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Problem set 6 - solutions

Problem 1

1. Weak form: we multiply the governing equation by a virtual transversal displacement δu2(x)
and integrate by parts over the domain:∫ ℓ

0

(
EI

∂4u2

∂x4
+ ρAü2

)
δu2 dx = 0

Split the integral in the first term in two and integrate by parts on each interval to reduce the order
of derivatives on u2:∫ ℓ

0

EI
∂4u2

∂x4
δu2 dx =

∫ ℓ/2

0

EI
∂4u2

∂x4
δu2 dx+

∫ ℓ

ℓ/2

EI
∂4u2

∂x4
δu2 dx

= −
∫ ℓ

0

EI
∂3u2

∂x3
δu′

2 dx+

[
EI

∂3u2

∂x3
δu2

]ℓ/2
0

+

[
EI

∂3u2

∂x3
δu2

]ℓ
ℓ/2

.

Due to zero virtual displacement boundary conditions δu2(0) = δu2(ℓ) = 0, and the continuity
condition, along with the assumption that the virtual displacement δu2 is continuous at x = ℓ/2,
all boundary terms vanish except for the contribution at x = ℓ/2:∫ ℓ

0

EI
∂4u2

∂x4
δu2 dx = −

∫ ℓ

0

EI
∂3u2

∂x3
δu′

2 dx− Pδu2

(
ℓ

2

)
To further reduce the order of derivatives on u2, we apply integration by parts a second time to the
first term in the above expression:

−
∫ ℓ

0

EI
∂3u2

∂x3
δu′

2 dx =

∫ ℓ

0

EI
∂2u2

∂x2
δu′′

2 dx−
[
EI

∂2u2

∂x2
δu′

2

]ℓ
0

.

Due to zero bending moment boundary conditions

∂2u2

∂x2
(0, t) =

∂2u2

∂x2
(ℓ, t) = 0.

both boundary terms vanish. Hence, the weak form is:∫ ℓ

0

EI
∂2u2

∂x2
δu′′

2 dx+

∫ ℓ

0

ρAü2 δu2 dx = P δu2

(
ℓ

2

)
.

Function spaces:

u2 ∈ U =
{
v(·, t) ∈ H2(0, ℓ)

∣∣ v(0, t) = v(ℓ, t) = 0
}

δu2 ∈ V =
{
v ∈ H2(0, ℓ)

∣∣ v(0) = v(ℓ) = 0
}
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2. Finite element approximation: we approximate uh
2(x, t) =

∑4
j=1 hj(x)qj(t) and δuh

2(x) =∑4
j=1 hj(x)δqj. Plug these two ansatz into the weak form to obtain

4∑
i=1

4∑
j=1

δqj

(∫ ℓ

0

EI
d2hi

∂x2

d2hj

∂x2
dx qi(t) +

∫ ℓ

0

ρAhihj dx q̈i(t)
)
=

4∑
j=1

Phj

(
ℓ

2

)
δqj

3. Matrix form: we define

kij =

∫ ℓ

0

EI
d2hi

∂x2

d2hj

∂x2
dx, mij =

∫ ℓ

0

ρAhihj dx, rj = P hj

(
ℓ

2

)
.

Then the semi-discrete system is:
Kq(t) +Mq̈(t) = r

where q(t) = [q1(t), . . . , q4(t)]
T .

Problem 2

For a simply supported Euler-Bernoulli beam, the transverse displacements at both ends are con-
strained to zero, while the rotations are free. Using Hermite shape functions, a single beam element
has four nodal degrees of freedom (DOFs):

q =
[
u1 θ1 u2 θ2

]T
where node 1 corresponds to x = 0 and node 2 to x = ℓ. The boundary conditions impose u1 = 0
and u2 = 0, which means the free DOFs are the two nodal rotations:

qf =
[
θ1 θ2

]T
Static reduced system: The stiffness matrix for a single Euler-Bernoulli beam element, as
derived from the slides, is given by:

K =
EI

ℓ3


12 6ℓ −12 6ℓ
6ℓ 4ℓ2 −6ℓ 2ℓ2

−12 −6ℓ 12 −6ℓ
6ℓ 2ℓ2 −6ℓ 4ℓ2


By eliminating rows and columns associated with the constrained DOFs (1 and 3), we obtain the
reduced stiffness matrix:

Kred =
EI

ℓ3

[
4ℓ2 2ℓ2

2ℓ2 4ℓ2

]
=

2EI

ℓ

[
2 1
1 2

]
The external load vector is constructed by evaluating the Hermite shape functions at the midpoint
x = ℓ/2, where the point load P is applied. This gives:

r = PHT (ℓ/2) = P
[
1
2

ℓ
8

1
2

− ℓ
8

]T
Restricting this to the free DOFs yields:

rred =
Pℓ

8

[
+1
−1

]
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We solve the reduced system Kredqf = rred, stemming from the static discrete equation, for the free
DOFs qf :

2EI

ℓ

[
2 1
1 2

] [
θ1
θ2

]
=

Pℓ

8

[
+1
−1

]
[
2 1
1 2

] [
θ1
θ2

]
=

Pℓ2

16EI

[
+1
−1

]
[
θ1
θ2

]
=

Pℓ2

48EI

[
2 −1
−1 2

] [
+1
−1

]
=

Pℓ2

16EI

[
+1
−1

]
To compute the approximate transverse displacement at the midpoint, we evaluate the interpolated
solution at x = ℓ/2:

δh = uh
2(ℓ/2) = H(ℓ/2)q =

[
1
2

ℓ
8

1
2

− ℓ
8

] 
0

Pℓ2/16EI
−Pℓ2/16EI

0

 =
Pℓ3

64EI
.

Thus, the approximated model underestimates the deflection magnitude, with a relative error of:∣∣∣∣δh − δexact

δexact

∣∣∣∣ =
∣∣∣∣∣ Pℓ3

64EI
− Pℓ3

48EI
Pℓ3

48EI

∣∣∣∣∣ = 1

4
= 25%.

This difference arises due to the use of a single finite element and highlights the limited accuracy
in capturing higher-order curvature effects.

First natural frequency: the reduced consistent mass matrix for the free rotational degrees of
freedom, as obtained from the slides, is given by:

Mred =
ρAℓ

420

[
4ℓ2 −3ℓ2

−3ℓ2 4ℓ2

]
=

ρAℓ3

420

[
4 −3
−3 4

]
.

To determine the first natural frequency of the beam, we solve the generalized eigenvalue problem:

Kredqf − λMredqf = 0.

where λ = ω2 is the eigenvalue corresponding to the square of the angular frequency. Substituting
the expressions for the stiffness and mass matrices yields:

det

(
2EI

ℓ

[
2 1
1 2

]
− λ

ρAℓ3

420

[
4 −3
−3 4

])
= 0,

det

[
4EI
ℓ

− λ4ρAℓ3

420
2EI
ℓ

+ λ3ρAℓ3

420

2EI
ℓ

+ λ3ρAℓ3

420
4EI
ℓ

− λ4ρAℓ3

420

]
= 0,

(
4EI

ℓ
− λ

4ρAℓ3

420

)2

−
(
2EI

ℓ
+ λ

3ρAℓ3

420

)2

= 0.(
2EI

ℓ
− λ

7ρAℓ3

420

)(
6EI

ℓ
− λ

ρAℓ3

420

)
= 0.
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The two roots of the characteristic equation det(Kred−λMred) = 0, corresponding to the eigenvalue,
are:

λ1 =
120EI

ρA ℓ4
, and λ2 =

2520EI

ρA ℓ4
,

which gives the square of the first and second natural angular frequencies. Thus, the corresponding
approximate fundamental natural frequency is:

fh
1 =

ω1

2π
=

√
λ1

2π
=

√
120

2πℓ2

√
EI

ρA
.

The relative error against the exact value is:∣∣∣∣fh
1 − f exact

1

f exact
1

∣∣∣∣ =
∣∣∣∣∣
√
120− π2

π2

∣∣∣∣∣ = 0.1099%.

This result reveals that the approximate frequency obtained using a single Hermite beam element
significantly overestimates (around 10%) the exact fundamental frequency. This large discrepancy
stems from the overly stiff behavior of the reduced-order model when only rotational degrees of
freedom are retained. The use of a single finite element fails to capture the distributed inertia
and deformation characteristics of the continuous beam, particularly for dynamic problems. To
achieve a more accurate estimation of the natural frequencies, a finer spatial discretization—i.e.,
using multiple beam elements—is essential, as it better approximates the curvature of the mode
shapes and the correct mass distribution.

Bonus task: implement a MATLAB script to model the simply supported beam using two Euler-
Bernoulli beam elements with Hermite shape functions. Assemble the global stiffness and mass
matrices, apply boundary conditions, and reduce the system to the free DOFs. Compute the
first approximated natural frequency and compare it with the exact one. Briefly comment on the
improvement compared to the single-element approximation.
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