i(\xi_1, \xi_2) \left[\frac{1}{2} ({}^e \mathbf{x}_-^i + {}^e \mathbf{x}_+^i) + \frac{1}{2} \xi_3 ({}^e \mathbf{x}_-^i - {}^e \mathbf{x}_+^i) \right] \\
 &= \sum_{i=1}^{{}^e p} {}^a h_i(\xi_1, \xi_2) \left[{}^e \tilde{\mathbf{x}}^i + \frac{1}{2} \xi_3 {}^e t_3^i {}^e \mathbf{v}_3^i \right]
 \end{aligned}$$

Approximate displacements

Analogy with transformation of coordinates:

$$\mathbf{u}^h(\xi) = \sum_{i=1}^{e_p} {}^a h_i(\xi_1, \xi_2) \left[{}^e \mathbf{d}^i + \frac{1}{2} \xi_3 {}^e t_3^i (-{}^e \theta_1^i {}^e \mathbf{v}_2^i + {}^e \theta_2^i {}^e \mathbf{v}_1^i) \right]$$



$${}^e \mathbf{d}^i = [{}^e d_1^i, {}^e d_2^i, {}^e d_3^i]^T$$

- ${}^e d_1^i, {}^e d_2^i, {}^e d_3^i$ displacements of node *i*, oriented along the global axis.
- ${}^e \theta_1^i, {}^e \theta_2^i$ rotations of node *i*, oriented along the local axis.

Construction of local vectors

- We have:

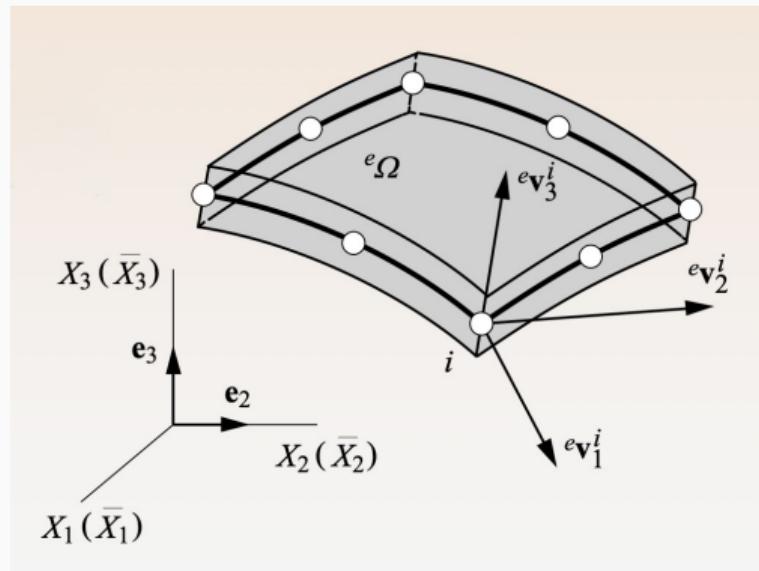
$${}^e\mathbf{v}_3^i = {}^e\mathbf{x}_-^i - {}^e\mathbf{x}_+^i$$

the normal vector to the midsurface at node i .

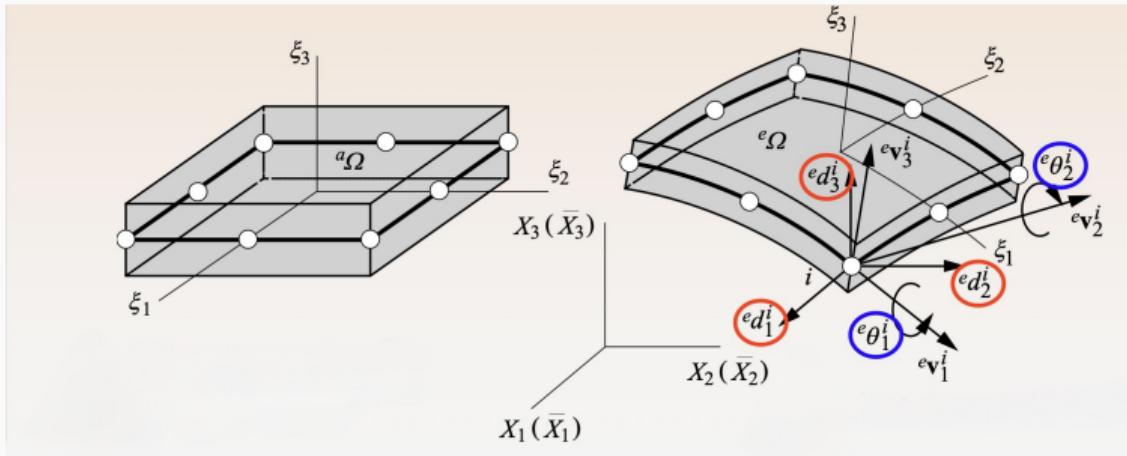
- We define the local vectors:

$${}^e\mathbf{v}_1^i = \begin{cases} \mathbf{e}_2 \wedge {}^e\mathbf{v}_3^i & \text{if } {}^e\mathbf{v}_3^i \neq \pm \mathbf{e}_2 \\ \pm \mathbf{e}_3 & \text{if } {}^e\mathbf{v}_3^i = \pm \mathbf{e}_2 \end{cases}$$

$${}^e\mathbf{v}_2^i = {}^e\mathbf{v}_3^i \wedge {}^e\mathbf{v}_1^i$$



Shell element



Shell elements:

- have 5 DOFs per node, no rotation ${}^e\theta_3^i$.
- lead to huge computational time savings since allow modeling with fewer mesh elements.
- less prone to negative Jacobian errors which might occur when using extremely thin 3d solid elements.

Shape functions matrix

$$\mathbf{u}^h(\boldsymbol{\xi}) = \sum_{i=1}^{e_p} {}^a h_i(\xi_1, \xi_2) \left[{}^e \mathbf{d}^i + \frac{1}{2} \xi_3 {}^e t_3^i \left(-{}^e \theta_1^i {}^e \mathbf{v}_2^i + {}^e \theta_2^i {}^e \mathbf{v}_1^i \right) \right]$$

$$= \sum_{i=1}^{e_p} {}^a \mathbf{H}_i(\boldsymbol{\xi}) {}^e \mathbf{q}^i(t)$$

$$= \underbrace{\sum_{i=1}^{e_p} \begin{bmatrix} {}^a h_i & 0 & 0 \\ 0 & {}^a h_i & 0 \\ 0 & 0 & {}^a h_i \end{bmatrix}}_{{}^a \mathbf{H}_i} \underbrace{\begin{bmatrix} -\frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{21}^i & \frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{11}^i \\ -\frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i v_{22}^i & \frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{12}^i \\ -\frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{23}^i & \frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{13}^i \end{bmatrix}}_{{}^e \mathbf{q}^i} \underbrace{\begin{bmatrix} {}^e d_1^i \\ {}^e d_2^i \\ {}^e d_3^i \\ {}^e \theta_1^i \\ {}^e \theta_2^i \end{bmatrix}}_{{}^e \mathbf{q}^i}$$

Deformation matrix

$${}^a \mathbf{B}_i = \nabla^a \mathbf{H}_i$$

$$= \begin{bmatrix} \frac{\partial^e h_i}{\partial x_1} & 0 & 0 & {}^e g_{11}^i & {}^e f_{11}^i \\ 0 & \frac{\partial^e h_i}{\partial x_2} & 0 & {}^e g_{22}^i & {}^e f_{22}^i \\ 0 & 0 & \frac{\partial^e h_i}{\partial x_3} & {}^e g_{33}^i & {}^e f_{33}^i \\ 0 & \frac{\partial^e h_i}{\partial x_3} & \frac{\partial^e h_i}{\partial x_2} & {}^e g_{23}^i + {}^e g_{32}^i & {}^e f_{23}^i + {}^e f_{32}^i \\ \frac{\partial^e h_i}{\partial x_3} & 0 & \frac{\partial^e h_i}{\partial x_1} & {}^e g_{31}^i + {}^e g_{13}^i & {}^e f_{31}^i + {}^e f_{13}^i \\ \frac{\partial^e h_i}{\partial x_2} & \frac{\partial^e h_i}{\partial x_1} & 0 & {}^e g_{12}^i + {}^e g_{21}^i & {}^e f_{12}^i + {}^e f_{21}^i \end{bmatrix} \quad (i = 1, 2, \dots, {}^e p)$$

Deformation matrix

Derivative with respect to global variables:

$$\frac{\partial^e h_i}{\partial x_k} = \frac{\partial^a h_i}{\partial \xi_1} \frac{\partial \xi_1}{\partial x_k} + \frac{\partial^a h_i}{\partial \xi_2} \frac{\partial \xi_2}{\partial x_k} = {}^e J_{k1}^{-1} \frac{\partial^a h_i}{\partial \xi_1} + {}^e J_{k2}^{-1} \frac{\partial^a h_i}{\partial \xi_2}$$

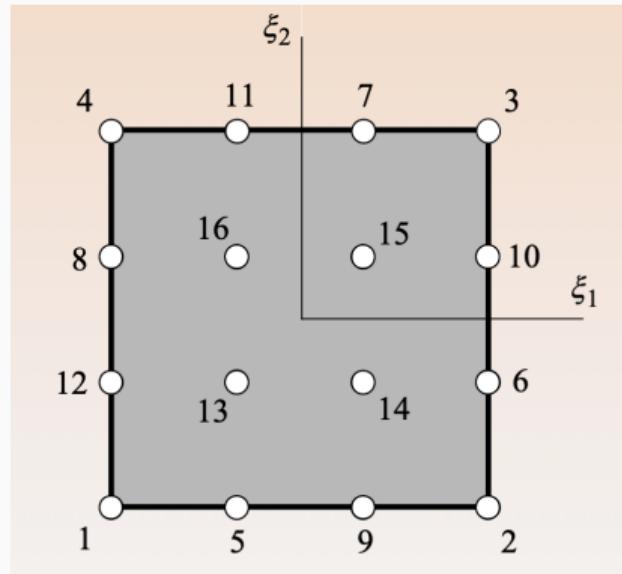
and

$${}^e f_{jk}^i = \frac{1}{2} {}^e t_3^i v_{1j}^i \frac{\partial(\xi_3 {}^e h_i)}{\partial x_k},$$

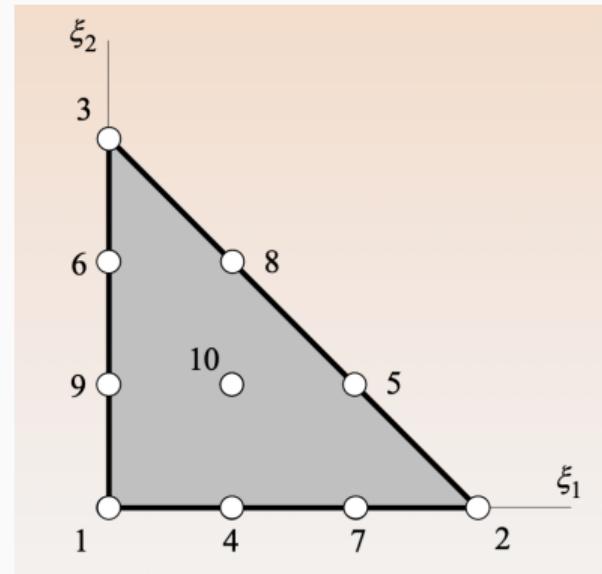
$${}^e g_{jk}^i = -\frac{1}{2} {}^e t_3^i v_{2j}^i \frac{\partial(\xi_3 {}^e h_i)}{\partial x_k}$$

$$\frac{\partial(\xi_3 {}^e h_i)}{\partial x_k} = \xi_3 \frac{\partial^e h_i}{\partial x_k} + {}^a h_i \frac{\partial \xi_3}{\partial x_k} = \xi_3 \left({}^e J_{k1}^{-1} \frac{\partial^a h_i}{\partial \xi_1} + {}^e J_{k2}^{-1} \frac{\partial^a h_i}{\partial \xi_2} \right) + {}^e J_{k3}^{-1} {}^a h_i$$

Examples: quadrangular and triangular shell elements

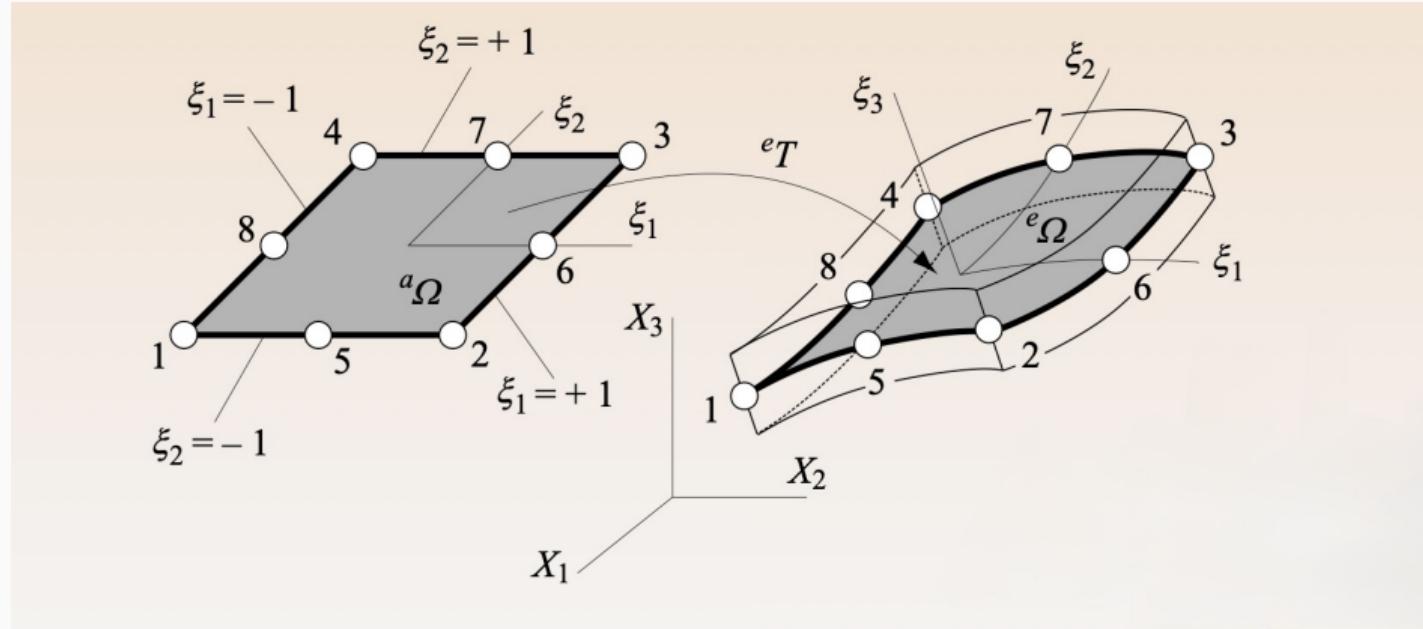


Shell element

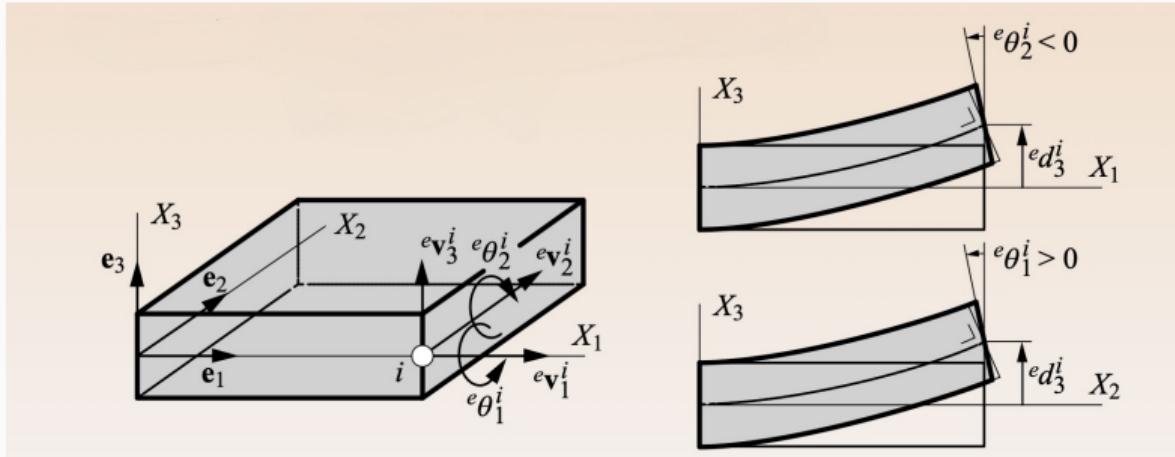


Dynamic analysis of Kirchhoff plates

Example: 8 nodes quadrangular shell element



Example: flat shell element



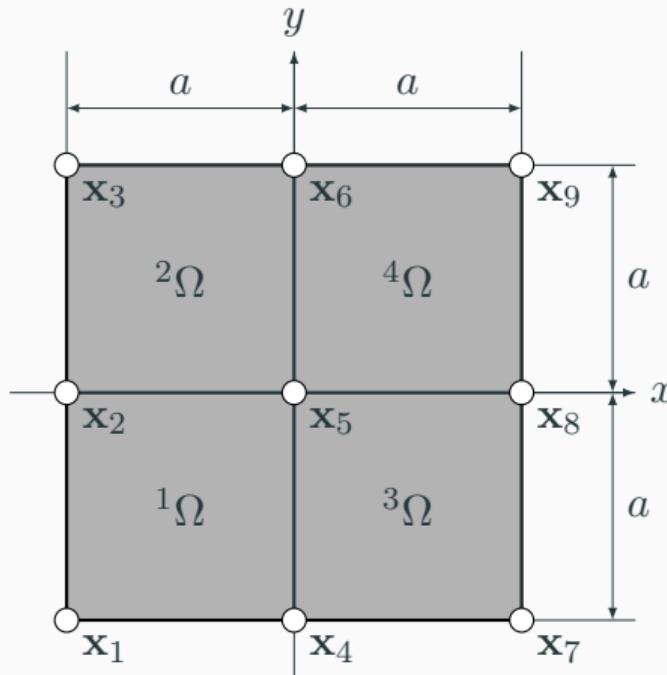
$$\mathbf{x}(\xi) = \sum_{i=1}^{e_p} {}^a h_i(\xi_1, \xi_2) \left(\begin{bmatrix} {}^e x^i \\ {}^e y^i \\ 0 \end{bmatrix} + \frac{1}{2} \xi_3 {}^e t_3^i \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

$$\mathbf{u}^h(\xi) = \sum_{i=1}^{e_p} {}^a h_i(\xi_1, \xi_2) \left(\begin{bmatrix} 0 \\ 0 \\ {}^e d_3^i \end{bmatrix} + \frac{1}{2} \xi_3 {}^e t_3^i \left(-{}^e \theta_1^i \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + {}^e \theta_2^i \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \right)$$

Example: modal analysis of simply supported plate

Simply supported isotropic plate

Discretization with 4 bilinear quadrilateral shell elements (4 nodes each).



- $2a$ length
- $2a$ height
- e thickness
- E Young's modulus
- ν Poisson's ratio
- ρ material density

Objective: determine the first natural frequency of the plate and compare it with the exact one.

Approximate displacements for flat shell elements

- Nodal displacements in the plane of the elements are suppressed:

$${}^e\mathbf{d}^i = [0, 0, {}^e d_3^i]^T$$

Thus only 3 DOFs per node: ${}^e\mathbf{q}^i = [{}^e d_3^i, {}^e\theta_1^i, {}^e\theta_2^i]$.

- Local vectors are oriented along the principal axes of the shell:

$${}^e\mathbf{v}_1^i = [1, 0, 0]^T, \quad {}^e\mathbf{v}_2^i = [0, 1, 0]^T, \quad {}^e\mathbf{v}_3^i = [0, 0, 1]^T$$

- Local shape functions matrices:

$${}^a\mathbf{H}_i = \begin{bmatrix} 0 & 0 & \frac{1}{2}\xi_3 e^a h_i \\ 0 & -\frac{1}{2}\xi_3 e^a h_i & 0 \\ {}^a h_i & 0 & 0 \end{bmatrix} \quad (i = 1, 2, 3, 4)$$

Coordinate transformation for ${}^1\Omega$

- Bilinear base functions for quadrilateral shell element:

$${}^a h_1(\xi_1, \xi_2) = (1 - \xi_1)(1 - \xi_2)/4$$

$${}^a h_2(\xi_1, \xi_2) = (1 + \xi_1)(1 - \xi_2)/4$$

$${}^a h_3(\xi_1, \xi_2) = (1 + \xi_1)(1 + \xi_2)/4$$

$${}^a h_4(\xi_1, \xi_2) = (1 - \xi_1)(1 + \xi_2)/4$$

- Coordinates ${}^1\tilde{\mathbf{x}} = [[0, 0, 0], [a, 0, 0], [a, a, 0], [0, a, 0]]$

$${}^1T : \mathbf{x}(\boldsymbol{\xi}) = \sum_{i=1}^4 {}^a h_i(\xi_1, \xi_2) \left({}^e \tilde{\mathbf{x}}^i + \frac{1}{2} \xi_3 {}^e t_3^i {}^e \mathbf{v}_3^i \right) = \left[a \frac{1 + \xi_1}{2}, a \frac{1 + \xi_2}{2}, e \frac{\xi_3}{2} \right]^T$$

- Jacobian matrix ${}^1J = \text{diag}(a/2, a/2, e/2)$ and determinant ${}^1j = a^2 e/8$.

Local mass matrices

$$\begin{aligned} {}^1\mathbf{M}_{ij} &= \frac{\rho a^2 e}{8} \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 {}^a\mathbf{H}_i^T {}^a\mathbf{H}_j d\xi_1 d\xi_2 d\xi_3 \\ &= \frac{\rho a^2 e}{4} \int_{-1}^1 \int_{-1}^1 \begin{bmatrix} {}^a h_i {}^a h_j & 0 & 0 \\ 0 & e^{2a} h_i {}^a h_j / 12 & 0 \\ 0 & 0 & e^{2a} h_i {}^a h_j / 12 \end{bmatrix} d\xi_1 d\xi_2 \end{aligned}$$

Local mass matrix for ${}^1\Omega$ via exact integration:

$${}^1\mathbf{M} = \begin{bmatrix} {}^1\mathbf{M}_{11} & {}^1\mathbf{M}_{12} & {}^1\mathbf{M}_{13} & {}^1\mathbf{M}_{14} \\ & {}^1\mathbf{M}_{22} & {}^1\mathbf{M}_{23} & {}^1\mathbf{M}_{24} \\ & & {}^1\mathbf{M}_{33} & {}^1\mathbf{M}_{34} \\ & & & {}^1\mathbf{M}_{44} \end{bmatrix}$$

sym.

Local deformation matrices

$$\begin{aligned}
 {}^1\mathbf{B}_i &= \nabla^a \mathbf{H}_i = \begin{bmatrix} \partial_{x_1} & 0 & 0 \\ 0 & \partial_{x_2} & 0 \\ 0 & 0 & \partial_{x_3} \\ 0 & \partial_{x_3} & \partial_{x_2} \\ \partial_{x_3} & 0 & \partial_{x_1} \\ \partial_{x_2} & \partial_{x_1} & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{1}{2}\xi_3 e^a h_i \\ 0 & -\frac{1}{2}\xi_3 e^a h_i & 0 \\ {}^a h_i & 0 & 0 \end{bmatrix} \\
 &= \begin{bmatrix} 0 & 0 & \frac{e}{a}\xi_3 \frac{\partial^a h_i}{\partial \xi_1} \\ 0 & -\frac{e}{a}\xi_3 \frac{\partial^a h_i}{\partial \xi_2} & 0 \\ 0 & 0 & 0 \\ \frac{2}{a} \frac{\partial^a h_i}{\partial \xi_2} & -{}^a h_i & 0 \\ \frac{2}{a} \frac{\partial^a h_i}{\partial \xi_1} & 0 & {}^a h_i \\ 0 & -\frac{e}{a}\xi_3 \frac{\partial^a h_i}{\partial \xi_1} & \frac{e}{a}\xi_3 \frac{\partial^a h_i}{\partial \xi_2} \end{bmatrix}
 \end{aligned}$$

Local stiffness matrices

$${}^1\mathbf{K}_{ij} = \frac{a^2 e}{8} \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 {}^1\mathbf{B}_i^T \bar{\mathbf{C}} {}^1\mathbf{B}_j d\xi_1 d\xi_2 d\xi_3$$

Local stiffness matrix for ${}^1\Omega$ via exact integration

$${}^1\mathbf{K} = \begin{bmatrix} {}^1\mathbf{K}_{11} & {}^1\mathbf{K}_{12} & {}^1\mathbf{K}_{13} & {}^1\mathbf{K}_{14} \\ & {}^1\mathbf{K}_{22} & {}^1\mathbf{K}_{23} & {}^1\mathbf{M}_{24} \\ & & {}^1\mathbf{K}_{33} & {}^1\mathbf{K}_{34} \\ & & & {}^1\mathbf{K}_{44} \end{bmatrix}$$

sym.

Assembly

- Since ${}^e J = {}^1 J$ and thus ${}^e j = {}^1 j$ for every $e = 2, 3, 4$, we have

$${}^e \mathbf{K} = {}^1 \mathbf{K} \quad \text{and} \quad {}^e \mathbf{M} = {}^1 \mathbf{M}$$

- The assembly of the global stiffness \mathbf{K} (27×27) and mass matrices \mathbf{M} (27×27) can be performed using the connectivity table:

${}^e \Omega$	${}^1 \Omega$	${}^2 \Omega$	${}^3 \Omega$	${}^4 \Omega$
1	1	2	4	5
2	4	5	7	8
3	5	6	8	9
4	2	3	5	6

- The following 20 DOFs are constrained due to the fact that the plate is simply supported along its perimeter:

$$d_3^1, \theta_1^1, \theta_2^1$$

$$d_3^3, \theta_1^3, \theta_2^3$$

$$d_3^7, \theta_1^7, \theta_2^7$$

$$d_3^9, \theta_1^9, \theta_2^9$$

$$d_3^2, \theta_1^2$$

$$d_3^4, \theta_2^4$$

$$d_3^6, \theta_2^6$$

$$d_3^8, \theta_1^8$$

Modal analysis

- The semi-discrete weak form is a system of $27 - 20 = 7$ differential equations for the 7 free DOFs: $d_3^5, \theta_1^5, \theta_2^5$, and $\theta_2^2, \theta_1^4, \theta_1^6, \theta_2^8$

$$\mathbf{K}\mathbf{q}(t) + \mathbf{M}\ddot{\mathbf{q}}(t) = \mathbf{0}$$

- The first fundamental frequency $\omega_1 = \sqrt{\lambda_1}$ (in rad/s) can be computed solving the generalized eigenvalue problem: $(\mathbf{K} + \lambda \mathbf{M}) \mathbf{p} = \mathbf{0}$.
- Assuming a thin plate $e/2a = 0.01$ and a shear coefficient $k = 5/6$ we obtain

$$\omega_1 = 0.6620 \sqrt{E/(1 - \nu^2)\rho a}$$

- From the analytical solution we obtain

$$\omega_1^{exact} = 0.0285 \sqrt{E/(1 - \nu^2)\rho a}$$

- Exact integration of transverse shear terms in the stiffness matrix \mathbf{K} leads to *element locking*.

Selective integration

- Separate the transverse shear contributions terms ${}^e\mathbf{B}_i^\tau$ in the deformation matrix:

$${}^e\mathbf{B}_i = {}^e\mathbf{B}_i^\sigma + {}^e\mathbf{B}_i^\tau$$

- Split the stiffness matrix into flexural stiffness ${}^e\mathbf{K}_{ij}^\sigma$ and transverse shear stiffness ${}^e\mathbf{K}_{ij}^\tau$:

$${}^e\mathbf{K}_{ij} = {}^e\mathbf{K}_{ij}^\sigma + {}^e\mathbf{K}_{ij}^\tau = \int_{\Omega} {}^e\mathbf{B}_i^\sigma \bar{\mathbf{C}} {}^e\mathbf{B}_j^\sigma d\Omega + \int_{\Omega} {}^e\mathbf{B}_i^\tau \bar{\mathbf{C}} {}^e\mathbf{B}_j^\tau d\Omega$$

- Perform a **selective integration**: exact integration of bending contributions ${}^e\mathbf{K}_{ij}^\sigma$ and reduced integration (a single Gauss point located at the center of the element) for shear contributions ${}^e\mathbf{K}_{ij}^\tau$.
- Assuming a thin plate $e/2a = 0.01$ and a shear coefficient $k = 5/6$ with selective integration we obtain

$$\omega_1 = 0.0383 \sqrt{E/(1 - \nu^2)\rho a} \quad (\text{error} \approx 34\%)$$

Error estimates

Assuming a thin plate $e/2a = 0.01$ and a shear coefficient $k = 5/6$ with selective integration we obtain:

$$\omega_1 = 0.0383\sqrt{E/(1 - \nu^2)\rho a} \quad (\text{Rel. error} \approx 34\%)$$

Meshing	Integration	Elements	Rel. error
2×2	Exact	bilinear	$> 20'000\%$
2×2	Selective	bilinear	34%
4×4	Selective	bilinear	7.2%
1×1	Selective	biquadratic	6.2%
2×2	Selective	biquadratic	1.0%