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Problem set 6 - solutions

Problem 1

1. Weak form: we multiply the governing equation by a virtual transversal displacement dus(x)
and integrate by parts over the domain:
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Split the integral in the first term in two and integrate by parts on each interval to reduce the order
of derivatives on us:
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Due to zero virtual displacement boundary conditions dus(0) = dus(¢) = 0, and the continuity
condition, along with the assumption that the virtual displacement duy is continuous at z = £/2,
all boundary terms vanish except for the contribution at x = ¢/2:
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To further reduce the order of derivatives on us, we apply integration by parts a second time to the
first term in the above expression:
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Due to zero bending moment boundary conditions
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both boundary terms vanish. Hence, the weak form is:
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Function spaces:



2. Finite element approximation: we approximate u?(x,t) = ijl hi(z)g;(t) and dul(z) =

S0, h;(2)dq;. Plug these two ansatz into the weak form to obtain
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3. Matrix form: we define
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Then the semi-discrete system is:
Kq(t) + Mq(t) = r

where q(t) = [qi(t), ..., qa(t)]".

Problem 2

For a simply supported Euler-Bernoulli beam, the transverse displacements at both ends are con-
strained to zero, while the rotations are free. Using Hermite shape functions, a single beam element
has four nodal degrees of freedom (DOFs):
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where node 1 corresponds to x = 0 and node 2 to x = £. The boundary conditions impose u; = 0
and uy = 0, which means the free DOF's are the two nodal rotations:
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Static reduced system: The stiffness matrix for a single Euler-Bernoulli beam element, as
derived from the slides, is given by:
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By eliminating rows and columns associated with the constrained DOFs (1 and 3), we obtain the
reduced stiffness matrix:
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The external load vector is constructed by evaluating the Hermite shape functions at the midpoint
x = {/2, where the point load P is applied. This gives:
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Restricting this to the free DOF's yields:
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We solve the reduced system K,cqqs = Ireq, stemming from the static discrete equation, for the free
DOFs q;:
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To compute the approximate transverse displacement at the midpoint, we evaluate the interpolated
solution at x = £/2:
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Thus, the approximated model underestimates the deflection magnitude, with a relative error of:
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This difference arises due to the use of a single finite element and highlights the limited accuracy
in capturing higher-order curvature effects.

First natural frequency: the reduced consistent mass matrix for the free rotational degrees of
freedom, as obtained from the slides, is given by:
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To determine the first natural frequency of the beam, we solve the generalized eigenvalue problem:
Kredqf - )\Mredqf = 0.

where \ = w? is the eigenvalue corresponding to the square of the angular frequency. Substituting
the expressions for the stiffness and mass matrices yields:
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The two roots of the characteristic equation det(K,eq —AM,eq) = 0, corresponding to the eigenvalue,
are:
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which gives the square of the first and second natural angular frequencies. Thus, the corresponding
approximate fundamental natural frequency is:
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The relative error against the exact value is:
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This result reveals that the approximate frequency obtained using a single Hermite beam element
significantly overestimates (around 10%) the exact fundamental frequency. This large discrepancy
stems from the overly stiff behavior of the reduced-order model when only rotational degrees of
freedom are retained. The use of a single finite element fails to capture the distributed inertia
and deformation characteristics of the continuous beam, particularly for dynamic problems. To
achieve a more accurate estimation of the natural frequencies, a finer spatial discretization—i.e.,
using multiple beam elements—is essential, as it better approximates the curvature of the mode
shapes and the correct mass distribution.

Bonus task: implement a MATLAB script to model the simply supported beam using two Euler-
Bernoulli beam elements with Hermite shape functions. Assemble the global stiffness and mass
matrices, apply boundary conditions, and reduce the system to the free DOFs. Compute the
first approximated natural frequency and compare it with the exact one. Briefly comment on the
improvement compared to the single-element approximation.



