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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6 Classical structural
elements

Bars and trusses Project 2 statement
7 Beams



Summary

Kinematics for Euler-Bernoulli beams

Strong and weak forms for Euler-Bernoulli beams

Stiffness and mass matrices

Matlab example of a plane beam in free vibrations

Geometric stiffness

Matlab example of buckling

Timoshenko beams

Recommended readings

1 Logan, A first course in the finite element method, 6th ed. (chap. 4)

2 Paz and Leigh, Structural dynamics, 6th ed. (chap. 10)

3 Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed.
(chap. 6 and 10)



Euler-Bernoulli planar beams



What is a beam?

Considered to be a uniaxial (slender) element: the longitudinal direction is
sufficiently larger than the other two.

Cross-section does not change along the element’s length.

Subjected to transversal loading that produced significant bending effects.

Very common type of structures used in steel buildings, bridges, towers, etc...

Euler-Bernoulli planar beams Dynamic analysis of beams 4 / 36



Euler-Bernoulli beam assumptions

Thin beam theory

Plane cross section perpendicular to the
longitudinal centroidal axis of the beam
before bending occurs remains plane and
perpendicular to the longitudinal axis after
bending occurs.

Shear deformations ε12 of the plane cross
section are neglected.

The beam cross-section is infinitely rigid in
its own plane.

Reasonable model for slender structures
made of isotropic materials.
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Euler-Bernoulli beam assumptions

Valid for: slender beams (h/ℓ < 1/100).

(Credit: Chatzi and Egger)
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Timoshenko beam assumptions

Thick beam theory

Plane cross section perpendicular to the
longitudinal centroidal axis of the beam
before bending occurs remains plane but
not necessarily perpendicular to the
longitudinal beam axis after beding occurs.

Shear deformations ε12 of the plane cross
section are considered.

Reasonable model for beams made of
composite material that require the shear
effect account.
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Timoshenko beam assumptions

Valid for: slender beams (h/ℓ < 1/100) and thick beams (h/ℓ > 1/10).

(Credit: Chatzi and Egger)
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Kinematic assumptions for Euler-Bernoulli beam

1 The analysis will be restricted to the dynamic behavior of the beam in the
O(x, y) plane.

2 The beam cross-section remains plane after deformation.

3 Lines that are straight and perpendicular to the geometrical beam axis remain
straight and perpendicular during deformation.

p

x

y
ℓ

P̂
M̂

E,A, ρ, I

Model parameters:

A cross-sectional area
E Young’s modulus
ρ material density
I moment of inertia
ℓ length

Loads:

M̂ bending moment
at free end
P̂ load at
free end
p distributed
transversal load

Variables:

u1(x, t) axial displacement u2(x, t) transversal displacement
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Displacements field

Introduce an auxiliary variable θ3(x, t) representing the total rotation of the
section around the Oz axis. Rotations are positive in clockwise direction.

u1

u2

θ3x
y

The first Euler-Bernoulli assumption implies

u3 = 0.

The second Euler-Bernoulli assumption implies

u1 = −yθ3 (rotation-axial displ.)

The third Euler-Bernoulli assumption implies

θ3 = ∂xu2 (rotation-transversal displ.)

Only one unknown: transversal displacement u2(x, t).
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Strain and stress

Substituting the displacement field u into ε = ∇u yield to the strain-displacement
relationship:

ε11 = ∂xu1 = −y∂2
xxu2 ε22 = ∂yu2 = 0

ε12 = ∂xu2 + ∂yu1 = ∂xu2 − θ3 = 0 ε33 = ε23 = ε13 = 0

Using the generalized Hooke’s law for homogeneous and isotropic material,
σ = Cε, is possible to write the stress field:

σ11 = (λ+ 2G)ε11 σ22 = λε11

σ33 = λε11 σ12 = σ13 = σ23 = 0

where λ = E
(1+ν)(1−2ν) and the shear modulus G = E

2(1+ν) are Lamé constants.
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Dynamic equilibrium equations

The theoretical stresses do not agree well with the experimental measurements.
⇒ Additional assumptions regarding the stress field:

σ11 = Eε11, and σ22 = σ33 = σ12 = σ13 = σ23 = 0.

dx

ρAü2dx

pdx

M M + ∂xMdx

V V + ∂xV dx
Summation of the transverse forces:

∂xV + p = ρAü2

Summation of the moments:

∂xM + V = 0

M = −
∫
A
yσ11 dA = −

∫
A
yEε11 dA = EI∂2

xxu2
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Strong form for transversal vibrations for Euler-Bernoulli beam

The strong form consists of finding the function u2 ∈ C4([0, ℓ]× [0, T ]) such that
the following equilibrium equation is satisfied:

∂2
xx

(
EI∂2

xxu2
)
+ ρAü2 = p

coupled with four boundary conditions:

u2(0, t) = 0 ∂x
(
−EI∂2

xxu2
)
(ℓ, t) = P̂

∂xu2(0, t) = 0 EI∂2
xxu2(ℓ, t) = M̂

and two initial conditions: u2(x, 0) = u0(x) and u̇2(x, 0) = v0(x).
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Weak form for transversal vibrations for Euler-Bernoulli beam

The weak form consists of finding the function u2 ∈ U such that the following
equation is satisfied for every δu2 ∈ V:∫ ℓ

0
EI ∂2

xxu2 ∂
2
xxδu2 dx+

∫ ℓ

0
ρA ü2 δu2 dx =

∫ ℓ

0
p δu2 dx+ M̂ δu′2(ℓ) + P̂ δu2(ℓ)

U =
{
u2(·, t) ∈ H2(]0, ℓ[) | u2(0, t) = ∂xu2(0, t) = 0 ∀t ∈]0, T [

}
V =

{
δu2 ∈ H2(]0, ℓ[) | δu2(0) = δu′2(0) = 0

}
The Sobolev space H2(]0, ℓ[) is the defined as:

H2(]0, ℓ[) =
{
f ∈ L2(]0, ℓ[) |

∫ l

0

(
∂xf(x)

)2
dx < ∞,

∫ l

0

(
∂2
xxf(x)

)2
dx < ∞

}
.
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Approximated transversal displacement

Euler-Bernoulli theory states that both transversal displacement u2 and
rotation θ3 = ∂xu2 must be continuous within finite elements and in particular
between elements.
Shape functions that meet this requirement are said to have C1 continuity.

Cubic vs. linear elements. Credit: [N]

Assume the approximated transversal displacement to be

uh2(x, t) = a3(t)x
3 + a2(t)x

2 + a1(t)x+ a0(t)
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Nodal degrees of freedom

1 2

x

θ1

θ2

u1

u2

ℓ

Parameters shifts:

a0, a1, a2, a3, ⇒ u1, u2, θ1, θ2

A planar beam element has two DOFs
per node:

u1, u2: nodal displacements in the
transverse direction.

θ1, θ2: nodal rotations around the
axis normal to the beam plane.
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Hermite C1 shape functions

Expressing the approximated displacement uh as a function of the nodal
DOFs yield to:

uh2(x, t) = H(x)q(t) = [h1(x), h2(x), h3(x), h4(x)]


u1(t)
θ1(t)
u2(t)
θ2(t)


Cubic local shape functions:

h1(x) = 2(x/ℓ)3 − 3(x/ℓ)2 + 1 h3(x) = 3(x/ℓ)2 − 2(x/ℓ)3

h2(x) = x(1− x/ℓ)2 h4(x) = x(x/ℓ)(x/ℓ− 1)

Virtual displacement approximation follows the same logic:

δuh(x) = H(x)δq where δq = [δu1, δθ1, δu2, δθ2]
T
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Hermite C1 shape functions visualizations

0.2 0.4 0.6 0.8 1

−0.2

0.2

0.4

0.6

0.8

1

1.2

x

hi(x)

h1(x) h3(x)

Translational shape functions

0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0.2

0.4

0.6

x

hi(x)

h2(x) h4(x)

Rotational shape functions
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Element stiffness matrix

K =

∫ ℓ

0
EI BTB dx

=

∫ ℓ

0
EI


(h′′1)

2 h′′1h
′′
2 h′′1h

′′
3 h′′1h

′′
4

(h′′2)
2 h′′2h

′′
3 h′′2h

′′
4

(h′′3)
2 h′′3h

′′
4

Symm. (h′′4)
2

 dx

=
EI

ℓ3


12 6ℓ −12 6ℓ

4ℓ2 −6ℓ 2ℓ2

12 −6ℓ
Symm. 4ℓ2


where the deformation matrix is

B =
d2H

dx2
=

[
h′′1(x) h′′2(x) h′′3(x) h′′4(x)

]
Euler-Bernoulli planar beams Dynamic analysis of beams 19 / 36



Element consistent mass matrix

M =

∫ ℓ

0
ρA HTH dx

=

∫ ℓ

0
ρA


(h1)

2 h1h2 h1h3 h1h4
(h2)

2 h2h3 h2h4
(h3)

2 h3h4
Symm. (h4)

2

 dx

=
ρAℓ

420


156 22ℓ 54 −13ℓ

4ℓ2 13ℓ −3ℓ2

156 −22ℓ
Symm. 4ℓ2


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Element lumped mass matrix

Assumption that the mass of the structure is lumped at the nodal coordinates
where translational displacements are defined.

Inertial effect associated with any rotational degree of freedom is usually
assumed to be zero.

Recall that ρ ·A is the mass per unit length along the beam, then the lumped
mass matrix is defined as

M =
ρAℓ

2


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


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Applied loads

Constant distributed loads:

p(t)

ℓ

r =

∫ ℓ

0
p(t)HT dx =

p(t)ℓ

2


1
ℓ/6
1

−ℓ/6


Uniform transverse loads can be replaced by two equivalent transverse nodes
loads of value (pℓ)/2 and by two equivalent nodal moments of values ±pℓ2/12.

Concentrated loads:

P̂ (t)d

r(t) = P̂ (t)HT (d)

M̂(t)
d

r(t) = M̂(t)
dH

dx

T

(d)
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Post-processing: approximation of bending moment and shear force

The approximated bending moment along the beam element is

Mh(x, t) = EI∂2
xxu

h
2(x, t) = EIB(x)q(t).

The approximated shear force along the beam element is

V h(x, t) = −∂xM
h(x, t) = −EI

dB

dx
(x)q(t).
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MATLAB examples

A Cantilever beam subjected to a downward force

A clamped-clamped beam in free vibration.

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b


Geometric stiffness



Beam subjected to a distributed axial force

Consider a beam element as used previously but now subjected to a
distributed axial force N per unit of length.

x

y

ℓ

NN

E,A, ρ, I

Beam carrying large axial loads or undergoing large displacements have
nonlinear behavior arising from the internal moments that are the product of
the axial loads and the displacements transverse to the loads.

The stiffness coefficients kij must be modified by the presence of the axial
force to the corresponding geometric stiffness coefficients kgij .
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Geometric stiffness matrix

kgij is defined as the force corresponding to the nodal coordinate i due to a unit
displacement at coordinate j and resulting for the axial force N .

Calculation of kg12: vertical force at node 1 due to a unit rotation θ2 = 1 caused
by the axial force N . May be evaluated by the principle of virtual work:

dW = N(x)δe

By similar triangles we have

δe
dh1(x)

=
dh2(x)

dx

δe =
dh1
dx

(x)
dh2
dx

(x) dx

kg12 =

∫ ℓ

0
N(x)h′1(x)h

′
2(x) dx
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Geometric stiffness matrix

In general, any geometric stiffness coefficient may be expressed as

kgij =

∫ ℓ

0
N(x)h′i(x)h

′
i(x) dx

We define the consistent geometric stiffness matrix as:

Kg =

∫ ℓ

0
N(x)

dH

dx

T dH

dx
dx

When N is constant along the beam length we obtain

Kg =
N

30ℓ


36 3ℓ −36 3ℓ
3ℓ 4ℓ2 −3ℓ −ℓ2

−36 −3ℓ 36 −3ℓ
3ℓ −ℓ2 −3ℓ 4ℓ2


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Example: stability of Bernoulli beam

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b


Timoshenko planar beam



Kinematic assumptions for Timoshenko beam

1 The analysis will be restricted to the dynamic behavior of the beam in the
O(x, y) plane.

2 The beam cross-section remains plane after deformation.

3 Lines that are straight and perpendicular to the geometrical beam axis remain
straight but not necessarily perpendicular during deformation.

p

x

y
ℓ

P̂
M̂

E,A, ρ, I

Model parameters:

A cross-sectional area
E Young’s modulus
ρ material density
I moment of inertia
ℓ length

Loads:

M̂ bending moment
at free end
P̂ load at
free end
p distributed
transversal load

Variables:

u1(x, t) axial displacement u2(x, t) transversal displacement
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Displacements field

Introduce an auxiliary variable θ3(x, t) representing the total rotation of the
section around the Oz axis. Rotations are positive in clockwise direction.

u1

u2

θ3x
y

The first Timoshenko assumption implies

u3 = 0.

The second Timoshenko assumption implies

u1 = −yθ3 (rotation-axial displ.)

Two unknowns: transversal displacement u2(x, t) and θ3(x, t) rotation of the
section around the Oz axis.
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Strain and stress

Substituting the displacement field u into ε = ∇u yield to the strain-displacement
relationship:

ε11 = ∂xu1 = −y∂2
xxu2 ε22 = ∂yu2 = 0

ε12 = ∂xu2 + ∂yu1 = ∂xu2 − θ3 ε33 = ε23 = ε13 = 0

Using the generalized Hooke’s law for homogeneous and isotropic material,
σ = Cε, is possible to write the stress field:

σ11 = (λ+ 2G)ε11 σ12 = 2Gε12

σ22 = σ33 = λε11 σ13 = σ23 = 0
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Dynamic equilibrium equations

Additional assumptions regarding the stress field:

σ11 = Eε11, σ12 = 2Gε12 and σ22 = σ33 = σ13 = σ23 = 0.

dx

ρAü2dx

pdx

M M + ∂xMdx

V V + ∂xV dx

ρIθ̈3dx

Summation of the transverse forces:

∂xV + p = ρAü2

Summation of the moments:

∂xM + V = ρIθ̈3

V =

∫
A
σ12 dA = kGAε12 = kGA(∂xu2 − θ3)

M = −
∫
A
yσ11 dA = −

∫
A
yEε11 dA = EI∂xθ3
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Strong form for transversal vibrations for Timoshenko beam

The strong form for transversal vibrations of beams consists of finding the
functions u2 ∈ C2([0, ℓ]× [0, T ]) and θ3 ∈ C2([0, ℓ]× [0, T ]) such that the following
equilibrium equations, boundary and initial conditions are satisfied.

∂x
(
kGA(∂xu2 − θ3)

)
+ p = ρAü2

∂x
(
EI∂xθ3

)
+ kGA(∂xu2 − θ3) = ρIθ̈3

In matrix form:(
∂x 0
1 ∂x

)
︸ ︷︷ ︸

∇T
σ

(
kGA 0
0 EI

)
︸ ︷︷ ︸

C

(
∂x −1
0 ∂x

)
︸ ︷︷ ︸

∇u

(
u2

θ3

)
︸ ︷︷ ︸

u

+

(
p
0

)
︸︷︷︸

f

=

(
ρA 0
0 ρI

)
︸ ︷︷ ︸

M

(
ü2

θ̈3

)
︸ ︷︷ ︸

ü

∇T
σC∇uu+ f = Mü

Timoshenko planar beam Dynamic analysis of beams 33 / 36



Weak form for transversal vibrations for Timoshenko beam

The weak formulation of the problem consists in finding the solution u ∈ U which
satisfies the equation∫ ℓ

0
(∇uδu)

TC (∇uu) dx+

∫ ℓ

0
δuTMü dx =

∫ ℓ

0
δuTfdx+ δuT(ℓ)f̂ ∀δu ∈ V

where the function classes U and V are defined as follows

U =
{
u = {u2, θ3}T | u2(·, t) ∈ H1(]0, ℓ[); θ3(·, t) ∈ H1(]0, ℓ[);u2(0, t) = θ3(0, t) = 0

}
,

V =
{
δu = {δu2, δθ3}T | δu2 ∈ H1(]0, ℓ[); δθ3 ∈ H1(]0, ℓ[); δu2(0) = δθ3(0) = 0

}
.
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Displacements approximation

We approximate the displacement using the ansatz:

uh(x, t) = H(x)q(t)

δuh(x) = H(x)δq

H(x) is a matrix of linear shape functions:

H =
[
h1I h2I

]
=

[
1− x/ℓ 0 x/ℓ 0

0 1− x/ℓ 0 x/ℓ

]
q(t) is a vector of (unknown) time-dependent nodal displacements and δq is a
vector of constants:

q(t) =

[
u2(t)
θ3(t)

]
and δq =

[
δu2
δθ3

]

Timoshenko planar beam Dynamic analysis of beams 35 / 36



Deformation, stiffness, mass matrices and loads vector

B = ∇uH is the deformation matrix:

B =
[
∇uh1 ∇uh2

]
=

[
−1/ℓ x/ℓ− 1 1/ℓ −x/ℓ
0 −1/ℓ 0 1/ℓ

]

K and M and r are defined as

K =

∫
Ω
BTCB dΩ, M =

∫
Ω
ρHTH dΩ, r(t) =

∫
Γσ

HT f̂ dΓ+

∫
Ω
HT f dΩ.
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