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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6
Classical structural
elements

Bars and trusses Project 2 statement
7 Beams
8 Frames and grids



Summary

Recap weeks 6 and 7

Plane frames

Plane grids

Three-dimensional frames

Recommended readings

1 Logan, A first course in the finite element method, 6th ed. (chap. 5)

2 Paz and Leigh, Structural dynamics, 6th ed. (chap. 11, 12 and 13)

3 Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed.
(chap. 7, 8 and 9)



Recap week 6 - bars and trusses



Non-oriented bar element

f ′
1x f ′

2x

1 2

u1

x′

ℓ, E,A, ρ

Differential equation governing the dynamics:

EA∂2
x′x′u1(x

′, t) = ρAü1(x
′, t)

Displacements approximation:

uh1(x
′, t) = H(x′)qloc(t) =

[
h1(x

′) h2(x
′)
] [q′1x(t)

q′2x(t)

]
Linear local shape functions:

h1(x
′) = 1− x′

ℓ
and h2(x

′) =
x′

ℓ

Semi-discrete weak form:

δqT
loc

(
Mlocq̈loc(t) +Klocqloc(t)− floc(t)

)
= 0
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Non-oriented bar element discretization

Element stiffness matrix in local coordinates:

Kloc =

∫ ℓ

0
EA

dH

dx′

T dH

dx′
dx′ =

∫ ℓ

0
EA

[
(h′1)

2 h′1h
′
2

h′2h
′
1 (h′2)

2

]
dx′ =

EA

ℓ

[
1 −1
−1 1

]
Element consistent mass matrix in local coordinates:

Mloc =

∫ ℓ

0
ρA HTH dx′ =

∫ ℓ

0
ρA

[
(h1)

2 h1h2
h2h1 (h2)

2

]
dx′ =

ρAℓ

6

[
2 1
1 2

]
Element applied loads vector in local coordinates:

floc(t) =

[
h1(0)
h2(0)

]
f ′
1x(t) +

[
h1(ℓ)
h2(ℓ)

]
f ′
2x(t) =

[
f ′
1x(t)
f ′
2x(t)

]
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Arbitrarly oriented bar element

Displacements in local coordinates:

qloc = [q′1x, q
′
2x]

T

Displacements in global coordinates:

q = [q1x, q1y, q2x, q2y]
T

Relation between local and
global displacements:

y

x

q1y
q1x

q2y
q2x

x′

θ

q′1x

q′2x

x1

y1

x2

y2

1

2

[
q′1x
q′2x

]
︸ ︷︷ ︸
qloc

=

[
cos(θ) sin(θ) 0 0

0 0 cos(θ) sin(θ)

]
︸ ︷︷ ︸

T


q1x
q1y
q2x
q2y


︸ ︷︷ ︸

q
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Discretization of arbitrarly oriented bar

Element stiffness matrix in global coordinates:

K = TTKlocT =
EA

ℓ


cos2(θ) sin(θ) cos(θ) − cos2(θ) − sin(θ) cos(θ)

sin2(θ) − sin(θ) cos(θ) − sin2(θ)
cos2(θ) sin(θ) cos(θ)

Symm. sin2(θ)


Element consistent mass matrix in global coordinates:

M = TTMlocT =
ρAℓ

6


2 cos2(θ) 2 sin(θ) cos(θ) cos2(θ) sin(θ) cos(θ)

2 sin2(θ) sin(θ) cos(θ) sin2(θ)
2 cos2(θ) 2 sin(θ) cos(θ)

Symm. 2 sin2(θ)


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Illustrative example

Plane truss: structure composed of oriented bar elements that all lies in a
common plane and are connected by frictionless pins.

Elements Nodes eθ eℓ
1 1, 2 90◦ 120 mm

2 1, 3 45◦ 120
√
2 mm

3 1, 4 0◦ 120 mm

Elementary stiffness and mass matrices:

eK = eTKloc
eT

eM = eTMloc
eT

e = 1, 2, 3

Global stiffness and mass matrices: K =A
3

e=1

eK and M =A
3

e=1

eM.
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Recap week 7 - planar beams



Planar beam element

x′

ℓ, E,A, I, ρ

f ′
1y f ′

2y

m′
1z m′

2z
1 2

u2
Differential equation governing the dynamics:

∂2
x′x′

(
EI∂2

x′x′u2(x
′, t)

)
+ ρAü2(x

′, t) = 0

Displacements approximation:

uh2(x
′, t) = H(x′)qloc(t) =

[
h1(x

′) h2(x
′) h3(x

′) h4(x
′)
]

q′1y(t)

ϕ′
1z(t)

q′2y(t)

ϕ′
2z(t)


Cubic local shape functions:

h1(x
′) = 2(x′/ℓ)3 − 3(x′/ℓ)2 + 1 h3(x

′) = 3(x′/ℓ)2 − 2(x′/ℓ)3

h2(x
′) = x′(1− x′/ℓ)2 h4(x

′) = x′(x′/ℓ)(x′/ℓ− 1)
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Discretization of beam

Element stiffness matrix in local coordinates:

Kloc =

∫ ℓ

0
EI

d2H

(dx′)2

T
d2H

(dx′)2
dx′ =

EI

ℓ3

 12 6ℓ −12 6ℓ
4ℓ2 −6ℓ 2ℓ2

12 −6ℓ
sym. 4ℓ2


Element consistent mass matrix in local coordinates:

Mloc =

∫ ℓ

0
ρA HTH dx′ =

ρAℓ

420

 156 22ℓ 54 −13ℓ
4ℓ2 13ℓ −3ℓ2

156 −22ℓ
sym. 4ℓ2


Element applied loads vector in local coordinates:

floc(t) =

 f ′
1y(t)

m′
1z(t)

f ′
2y(t)

m′
2z(t)


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Plane frames



What is a plane frame?

Structure composed of oriented beam elements, connected by welding, and
carrying transversal and axial forces that all lies in a common plane.

Both forces and moments can be transmitted between members.

Loads are acting only in the common plane of the structure and they must be
applied at the nodes or joints.

Plane truss Plane frame
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truss + beam = frame
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Axial effects in beam element

The inclusion of axial forces in a flexural beam element requires a superposition of
bar and beam elements:

u2

u1

x′

ℓ, E,A, I, ρ

f ′
1y f ′

2y

f ′
1x f ′

2x

m′
1z m′

2z
1 2

Differential equations governing the dynamics:

∂2
x′x′

(
EI∂2

x′x′u2(x
′, t)

)
+ ρAü2(x

′, t) = 0

EA∂2
x′x′u1(x

′, t) = ρAü1(x
′, t)

Axial effects are subsequently incorporated into the beam element formulation,
unless specified otherwise.
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Axial effects in beam element

The element now has three degrees of freedom per node: q′ix, q′iy, and ϕ′
iz.

Displacements approximation:

uh(x′, t) = H(x′)qloc(t) = [h1(x
′) h2(x

′) h3(x
′) h4(x

′) h5(x
′) h6(x

′)]



q′1x(t)

q′1y(t)

ϕ′
1z(t)

q′2x(t)

q′2y(t)

ϕ′
2z(t)


Local shape functions:

h1(x
′) = 1− x′/ℓ h4(x

′)= x′/ℓ

h2(x
′) = 2(x′/ℓ)3 − 3(x′/ℓ)2 + 1 h5(x

′) = 3(x′/ℓ)2 − 2(x′/ℓ)3

h3(x
′) = x′(1− x′/ℓ)2 h6(x

′) = x′(x′/ℓ)(x′/ℓ− 1)
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Discretization of beam with axial effects

Element stiffness matrix in local coordinates:

Kloc =
EI

ℓ3


Aℓ2/I 0 0 −Aℓ2/I 0 0

12 6ℓ 0 −12 6ℓ
4ℓ2 0 −6ℓ 2ℓ2

Aℓ2/I 0 0
12 −6ℓ

sym. 4ℓ2


Element consistent mass matrix in local coordinates:

Mloc =
ρAℓ

420


140 0 0 70 0 0
0 156 22ℓ 0 54 −13ℓ

4ℓ2 0 13ℓ −3ℓ2

70 0 0
156 −22ℓ

sym. 4ℓ2


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Arbitrarly oriented beam element with axial effects

Displacements in local coordinates:

qloc =
[
q′1x q′1y ϕ′

1z q′2x q′2y ϕ′
2z

]T
.

Displacements in global coordinates:

q =
[
q1x q1y ϕ1z q2x q2y ϕ2z

]T
.

Relation between local and
global displacements:

y

x

q1x

q2xq1y

q2y

q′1x

q′2x

q′1y

q′2y

θ
x1

y1

x2

y2


q′1x
q′1y
ϕ′
1z

q′2x
q′2y
ϕ′
2z


︸ ︷︷ ︸
qloc

=


cos(θ) sin(θ) 0 0 0 0
− sin(θ) cos(θ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(θ) sin(θ) 0
0 0 0 − sin(θ) cos(θ) 0
0 0 0 0 0 1


︸ ︷︷ ︸

T


q1x
q1y
ϕ1z

q2x
q2y
ϕ2z


︸ ︷︷ ︸

q
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Discretization of arbitrarly oriented beam with axial effects

Element stiffness matrix in global coordinates:

K = TTKlocT =
E

ℓ


Aℓ3C2+12IS2

ℓ2
(−12I+Aℓ2)CS

ℓ2
−6IS

ℓ
−Aℓ3C2+12IS2

ℓ2
(12I−Aℓ2)CS

ℓ2
−6IS

ℓ

12IC2+Aℓ2S2

ℓ2
6IC
ℓ

(12I−Aℓ2)CS

ℓ2
− 12IC2+Aℓ2S2

ℓ2
6IC
ℓ

4I 6IS
ℓ

−6IC
ℓ

2I

Aℓ3C2+12IS2

ℓ2
(−12I+Aℓ2)CS

ℓ2
6IS
ℓ

12IC2+Aℓ2S2

ℓ2
−6IC

ℓ
4I


where C = cos(θ) and S = sin(θ).

Element consistent mass matrix in global coordinates:

M = TTMlocT
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Applied loads

Element applied loads vector in local coordinates:

floc(t) =


f ′
1x(t)
f ′
1y(t)

m′
1z(t)

f ′
2x(t)
f ′
2y(t)

m′
2z(t)


Element applied loads vector in global coordinates:

f = TT floc =



cos(θ)f ′
1x + sin(θ)f ′

1y

− sin(θ)f ′
1x + cos(θ)f ′

1y

m′
1z

cos(θ)f ′
2x + sin(θ)f ′

2y

− sin(θ)f ′
2x + cos(θ)f ′

2y

m′
2z


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Assembly of stiffness and mass matrices and loads vector

Given a 2d frame structure made of m oriented beams, n nodes, and 3 DOFs per
node:

1. Element quantities:

For each beam e, compute the element quantities global coordinates:

eK = eTT eKloc
eT

eM = eTT eMloc
eT

ef = eTT efloc

2. Global assembly:

Initialize global stiffness matrix K and global mass matrix M of size 3n× 3n,

Initialize global loads vector f of size 3n× 1,

Assemble each eK, eM and ef for e = 1, . . . ,m, into K, M and f respectively
using element connectivity.
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MATLAB example - a 2d frame in free vibration

Go to Matlab Drive
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Plane grids



What is a grid?

A grid is a structure composed of oriented planar beams subjected to
perpendicular loading that produced significant bending effects.

Beams are connected by welding: both forces and moments can be
transmitted between members.

Axial effect of axial displacement is ignored for the moment.

Very common type of structures used in to model floors, roofs, bridge deck
systems, etc..
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Degrees of freedom identification

Planar frame under action of loads in the plane of the structure:
Components required to describe the displacements of joint i are:

• qix, qiy translations in the x and y directions respectively,
• ϕiz (bending) rotation about the z axis.

Planar grids loaded perpendicularly to the plane of the structure:
Components required to describe the displacements of joint i are:

• qiy translation in the y direction,
• ϕix, (torsional rotation) ϕiz (bending rotation), rotations respectively about the

x and z axes.
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Shaft element

The development of a shaft finite element is very similar to the development of a
bar finite element, where

the axial displacement u1 is replaced by the angular rotation ϕ1,

the axial nodal forces f ′
ix are replaced by nodal torque m′

ix,

the element tensile stiffness AE/ℓ is replaced by the torsional stiffness GJ/ℓ.

m′
1x m′

2x

1 2

ϕ1

x′

ℓ,G, J, ρ

G shear modulus of the material

J polar moment of inertia of the
cross-section.

ρ material density

ℓ length

ϕ1 angular rotation

x′ (local) axial coordinate
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Equation of motion for non-oriented shaft element

Differential equation governing the dynamics:

GJ∂2
x′x′ϕ1(x

′, t) = ρJϕ̈1(x
′, t)

Angular rotation (twisting) approximation:

ϕh
1(x

′, t) = H(x′)qloc(t) =
[
h1(x

′) h2(x
′)
] [ϕ′

1x(t)
ϕ′
2x(t)

]
Linear local shape functions:

h1(x
′) = 1− x′

ℓ
and h2(x

′) =
x′

ℓ

Semi-discrete weak form:

δqT
loc

(
Mlocq̈loc(t) +Klocqloc(t)− floc(t)

)
= 0
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Discretization of shaft

Element stiffness matrix in local coordinates:

Kloc =

∫ ℓ

0
GJ

dH

dx′

T dH

dx′
dx′ =

∫ ℓ

0
GJ

[
(h′1)

2 h′1h
′
2

h′2h
′
1 (h′2)

2

]
dx′ =

GJ

ℓ

[
1 −1
−1 1

]
Element consistent mass matrix in local coordinates:

Mloc =

∫ ℓ

0
ρJ HTH dx′ =

∫ ℓ

0
ρJ

[
(h1)

2 h1h2
h2h1 (h2)

2

]
dx′ =

ρJℓ

6

[
2 1
1 2

]
Element applied loads vector in local coordinates:

floc(t) =

[
h1(0)
h2(0)

]
m′

1x(t) +

[
h1(ℓ)
h2(ℓ)

]
m′

2x(t) =

[
m′

1x(t)
m′

2x(t)

]
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shaft + beam = grid
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Torsional effects in beam element

The inclusion of torsional stiffness in a flexural beam element, to model a typical
element in a planar grid frame, requires a superposition of shaft and beam elements:

ϕ2

ϕ1

u3

x′

ℓ, E,A, I, J, ρ

m′
1y m′

2y

m′
1x m′

2x

f ′
1z f ′

2z
1 2

Differential equations governing the dynamics:

∂2
x′x′

(
EI∂2

x′x′u3(x
′, t)

)
+ ρAü3(x

′, t) = 0

GJ∂2
x′x′ϕ1(x

′, t) = ρJϕ̈1(x
′, t)
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Torsional effects in beam element

Each grid element now has three degrees of freedom per node: ϕ′
ix, ϕ

′
iy and q′iz.

Displacements approximation:

uh(x′, t) = H(x′)qloc(t) = [h1(x
′) h2(x

′) h3(x
′) h4(x

′) h5(x
′) h6(x

′)]



ϕ′
1x(t)

ϕ′
1y(t)

q′1z(t)

ϕ′
2x(t)

ϕ′
2y(t)

q′2z(t)


Local shape functions:

h1(x
′) = 1− x′/ℓ h4(x

′)= x′/ℓ

h2(x
′) = x′(1− x′/ℓ)2 h5(x

′) = x′(x′/ℓ)(x′/ℓ− 1)

h3(x
′) = 2(x′/ℓ)3 − 3(x′/ℓ)2 + 1 h6(x

′) = 3(x′/ℓ)2 − 2(x′/ℓ)3
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Discretization of beam with torsional effects

Element stiffness matrix in local coordinates:

Kloc =
EI

ℓ3


GJℓ2/EI 0 0 −GJℓ2/EI 0 0

4ℓ2 −6ℓ 0 2ℓ2 6ℓ
12 0 −6ℓ −12

GJℓ2/EI 0 0
4ℓ2 6ℓ

sym. 12


Element consistent mass matrix in local coordinates:

Mloc =
ρAℓ

420


140J/A 0 0 70J/A 0 0

0 4ℓ2 22ℓ 0 −3ℓ2 13ℓ
156 0 −13ℓ 54

140J/A 0 0
4ℓ2 −22ℓ

sym. 156


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Arbitrarly oriented beam element with torsional effects

Displacements in local coordinates:

qloc =
[
ϕ′
1x ϕ′

1y q′1z ϕ′
2x ϕ′

2y q′2z
]T

.

Displacements in global coordinates:

q =
[
ϕ1x ϕ1y q1z ϕ2x ϕ2y q2z

]T
.

Relation between local and
global displacements:

y

x

q1x

q2xq1y

q2y

q′1x

q′2x

q′1y

q′2y

θ
x1

y1

x2

y2


ϕ′
1x

ϕ′
1y

q′1z
ϕ′
2x

ϕ′
2y

q′2z


︸ ︷︷ ︸
qloc

=


cos(θ) sin(θ) 0 0 0 0
− sin(θ) cos(θ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(θ) sin(θ) 0
0 0 0 − sin(θ) cos(θ) 0
0 0 0 0 0 1


︸ ︷︷ ︸

T


ϕ1x

ϕ1y

q1z
ϕ2x

ϕ2y

q2z


︸ ︷︷ ︸

q
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Discretization of arbitrarly oriented beam

Element stiffness matrix in global coordinates:

K = TTKlocT

where C = cos(θ) and S = sin(θ).

Element consistent mass matrix in global coordinates:

M = TTMlocT

Element applied loads vector in global coordinates:

f = TT floc

Plane grids Dynamic analysis of frames and grids 31 / 42



MATLAB example - dynamic response of a 2d grid

Go to Matlab Drive
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Three-dimensional beams



Example of a space beam structure

Credit: [N]

f ′
1y,m

′
1y f ′

2y,m
′
2y

f ′
1x,m

′
1x f ′

2x,m
′
2x

f ′
1z,m

′
1z f ′

2z,m
′
2z1 2

Three-dimensional beams are uniaxial (slender)
element that can support:

axial loads f ′
ix,

torsional loads m′
ix,

bending in the x′ − y′ plane: f ′
iy and m′

iz,

bending in the x′ − z′ plane: f ′
iz and m′

iy.
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Differential equations governing the dynamics

u1,ϕ1

u2,ϕ2

u3,ϕ3

x′

1 2

EA∂2
x′x′u1(x

′, t) = ρAü1(x
′, t)

GJ∂2
x′x′ϕ1(x

′, t) = ρJϕ̈1(x
′, t)

∂2
x′x′

(
EIz∂

2
x′x′u2(x

′, t)
)
+ ρAü2(x

′, t) = 0

∂2
x′x′

(
EIy∂

2
x′x′u3(x

′, t)
)
+ ρAü3(x

′, t) = 0

Iy and Iz are the cross-sectional moments of inertia with respect to the axes y and z.
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Displacements discretization

Total of six nodal displacements at each unconstrained joint:

three translation components q′ix, q
′
iy and q′iz along the x, y, z axes, and

three rotational components about these axes ϕ′
ix, ϕ

′
iy and ϕ′

iz.

uh(x′, t) = H(x′)qloc(t)

qloc(t) =



q′1x(t)

q′1y(t)

q′1z(t)

ϕ′
1x(t)

ϕ′
1y(t)

ϕ′
1z(t)

q′2x(t)

q′2y(t)

q′2z(t)

ϕ′
2x(t)

ϕ′
2y(t)

ϕ′
2z(t)



h1(x
′
) = 1 − x

′
/ℓ

h2(x
′
) = 2(x

′
/ℓ)

3 − 3(x
′
/ℓ)

2
+ 1

h3(x
′
) = 2(x

′
/ℓ)

3 − 3(x
′
/ℓ)

2
+ 1

h4(x
′
) = 1 − x

′
/ℓ

h5(x
′
) = x

′
(1 − x

′
/ℓ)

2

h6(x
′
) = x

′
(1 − x

′
/ℓ)

2

h7(x
′
) = x

′
/ℓ

h8(x
′
) = 3(x

′
/ℓ)

2 − 2(x
′
/ℓ)

3

h9(x
′
) = 3(x

′
/ℓ)

2 − 2(x
′
/ℓ)

3

h10(x
′
) = x

′
/ℓ

h11(x
′
) = x

′
(x

′
/ℓ)(x

′
/ℓ − 1)

h12(x
′
) = x

′
(x

′
/ℓ)(x

′
/ℓ − 1)
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Element stiffness matrix in local coordinates

The stiffness matrix for a three-dimensional uniform beam element is written by
the superposition of the axial stiffness matrix, the torsional stiffness matrix and
the flexural stiffness matrix:

Kloc =



EA
ℓ

0 0 0 0 0 −EA
ℓ

0 0 0 0 0

12EIz
ℓ3

0 0 0 6EIz
ℓ2

0 − 12EIz
ℓ3

0 0 0 6EIz
ℓ2

12EIy

ℓ3
0 − 6EIy

ℓ2
0 0 0 − 12EIy

ℓ3
0 − 6EIy

ℓ2
0

GJ
ℓ

0 0 0 0 0 −GJ
ℓ

0 0
4EIy

ℓ
0 0 0

6EIy

ℓ2
0

2EIy
ℓ

0
4EIz

ℓ
0 − 6EIz

ℓ2
0 0 0 2EIz

ℓ
EA
ℓ

0 0 0 0 0

− 12EIz
ℓ3

0 0 0 − 6EIz
ℓ2

12EIy

ℓ3
0

6EIy

ℓ2
0

GJ
ℓ

0 0
4EIy

ℓ
0

sym. 4EIz
ℓ


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Element consistent mass matrix in local coordinates

The consistent mass matrix for a three-dimensional uniform beam element is
written by the superposition of the axial mass matrix, the torsional mass matrix
and the flexural mass matrix:

Mloc =
ρAℓ

420



140 0 0 0 0 0 70 0 0 0 0 0
156 0 0 0 22ℓ 0 54 0 0 0 −13ℓ

156 0 −22ℓ 0 0 0 54 0 13ℓ 0
140J
A 0 0 0 0 0 70J

A 0 0
4ℓ2 0 0 0 −13ℓ 0 −3ℓ2 0

4ℓ2 0 13ℓ 0 0 0 −3ℓ2

140 0 0 0 0 0
156 0 0 0 −22ℓ

156 0 22ℓ 0
140J
A 0 0

4ℓ2 0
sym. 4ℓ2


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Transformation of coordinates

The stiffness and mass matrices are defined in the local coordinate system x′,
y′ and z′ fixed to the beam segment.

To assemble the global stiffness and mass matrices, these local matrices must
be transformed into the global coordinate system x, y, z.

O

y

x

z

x′

y′

z′

y1

x1

z1

y2

x2

z2
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Direction cosines

The relationship between local and global coordinates is: x′

y′

z′

 =

 cos(x′x) cos(x′y) cos(x′z)
cos(y′x) cos(y′y) cos(y′z)
cos(z′x) cos(z′y) cos(z′z)


︸ ︷︷ ︸

T′

 x
y
z



The local x′ is given by:
Ox′ = [lx, ly, lz]

where

lx = cos(x′x) =
x2 − x1

eℓ
, ly = cos(x′y) =

y2 − y1
eℓ

, lz = cos(x′z) =
z2 − z1

eℓ
,

eℓ =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
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Direction cosines

The local y′ axis is chosen so that it lies in the local x′ − y′ plane and it is
perpendicular to x′:

Oy′ =
1

d
[ly, lx, 0]

thus

cos(y′x) =
ly
d
, cos(y′y) =

lx
d
, cos(y′z) = 0, d =

√
l2x + l2y.

The local z′ axis is chosen so that Oz′ = Ox′ ×Oy′:

Oz′ =
1

d
[−lxlz,−lylz, 0]

thus

cos(z′x) = − lxlz
d

, cos(z′y) = − lylz
d

, cos(z′z) = d.
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Global displacements for oriented three-dimensional beam



q′1x(t)

q′1y(t)

q′1z(t)

ϕ′
1x(t)

ϕ′
1y(t)

ϕ′
1z(t)

q′2x(t)

q′2y(t)

q′2z(t)

ϕ′
2x(t)

ϕ′
2y(t)

ϕ′
2z(t)


︸ ︷︷ ︸

qloc(t)

=


T′

T′

T′

T′


︸ ︷︷ ︸

T



q1x(t)

q1y(t)

q1z(t)

ϕ1x(t)

ϕ1y(t)

ϕ1z(t)

q2x(t)

q2y(t)

q2z(t)

ϕ2x(t)

ϕ2y(t)

ϕ2z(t)


︸ ︷︷ ︸

q(t)

y

x

z

q1y

q1x

q1z

q2y

q2x

q2z

q′1x

q′1y

q′1z

q′2x

q′2y

q′2z
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MATLAB example - dynamic response of a 3d frame

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b
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