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Dynamic analysis of frames and grids

Classical structural elements
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Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission
6 Classical structural Bars and trusses Project 2 statement
7 1 ¢ Beams
8 clerents Frames and grids




Summary
m Recap weeks 6 and 7
m Plane frames
m Plane grids

m Three-dimensional frames

Recommended readings
©® Logan, A first course in the finite element method, 6th ed. (chap. 5)
® Paz and Leigh, Structural dynamics, 6th ed. (chap. 11, 12 and 13)

® Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed.
(chap. 7, 8 and 9)



Recap week 6 - bars and trusses



Non-oriented bar element

Differential equation governing the dynamics:

i)
1
~
KN

) . ZL"/
= T_V J2x 9 , . ,
C 65,4 @ BAR (&' ) = pAiin (&' 1)

m Displacements approximation:
1) = B )auoelt) = () ra(e)] |00

m Linear local shape functions:
hi(z') =1— QZ and hao(x') = =

m Semi-discrete weak form:

5ql7;c (Mlociiloc(t) = Klocqloc(t) - floc(t)) =10)
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Non-oriented bar element discretization

m Element stiffness matrix in local coordinates:

aHTal1 ,  [f ()2 MRy ., EA[1 -1
Kuem [ P4 g = [ 2A [l Gl =52 (4 7]

m Element consistent mass matrix in local coordinates:

¢ 2
_ T o (hl) hiho r pAf 2 1
Mo —/0 pA H'H dx —/ pA [h2h1 (h)? di’ = = 5

m Element applied loads vector in local coordinates:
= ] o+ 8] o -2
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Arbitrarly oriented bar element

m Displacements in local coordinates:

Y
Uoc = [0 G2] @b,
Q2y
m Displacements in global coordinates: CER q. ® G2z
q= [C_I1:c, q1y, 42z, q2y]T Gy y o/ |
Yyrj----------- 1z ‘
m Relation between local and 0 @ 3
global displacements: 1 952 o
iz
¢1»| _ [cos(8) sin(0) 0 0 qiy
o I 0  cos(f) sin(0)| |
N a2
Qloc T Y
——
q
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Discretization of arbitrarly oriented bar

m Element stiffness matrix in global coordinates:

24| TTD o
K =T'KioT = A cos? () sin (@) cos(0)
Symm. sin?(0)

m Element consistent mass matrix in global coordinates:

2cos?(f) 2sin(#) cos() cos2(f) sin (@) cos(0)

T _ pAL 2sin?(6) sin (@) cos(0) sin?(6)
M =T" Mo T = 6 2cos?(f)  2sin(f) cos(h)
Symm. 2sin?(0)
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Illustrative example

Plane truss: structure composed of oriented bar elements that all lies in a
common plane and are connected by frictionless pins.

T vz 3 Elements ‘ Nodes ‘ °0 4
1 1,2 90° 120 mm
2 1,3 | 45° | 120v/2 mm
N () & 3 1,4 | 0° 120 mm
Elementary stiffness and mass matrices:
o = °K = °“TK,,.°T
. © : e=1,2,3
‘M= eTMloceT

10,000
A 120
S y

Global stiffness and mass matrices: K = Ag,l K and M = Ag,l ¢M.
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Recap week 7 - planar beams



Planar beam element

/
o/ g5 A of]
-/l.r/ \ P uo y ./gf/

Differential equation governing the dynamics:

m, O (LESA T p /11.’_)@ 0%, (EI@ rpU2(2' 1)) + pAiig(2',t) = 0

m Displacements approximation:

G1y(t)
ul (2! 1) = H(z)quoe(t) = [hi(z") ho(z') hg(z') ha(z)] ¢}Z(t)
Q2y(t)
5:(t)
m Cubic local shape functions:
hi(z') = 2(z'/0)3 — 3(2/0)? + 1 ha(z') = 3(z' /) — 2(2 /0)?
hy(z') = /(1 — 2/ /£)? ha(x') = 2/ (2’ /0) (' /€ — 1)

Recap week 7 - planar beams Dynamic analysis of frames and grids 9 /42



Discretization of beam

m Element stiffness matrix in local coordinates:
12 6/ —12 o6/

K B /EE d2H T d2H le - Ef[ 402 —6f 242
loc = . (dx’)Q (dx/)z e 12  —6/
Sym. 402

m Element consistent mass matrix in local coordinates:
156 22¢ 54 —13/¢

0

_ i ) pAL 42 130 —3¢2

Mioe = /0 pAH H dz’ = o0 156 —22¢

sym. 402

m Element applied loads vector in local coordinates:
fiy (1)
! t)
f t) = mlz(
oel®) =1 700
my (t)
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Plane frames




What is a plane frame?

m Structure composed of oriented beam elements, connected by welding, and
carrying transversal and axial forces that all lies in a common plane.

m Both forces and moments can be transmitted between members.

m Loads are acting only in the common plane of the structure and they must be
applied at the nodes or joints.

Plane truss Plane frame
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truss + beam = frame
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Axial effects in beam element

The inclusion of axial forces in a flexural beam element requires a superposition of
bar and beam elements:

/
]L-/ x A u2 °/
J1y & J 2y
11 "/
= T Jor

g

S
)
—

"3}
mt D LB ALy myP

Differential equations governing the dynamics:

024 (E102 yus (2, 1)) + pAiia(2/,t) = 0
EAJ% jui(2,t) = pAiiy (2, t)

Axial effects are subsequently incorporated into the beam element formulation,
unless specified otherwise.
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Axial effects in beam element

The element now has three degrees of freedom per node: ¢;,, ¢;,, and ¢, .
m Displacements approximation:

q1.(t)
0y (t)
h( .t _ / _ ! / / ! / / ¢Ilz (t)
u(2',t) = H(2")quoc(t) = [h1(2") ho(z") ha(x") ha(z") hs(x") he(x')] o (t)
Gy (t)
| 65 (1)
m Local shape functions:
hi(z')=1-2'/¢ ha(z')=2'/¢
ho(z') = 2(z'/£)3 — 3(2'/0)? + 1 hs(z') = 3(z' /) — 2(2 /0)?
h3(z') = /(1 — 2'/£)? he(x') = 2/ (2’ /0) (2’ /€ — 1)
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Discretization of beam with axial effects

m Element stiffness matrix in local coordinates:

[A2/1

sym.

0
12

0 —AR/I 0 0

($14
442

0
0

m Element consistent mass matrix in local coordinates:

Plane frames

140
0

Sym.

0 0
156 22¢
402

70
0
0

70

—-12 6/
—60 242
AT 0 0
12 —6¢
402 |
0 0 7
54 —13¢
13¢ —3¢2
0 0
156 —22¢
402 |
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Arbitrarly oriented beam element with axial effects

m Displacements in local coordinates:

T Yy /
Qioc = [qllaz q,ly llz qéx qéy ,22} : T2y Py (/'/_’,1‘
m Displacements in global coordinates: Y2 ------- A1y 42 ;/i 777777 ‘ 2z
T < T |
q= [‘hx q1y P12 G2z q2y ¢22] 7 Q1a i
m Relation between local and 0 | |
global displacements: T xé .
. cos(f) sin(d) O 0 0 0] [q1x
iy —sin(f) cos(f) 0 0 0 0] |qiy
12| _ 0 0 1 0 0 0 | o1z
Ghy 0 0 0 cos(@) sin(d) 0| |g2s
3y 0 0 0 —sin(d) cos(d) Of |qay
o 0 0 0 0 0 1| | @2z
N—— S~——
Qloc T q
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Discretization of arbitrarly oriented beam with axial effects

m Element stiffness matrix in global coordinates
A1302+12152

(121— Aﬂ)cs

12102+Al252

A302412152 (—121+AL2)CS —_6IS
02 02 €
1271024+ A0252 6IC (121— Ae2)cs
02 3 02
Al 615

i
Ae3c?412182
02

2
_¢Tc
z
(—121+A02)CS

E
K=T"K,,.T = 7

where C = cos(f) and S = sin(6).
m Element consistent mass matrix in global coordinates

M=T1T"M,,.T

22
121024+ 40252
- E—

Dynamic analysis of frames and grids
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Applied loads

m Element applied loads vector in local coordinates:

floc(t) =

f12()
fiy(®)
m,(t)
Jou (1)
oy (8)

[ ma, (1) ]

m Element applied loads vector in global coordinates:

f=T7%,. =

COS

Plane frames

[ cos(0) f1, + Sin(e)f{y |
—sin(6) f1, + cos(9) f1,

—sin(6) fa, + cos(0) f3,

m,
() fo, + sin(0) fa,,

/
My, -

Dynamic analysis of frames and grids
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Assembly of stiffness and mass matrices and loads vector

Given a 2d frame structure made of m oriented beams, n nodes, and 3 DOFs per
node:

1. Element quantities:

m For each beam e, compute the element quantities global coordinates:

K — eTTeKloceT
eM = eTTeMloceT
ef — eTTefloc

2. Global assembly:
m Initialize global stiffness matrix K and global mass matrix M of size 3n x 3n,
m I[nitialize global loads vector f of size 3n x 1,

m Assemble each ¢°K, *M and ¢f for e =1,...,m, into K, M and f respectively
using element connectivity.
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MATLAB example - a 2d frame in free vibration

» Go to Matlab Drive
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Plane grids




What is a grid?

m A grid is a structure composed of oriented planar beams subjected to
perpendicular loading that produced significant bending effects.

m Beams are connected by welding: both forces and moments can be
transmitted between members.

m Axial effect of axial displacement is ignored for the moment.

m Very common type of structures used in to model floors, roofs, bridge deck
systems, etc..
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Degrees of freedom identification

m Planar frame under action of loads in the plane of the structure:
Components required to describe the displacements of joint i are:

® iz, @iy translations in the x and y directions respectively,
® ¢,. (bending) rotation about the z axis.

m Planar grids loaded perpendicularly to the plane of the structure:
Components required to describe the displacements of joint i are:

® g, translation in the y direction,
® ¢iz, (torsional rotation) ¢;. (bending rotation), rotations respectively about the
x and z axes.

Plane grids Dynamic analysis of frames and grids 22 / 42



Shaft element

The development of a shaft finite element is very similar to the development of a
bar finite element, where

m the axial displacement u; is replaced by the angular rotation ¢,

J

m the axial nodal forces f/ are replaced by nodal torque m],,

m the element tensile stiffness AE// is replaced by the torsional stiffness G.J/Z.

m G shear modulus of the material

x/ m J polar moment of inertia of the
cross-section.

m p material density
7”’/1.7? ¢‘1 Tl% ”"/2.1‘ n { length
® @ m ¢ angular rotation
» 2’ (local) axial coordinate
67 G7 J? p

Plane grids Dynamic analysis of frames and grids
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Equation of motion for non-oriented shaft element

Differential equation governing the dynamics:
GJ@C%/:C/(M (517/, t) = ,OJ¢1 ($/, t)

m Angular rotation (twisting) approximation:

m Linear local shape functions:
x/
hi(2') =1 - 7 and hao(2') = =
m Semi-discrete weak form:

5q?;c (Mlocéiloc(t) + Klocqloc(t) - floc(t)) =0

Plane grids Dynamic analysis of frames and grids
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Discretization of shaft

m Element stiffness matrix in local coordinates:

dH"dqH 0 T2 My ., GI[1 -1
Koom [ 69 G 0= [ 07 b o] = [ 3]

m Element consistent mass matrix in local coordinates:

4 ? 2 r
h) h1h2 pJf 2 1
M,,. = JHTHd’:/ J[(l ]d’:
: /op T P Lhehe (he)?]

m Element applied loads vector in local coordinates:
_ [m(O)] ha(O)| oy _ M)
floc(t) - |:h2(0):| mlaz(t) + hg(f) Moy (t) - ,z(t)
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shaft 4+ beam = grid
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Torsional effects in beam element

The inclusion of torsional stiffness in a flexural beam element, to model a typical
element in a planar grid frame, requires a superposition of shaft and beam elements:

! ®2
.
@)

O u \
€7E7A7I7‘]7p

Differential equations governing the dynamics:

0214 (BI02 yus (2, 1)) + pAiig(a’,t) =0
GJB2 ¢1 (2 t) = pJos (2, t)
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Torsional effects in beam element

/

Each grid element now has three degrees of freedom per node: ¢;,,

m Displacements approximation:

/ /
iy and g,

12(t)
1(t)
W) = H ) = a0 hle!) ha(e') o) oo o) | 50
Py (1)
92(t)
m Local shape functions:
hi(z)y=1-2"/¢ ha(z')= '/t
hy(z') = /(1 — 2/ /£)? hs(x') = 2/ (2’ /) (2’ /€ — 1)
ha(z') = 2(z'/0)% — 3(2'/0)* + 1 he(z') = 3(z' /€)% — 2(2' /£)?
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Discretization of beam with torsional effects

m Element stiffness matrix in local coordinates:

[GJe2/ET

sym.

0
442

0 —GJ@/EI
—6¢ 0
12 0
GJ?/EI

m Element consistent mass matrix in local coordinates:

[140.7/A
0
pAl
Moc an
foe = 420
| sym.

Plane grids

0
442

0 70J/A
220 0
156 0

140.J/A

Dynamic analysis of frames and grids

202
—6/

4¢?

0

—302
—13¢

0
402

(4
—12

(14
12

0
13¢
54
0
—22¢
156 |
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Arbitrarly oriented beam element with torsional effects

m Displacements in local coordinates:

Qloc = [d)llac ,ly qllz gb,?a; l2y qéz
m Displacements in global coordinates:
T
q= [(bla: (bly @z P2 ¢2y q2z]
m Relation between local and
global displacements:
. cos(f)  sin(0)
o1, —sin(f) cos(0)
P 0 0
. 0 0
(;S’Qy 0 0
. 0 0
——
Qioc

Plane grids

T Y
] (/'/2,1/ q2y (/'/_’,1‘
P p====== (]/l*“* S Qy *(ljl; ***** : 42z
i |=========== iz |
0 |
I I T
0 0 0 0] |¢12
0 0 0 0 o1y
1 0 0 0 q1z
0 cos(@) sin(@) 0| |pax
0 —sin(d) cos(8) 0| |2y
0 0 0 1] | g2
——
q
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Discretization of arbitrarly oriented beam

m Element stiffness matrix in global coordinates:
K =T"K,, T

where C = cos(f) and S = sin(6).

m Element consistent mass matrix in global coordinates:
M = T"M,,. T
m Element applied loads vector in global coordinates:

f= TTfloc
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MATLAB example - dynamic response of a 2d grid

» Go to Matlab Drive
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Three-dimensional beams




Example of a space beam

Credit: [N]

Three-dimensional beams

structure

*/ on! °/ !
j'lil/’ My fQ;t/' My
y

fizomi, ¥ @ fo2mb, ¥ @

Three-dimensional beams are uniaxial (slender)

element that can support:

/

m axial loads f;,,

m torsional loads m/,,

m bending in the 2’ — ¢/ plane: f; and m;_,

m bending in the 2’ — 2/ plane: f;, and mj,.

Dynamic analysis of frames and grids

— 7 _ AN
"7 J1x " f21‘? Moy
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Differential equations governing the dynamics

’ 1L2,¢2
X A
N\ 3
=27 wl,wl T
s @)
u3, 03

EA% yui(2',t) = pAiiy (2, 1)
GIR 1 (2!, 1) = pJdr (2, )
02 (ELO2 yus(2 1)) + pAiia(2',t) = 0
02 (E1,02 yrus (2, ) + pAiig(2’,t) = 0

I, and I, are the cross-sectional moments of inertia with respect to the axes y and z.
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Displacements discretization

Total of six nodal displacements at each unconstrained joint:

m three translation components ¢;,, ¢;, and ¢;, along t

/

m three rotational components about these axes ¢;,,

uh(gc’, t) = H(2')quoc(t)

[ ¢}, ()]
a1y (1)
i, (t)
3. (t) hi(z') =1—2a'/¢
“”Ez/(‘> ha(z') = 2(z’ /0)® — 3(z'/0)% + 1
Qioc(t) = J”Ef? ha(a') = 2(2’/0)® = 3(z'/0)° +1
b, (1) ha(z')=1-2a'/t
4z, (t) hs(z') = o' (1 — 2’ /0)?
#22(8 ho(a') = &/ (1 — o' /D)
Py (1)
[ 4o

he x, y, z axes, and

/ /
1y and ¢zz

he(z') =3’/

he(z') = 3(z" /) — 2(2" /0)°

ho(z') = 3(z' /€)% — 2(z" /0)°
hig(z') =z’ /¢
hi1(z") = 2’ (2" /€) (2" /2 — 1)
hiz(a') = 2’ (2 /&) (2" /£ — 1)
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Element stiffness matrix in local coordinates

The stiffness matrix for a three-dimensional uniform beam element is written by
the superposition of the axial stiffness matrix, the torsional stiffness matrix and
the flexural stiffness matrix:

- EA 0 0 0 0 0 -EA 0 0 0 0 0 .
12ZEIZ 0 0 0 G?Iz 0 _ 12[E‘Iz 0 0 0 6)§Iz
12E1, Q __6EI, @ Q o _12EIy, a _GEIy a
3 2 3 02
cl 0 0 0 0 0 -z 0 0
4Elly a o Q efgy @ 2E€1y Q
4ET 6E1 2E1
Kloc — 7 = 0 = = 0 0 0 7 Z
EA 0 0 0 0 0
. _ 12E312 0 0 0 6E1,
¢ 12E1y GEIy ¢
2 e ®
4EIy
= 0
4EI,
L sym. — - 4
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Element consistent mass matrix in local coordinates

The consistent mass matrix for a three-dimensional uniform beam element is
written by the superposition of the axial mass matrix, the torsional mass matrix
and the flexural mass matrix:

140 0 0 0 0 0 70 0 0 0 0 0
156 0 0 0 220 0 54 0 0 0 —13¢

156 0 —22¢ 0 0 0 54 0 13/ 0

W9 0o 0o 0o o B2 o0 0

42 0 0 0 —13¢ 0 -3 0

_ pAL 42 0 13¢ 0 0 0 —30

toe = 190 140 0 0 0 0 0
156 0 0 0 —22

156 0 220 0

R () 0

402 0
| sym. 42 |
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Transformation of coordinates

m The stiffness and mass matrices are defined in the local coordinate system a’,

1y’ and 2’ fixed to the beam segment.

m To assemble the global stiffness and mass matrices, these local matrices must

be transformed into the global coordinate system x, y, z.

Y
Yar--____ o
’ T -

Y- z }

T e |

2/ | T1 L T2
O SSe oo r, ! P €T

2l ommm e STl I
) ffecomoonoooconancooos R L e

Three-dimensional beams Dynamic analysis of frames and grids
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Direction cosines

m The relationship between local and global coordinates is:

i cos(z'z) cos(x'y) cos(z'z) 7
y | = | cos(y'z) cos(y'y) cos(y'z) | | v
2 cos(2'z) cos(z'y) cos(2'z) z

m The local 2’ is given by:

where

z22 — 21
ey Y

T2 — I
ey v

C=(w2— 212+ (12 —91)* + (22 — 21)%

Y2 — W1
ey )

lp = cos(z'z) = l, = cos(z'y) = I, = cos(x'z) =
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Direction cosines

m The local 3/ axis is chosen so that it lies in the local ' — 3/ plane and it is
perpendicular to z':

Oy, = [lya g O]

thus

l s
cos(y'z) = Ey’ cos(y'y) = 7 cos(y'z) =0, d=,/12+12.
m The local 2’ axis is chosen so that Oz = Ox' x Oy':
, 1
02! = = [~lals, ~lylz, ]

thus

cos(z'z) = - cos(Z'y) = _yT’ cos(2'z) = d.
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Global displacements for oriented three-dimensional beam

Three-dimensional beams

qu

q1z

Dynamic analysis of frames and grids
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MATLAB example - dynamic response of a 3d frame

» Go to Matlab Drive
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