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Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
) FEM local Project 1 submission
6 Classical structural | Bars and trusses Project 2 statement
7 elements Beams




Summary
m Kinematics for Euler-Bernoulli beams
m Strong and weak forms for Euler-Bernoulli beams
m Stiffness and mass matrices
m Matlab example of a plane beam in free vibrations
m Geometric stiffness
m Matlab example of buckling
[

Timoshenko beams

Recommended readings
@ Logan, A first course in the finite element method, 6th ed. (chap. 4)
® Paz and Leigh, Structural dynamics, 6th ed. (chap. 10)

® Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed.
(chap. 6 and 10)



Euler-Bernoulli planar beams



What is a beam?

Considered to be a uniaxial (slender) element: the longitudinal direction is
sufficiently larger than the other two.

Cross-section does not change along the element’s length.

Subjected to transversal loading that produced significant bending effects.

Very common type of structures used in steel buildings, bridges, towers, etc...
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Euler-Bernoulli beam assumptions

Thin beam theory

m Plane cross section perpendicular to the
longitudinal centroidal axis of the beam
before bending occurs remains plane and

BenouLLs perpendicular to the longitudinal axis after
bending occurs.

m Shear deformations €15 of the plane cross
section are neglected.

m The beam cross-section is infinitely rigid in
its own plane.

m Reasonable model for slender structures
made of isotropic materials.
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Euler-Bernoulli beam assumptions

Valid for: slender beams (h/¢ < 1/100).

N%

(Credit: Chatzi and Egger)
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Timoshenko beam assumptions

Thick beam theory

m Plane cross section perpendicular to the
longitudinal centroidal axis of the beam
before bending occurs remains plane but
not necessarily perpendicular to the
longitudinal beam axis after beding occurs.

m Shear deformations €15 of the plane cross
section are considered.

m Reasonable model for beams made of
composite material that require the shear
effect account.
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Timoshenko beam assumptions

Valid for: slender beams (h/¢ < 1/100) and thick beams (h/¢ > 1/10).

, v

(Credit: Chatzi and Egger)
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Kinematic assumptions for Euler-Bernoulli beam

@ The analysis will be restricted to the dynamic behavior of the beam in the
O(z,y) plane.

® The beam cross-section remains plane after deformation.

@ Lines that are straight and perpendicular to the geometrical beam axis remain
straight and perpendicular during deformation.

Y
g Model parameters: Loads: R
p P A cross-sectional area - ]:[ ?endinﬁ, TGt
) at free en
SRRRRRRNARRRRRRRRRRE Rt > Dt B
\ €T m I moment of inertia free. enFJ
1 a ¢ length m p distributed
N 5 transversal load
E7 A7 P I
m ui(x,t) axial displacement m us(x,t) transversal displacement
) Y
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Displacements field

Introduce an auxiliary variable f3(x,t) representing the total rotation of the
section around the Oz axis. Rotations are positive in clockwise direction.

m The first Euler-Bernoulli assumption implies

2 12 - uz = 0.
) n 05 m The second Euler-Bernoulli assumption implies
! > | up = —ybs (rotation-azxial displ.)
§ m The third Euler-Bernoulli assumption implies

03 = Opu9 (rotation-transversal displ.)

Only one unknown: transversal displacement ug(x,t).
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Strain and stress

Substituting the displacement field u into € = Vu yield to the strain-displacement

relationship:
€11 = ﬁxul = —y@fqu €99 = Oyug =0
€12 = Ogug + Oyu1 = Opug — 03 =0 €33 = €23 =¢€13 =10

Using the generalized Hooke’s law for homogeneous and isotropic material,
o = Ce, is possible to write the stress field:

o11 = (A +2G)enn 0922 = A1t
033 = Ae11 o12 =013 =023 =0
where \ = m and the shear modulus G = ﬁ are Lamé constants.
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Dynamic equilibrium equations

The theoretical stresses do not agree well with the experimental measurements.
= Additional assumptions regarding the stress field:

o11 = Eeqy, and 099 = 033 = 019 = 013 = 093 = 0.
pAiipdz m Summation of the transverse forces:
Vo1 V +0,Vdzx
M <I : l> M + 0. Mdzx 0,V + p = pAiig
! m Summation of the moments:
pdx
dx

M = —/ Yyo11 dA = —/ yE511 dA = E]{)%JUZ
A A
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Strong form for transversal vibrations for Euler-Bernoulli beam

The strong form consists of finding the function uy € C*([0, £] x [0,T]) such that
the following equilibrium equation is satisfied:

02, (E102,u2) + pAiiy = p
coupled with four boundary conditions:

UQ(O,t) =0 8x (—EI@%IUQ) (E,
Oru2(0,1) =0 EI9? us(¢,

) =
)

and two initial conditions: wua(x,0) = ug(x) and us(z,0) = vo(z).

o
t)=M
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Weak form for transversal vibrations for Euler-Bernoulli beam

The weak form consists of finding the function us € U such that the following
equation is satisfied for every dus € V:

l l l
/ EI 02, up 82, 0us dx + / pAiis dug dx = / pug dx + M Sub(£) + P Sug(l)
0 0 0

U = {us(-,t) € H*(]0,4]) | u2(0,t) = 9, uQ(o t) =0Vt €0, T[}
V= {6us € HQ(]O,B[) | du2(0) = dub(0) =0}

The Sobolev space H2(]0,¢[) is the defined as:

H%()0,¢]) = {f € L*()0,¢)) | /Ol (avf(x dz < oo, / *dw < oo}
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Approximated transversal displacement

m Euler-Bernoulli theory states that both transversal displacement us and
rotation #3 = J,us must be continuous within finite elements and in particular
between elements.

m Shape functions that meet this requirement are said to have C'! continuity.

Cubic vs. linear elements. credit: [n)

m Assume the approximated transversal displacement to be

ul(z,t) = az(t)x® + ag(t)2? + a1 (t)z + ao(t)
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Nodal degrees of freedom

Parameters shifts:

D)
ap, ai, az, as, = Uy, U2, 01, 92

A planar beam element has two DOFs

per node:
u2

m uq, ug: nodal displacements in the

1 transverse direction.

- . m 01, 65: nodal rotations around the
@ ’ @ axis normal to the beam plane.
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Hermite C! shape functions

m Expressing the approximated displacement u” as a function of the nodal
DOFs yield to:

ul(t)
h(z,t) = H@)a(t) = (@), hala), ha(a), ha(o)] |20
2109)
m Cubic local shape functions:
hi(z) = 2(z/0)® — 3(x/0)* + 1 ha(z) = 3(z/0)? — 2(x/0)?
hy(z) = z(1 — z/£)? ha(x) = x(z/l)(x/l — 1)

m Virtual displacement approximation follows the same logic:

oul(x) = H(z)dq where dq = [du1, 661, dug, 662]7

Euler-Bernoulli planar beams
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Hermite C! shape functions visualizations
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Element stiffness matrix

0
K:/ EI B'B dx
0

(W) WiRg R R

4 "\2 "y 1"y
_ (h3)* hyhy  hyhy
= [ (g2 winy | %
Symm. (Rf)?
12 6/ —12 6/
_EI 402 —60 207
03 12 —6/4
Symm. 402
where the deformation matrix is
d’H
= oz = [M(@) () hg(z) Hi(@)]
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Element consistent mass matrix

l
M:/ pA HTH dzx
(0]

(h1)?>  hiha  hihs  hihy

¢ (h2)?  hohs  hohy
—/OpA (h3)2 haha dz
Symm. (hq)?
156 220 54 —13¢
_ pAL 407 130 302
T 420 156 —22¢
Symm. 402
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Element lumped mass matrix

m Assumption that the mass of the structure is lumped at the nodal coordinates
where translational displacements are defined.

m Inertial effect associated with any rotational degree of freedom is usually
assumed to be zero.

m Recall that p- A is the mass per unit length along the beam, then the lumped
mass matrix is defined as

(\V]
e e o =
S O O O
O = O O
o O O O
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Applied loads

m Constant distributed loads:
/

1

p(t) ¢ )| ¢/6

SARRRARRRRRARRARRRRE r:/p(t)Hdezp(z) d
0

—0/6

Uniform transverse loads can be replaced by two equivalent transverse nodes
loads of value (pf)/2 and by two equivalent nodal moments of values +pf?/12.

m Concentrated loads:

d P(t) 4 N
| 1
| )
T
r(t) = P(t)H (d) r(t) = M(t) %1 (d)
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Post-processing: approximation of bending moment and shear force

m The approximated bending moment along the beam element is
M"(z,t) = EI9? ub(z,t) = EIB(z)q(t).
m The approximated shear force along the beam element is

Vi(z,t) = -0, M"(z,t) = —EI ‘CZTB( )q(t).

T
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MATLAB examples

m A Cantilever beam subjected to a downward force

m A clamped-clamped beam in free vibration.

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b

Geometric stiffness




Beam subjected to a distributed axial force

m Consider a beam element as used previously but now subjected to a
distributed axial force N per unit of length.

Y

’ E7A7p?‘[ ’

m Beam carrying large axial loads or undergoing large displacements have
nonlinear behavior arising from the internal moments that are the product of
the axial loads and the displacements transverse to the loads.

m The stiffness coefficients k;; must be modified by the presence of the axial
force to the corresponding geometric stiffness coefficients l-cf]
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Geometric stiffness matrix

k‘igj is defined as the force corresponding to the nodal coordinate ¢ due to a unit
displacement at coordinate j and resulting for the axial force .

Calculation of k{Q: vertical force at node 1 due to a unit rotation 9 = 1 caused
by the axial force N. May be evaluated by the principle of virtual work:

e dW = N(z)de

By similar triangles we have

N(x) ‘ I 56 . th ({'C )
{. ke dhi(z)  du
N;l(ll dh 1 dh2

] b = %(:p)%(x) dz
l
K, = /0 N (@)W, (@) () de
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Geometric stiffness matrix

m In general, any geometric stiffness coefficient may be expressed as

¢
kfj = / N(x)h}(z)hi(x) dz
0
m We define the consistent geometric stiffness matrix as:

dd” dH

0
K= | N@x)— — d
/0 (x>dm dz

m When N is constant along the beam length we obtain

36 3¢ —36 3¢
N [ 3¢ 4 -3¢ -1

T 300 |-36 -3¢ 36 -3¢
3¢ —02 —3¢ 442

g
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Example: stability of Bernoulli beam

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b

Timoshenko planar beam




Kinematic assumptions for Timoshenko beam

@ The analysis will be restricted to the dynamic behavior of the beam in the
O(z,y) plane.

® The beam cross-section remains plane after deformation.

@ Lines that are straight and perpendicular to the geometrical beam axis remain
straight but not necessarily perpendicular during deformation.

Y
g Model parameters: Loads: R
p P A cross-sectional area - ]:[ ?endinﬁ, TGt
) at free en
SRRRRRRNARRRRRRRRRRE Rt > Dt B
\ €T m I moment of inertia free. enFJ
1 a ¢ length m p distributed
N 5 transversal load
E7 A7 P I
m ui(x,t) axial displacement m us(x,t) transversal displacement
) Y
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Displacements field

Introduce an auxiliary variable 65(x,t) representing the total rotation of the
section around the Oz axis. Rotations are positive in clockwise direction.

U2
4 ” m The first Timoshenko assumption implies
N bl
T 93 uz = 0.
Y
g m The second Timoshenko assumption implies
- up = —ybs (rotation-azial displ.)

Two unknowns: transversal displacement us(z,t) and 03(x,t) rotation of the
section around the Oz axis.

Timoshenko planar beam Dynamic analysis of beams
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Strain and stress

Substituting the displacement field u into € = Vu yield to the strain-displacement

relationship:
2
€11 = (‘)xul = —y@xxug €92 = 8yu2 =0
€12 = Opug + Oyus = Oryuz — 03 €33 = €23 = €13 =0

Using the generalized Hooke’s law for homogeneous and isotropic material,
o = Ce, is possible to write the stress field:

o11 = (A +2G)en o12 = 2Geq2

0922 = 033 = A1l o013 =023 =0
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Dynamic equilibrium equations

Additional assumptions regarding the stress field:

o1 = Eey1, o012 =2Geq2 and 092 = 033 = 013 = 023 = 0.

pAiisdx
V.t V+0,Vdr

m Summation of the transverse forces:

M O Q: D M + 8, Mdzx 0,V + p = pAiiy
ji m Summation of the moments:
.. pdx
plOsdz 8:M +V = pIfs
dx

V= / 012 dA = kGA€12 = kGA(azUQ - 93)
A

M = —/ Yoii dA = —/ yEEH dA = E](‘),,ﬁg
A A
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Strong form for transversal vibrations for Timoshenko beam

The strong form for transversal vibrations of beams consists of finding the
functions us € C2([0,¢] x [0,T]) and 03 € C?([0,¢] x [0, T]) such that the following
equilibrium equations, boundary and initial conditions are satisfied.

Oy (k:GA(@mug = 93)) +p= pAiiQ
O (E10,03) + kGA(Oyua — 03) = pIfs

In matrix form:

Oy O kGA 0 0 —1Y\ (us 4 (P) = pA 0 (>
1 0 0 FEI 0 0./ \0s 0/ \0 pI)\b;
vZ C YV u £ M i

o

VICV,u+f = Mi
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Weak form for transversal vibrations for Timoshenko beam

The weak formulation of the problem consists in finding the solution u € U which
satisfies the equation

l 0 14
/ (Vuou)' C (V,u)de + / duMiidz = / outfde 4+ ouT(O)f VYoueV
0 0 0

where the function classes U/ and V are defined as follows
U = {u = {uz, 05} | ua(-,t) € H'(10,€0);05(-,t) € H (0, £]); us(0,1) = 5(0,8) = 0},
V= {6u = {6u2,603}T | dug € Hl(]O,K[);éﬂg € Hl(]O,E[);(SuQ(O) = §605(0) = 0}.
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Displacements approximation

m We approximate the displacement using the ansatz:
u"(x,t) = H(x)q(1)
su’(x) = H(x)dq

m H(x) is a matrix of linear shape functions:

H=[ il h21]:[1—x/£ 0 az/t 0]

0 l—z/t 0 x/¢

m q(t) is a vector of (unknown) time-dependent nodal displacements and dq is a
vector of constants:

alt) = [ e t)] ol G BZ;]
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Deformation, stiffness, mass matrices and loads vector

m B = V,H is the deformation matrix:

[—1/5 z/l—1 1/ —x/[}

B=| Vb1 Vuh | 0 -1/t 0 1/¢

m K and M and r are defined as

K:/BTCBdQ, M:/,oHTHdQ, r(t) = Hder+/ HTf d).
Q Q T Q
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