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Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
) FEM local Project 1 submission
6 Classical structural | Bars and trusses Project 2 statement

elements




Summary
m Figenvalues and eigenvectors errors bounds
m Trusses in 2d
m Matlab example of a 2d truss in free vibrations

Trusses in 3d

Matlab example of a 3d truss in free vibrations

Recommended readings
@ Logan, A first course in the finite element method, 6th ed. (chap. 3)
® Paz and Leigh, Structural dynamics, 6th ed. (chap. 14)

® Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed.
(chap. 4 and 5)



Eigenvalues and eigenvectors errors bounds



A priori error estimates for eigenvalues and eigenvectors

Using principles from Rayleigh and Courant-Fischer, asymptotic error estimates
can be established for eigenvalues and eigenvectors.

Error estimates:

X S AP <N+ ch?mam Tt
1} — illo < chmin(m1.2m)\(m+D/2

1
@} = gilli < chm AT
)\? are the approximated eigenvalues and qb? the corresponding eigenvectors,
\; are the exact eigenvalues and ¢; the corresponding eigenvectors,
h represents the characteristic mesh size,
m is the degree of the polynomial used in the finite element method,
¢ is a constant independent of h,

| - lo Euclidean H® = L? norm and || - ||; energy Sobolev H! norm.
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A priori error estimates for frequencies

From the fundamental relationship between eigenvalues and frequencies:

wi =X

we deduce the bound on the approximate frequencies:
w; < wzh <w; + Ehzmw?mH

m The eigenvalues are bounded below by their exact values : approximate
frequencies wlh always overestimate the exact frequencies w;.

m The presence of the last term in the expression indicates that the quality of
approximated frequencies degrades for higher modes.

m The convergence rates for eigenvectors and frequencies are both of order h%™.
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Trusses in 2d




What is a truss structure?

Plane truss

m Structure composed of oriented bar (rod) elements that all lies in a common
plane and are connected by frictionless pins.

m Loads are acting only in the common plane and they must be applied at the
nodes or joints.

m Very common type of structures used in steel buildings, bridges, towers, etc...
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Examples of 2d trusses

Typical Roof Trusses

Typical Bridge Trusses

o=
A7
~
~
Y W
Cantilever portion .
of a truss Bascule
Stadium

Other Types of Trusses
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Kinematic assumptions

Trusses are assumed to exhibit the following characteristics:
m they experience either compressive or tensile forces,
m their weight is considered negligible in comparison to the loads they support,

m they have varying orientations with respect to a fixed global coordinate
system, which serves as a stationary reference framework that remains
unchanged regardless of the orientation of individual elements.
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Equation of motion for non-oriented bar (in local coordinates)

A cross-sectional area

E Young’s modulus (isotropic bar)

£ length

L]
L]

/".) m p material density
L]
m u axial displacement
L]

E,Ap

2’ (local) axial coordinate

m Strong form:

EAar’u(Oa t) = _fl (t)

EAP% ju(z' t) = pAii(z/,t) {
EA@x/u(e, t) = f2 (t)

m Semi-discrete weak form:
5qu;c (Mlocéiloc(t) + Klocqloc(t) - floc(t>) =0
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Approximated displacements in local coordinates

hi ho Linear local shape functions:
1 2

w/
hl(.fU/) =1- ?

t ; @ % ho(z') = fl

m Displacements approximation local coordinates:

8]

u(2,t) = hi(2")q1 () + ha(2)q2(t) = [ha(2")  ho(2")] [Z;Em

m Virtual displacements approximation local coordinates:

S (a') = ()0 + o) = () a(e)] |32
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Elementary quantities in local coordinates

m Element stiffness matrix in local coordinates:

/ 1\2 BN
- (h})*  hihh ,_EA 1 -1

m Element consistent mass matrix in local coordinates:

¢ 5
- (h1)*  hihs , _ pALT2 1
Ml"c_/o pA |:h2h1 (h)2] ¥ =6 1 2

m Element applied loads vector in local coordinates:
fel®) = [1200)| 510 + [ 220y = | 200
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Displacements for oriented bar

m Displacement vector in local Yy
coordinates: G2y a2
Qloc = [q17 QQ]T- ¢ Q2
Quy , ' _~
m Displacement vector in global 1z
coordinates: 9
a = [q12> Q1y» Q20> Q29) " a:
Relation between local and global displacements:
qiz
q1| _ [cos(#) sin(0) 0 0 q1y
@ | 0 0  cos(f) sin(6)| |qox
’ a2
Aioc T Y
——
q
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Calculation of direction sines and cosines

Yo b

Ylf--------—-

|
|
|
|
|
|
1
I xI9 X

The direction sines and cosines can be calculated from the element geometry:

sin(9) = £

cos(f) = %

C=+/(z2— 21)% + (y2 — y1)2

Trusses in 2d Dynamic analysis of trusses 13 / 36



Elementary stiffness and consistent mass matrices in global coordinates

m Element stiffness matrix in global coordinates:

K =T"K,.T
cos2(f) sin(f) cos(f) —cos?(f) —sin(0) cos(6)
_FA sin?(6) — sin(#) cos(0) — sin?()
o/ cos?() sin(6) cos(0)
Symm. She())

m Element consistent mass matrix in global coordinates:

M =T"M,,.T
2cos?(f) 2sin(#) cos() cos?(6) sin(#) cos(0)
_ pAL 2sin?(0) sin(#) cos(0) sin?()
6 2cos?(0)  2sin(f) cos(6)
Symm. 2sin?(0)
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Lumped mass matrix

m Element consistent mass matrix in local coordinates:

_pALf2 1]
MlOC - 6 -1 2_

m Element lumped mass matrix in local coordinates:
pAL [1 0]

Mioe = == 0 1]

m Element lumped mass matrix in global coordinates:

M = T M, T
(D) sin(#) cos(0) 0 0
_ pAL |sin(0) cos() sin?(9) 0 0
) 0 0 cos(f) sin(#) cos()
0 0 sin(#) cos(0) Sh())
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Benefits of using lumped mass matrix

v Computational efficiency
Band matrix = Faster computations and lower memory usage.

v Improved numerical stability

Help avoid non-physical coupling between DOF's, which can cause instabilities,
in explicit time integration (Newmark or central difference methods).

v Physical realism for trusses
Truss mass is mostly at joints = Lumped mass better reflects reality.

v/ Good approximation in practice

Accurate enough for natural frequency and mode shape estimation in many
cases.

Band mass matriz = faster, simpler, and often accurate enough!
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Applied loads for oriented bar

m Nodal force vector in local Yy A
coordinates: Foy f2
floe = [f1, fo]- f, fox
, 1
fly iy
m Nodal force vector in global e
coordinates: 9
f= [flxyflyanxany]T- T
Forces undergo transformation in the same manner as displacements:
flac
fi| _ [cos(f) sin(0) 0 0 gy
f2] | O 0 cos(f) sin(0)| | fou
~—~—
floc T f2y
f
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Elementary loads vector in global coordinates

m Element applied loads vector in global coordinates:

£f=T7f,. =

m Loads are only applied at pins and are given in the global coordinates system,
the assembled loads vector can be computed directly.

m Distributed/self-weight loads are transformed to equivalent nodal loads.
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Assembly of stiffness and mass matrices and loads vector

Given a 2d truss structure made of m oriented bars, n nodes, and 2 DOF's per
node:

1. Element quantities:

m For each bar e, compute the element quantities global coordinates:

K — eTTeKloceT
eM = eTTeMloceT
ef — eTTefloc

2. Global assembly:
m Initialize global stiffness matrix K and global mass matrix M of size 2n X 2n,
m I[nitialize global loads vector f of size 2n x 1,

m Assemble each ¢°K, *M and ¢f for e =1,...,m, into K, M and f respectively
using element connectivity.
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Reduced stiffness and mass matrices and loads vector

3. Boundary conditions:
m Identify constrained (fixed or supported) degrees of freedom,

m Partition global matrices and vectors to separate free and constrained DOF's:

_ | Kyrr Kpe _ [Myy My _|ff
K= |:ch ch:|’ M= |:Mcf M|’ f= fo|”

m Apply constraints by removing or modifying rows and columns corresponding
to constrained DOF's.
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Modal analysis

m Solve the free vibrations (homogeneous) problem without external loads:
Myray(t) + Kyray(t) = 0.
m Assume harmonic motion qf(t) = ¢ €™ and derive the eigenvalue problem:
(Kfy —w*Myy) ¢ = 0.

m Solve for eigenvalues A\ = w? (squared natural frequencies) and eigenvectors ¢
(mode shapes).

m Normalize eigenvectors with respect to My or Kyy.
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Transient analysis

m The dynamic equilibrium equation for the free DOFs becomes:

Myray(t) + Kppap(t) = £7(2).

m This coupled system of equations can be uncoupled by transforming to modal
coordinates using the normal mode matrix ®, where q¢(t) = ®z(t).

m Substituting into the equation and pre-multiplying by ®7, we obtain a

decoupled system:
#(t) + Az(t) = @7 (1),

where A is a diagonal matrix of squared natural frequencies.

m The decoupled equations in modal space can be solved independently using
time integration methods, greatly simplifying the dynamic analysis.
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Post-processing: stress computation

m In the local coordinate system, the approximated axial stress in element e is
h h
eO-loc = Eegloc

m Stain-displacement relationship:

d dhi  dha | |1 1 q
e_h h 1 2
Sloe = g™ [dw’ dz’ ] [QJ 4 [ ] [CD

m Using the coordinate transformation €q;,. = ¢Tq it leads to the approximated
stress computed in global coordinates:

iz
eoh = % [—cos(0) —sin(*0) cos(0) sin(‘0)] | %
]
5y
= =7 [cos(0)(gjo — giz) + sin(*0)(gjy — aiy)]

Note that element e is connected to nodes numbered as 7 and j.
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Illustrative example - problem description

T vz' 3 Magnesium alloy material properties:
m cross-sectional area A = 78.5 mm?
m Young’s modulus E = 40 - 103 MPa
120 ®© ® m Density p = 1.810 ton/mm?3
Parameters:
. Elements ‘ Nodes ‘ €0 ‘ “l
4 4 1 1,2 |90° 120 mm
® = 2 1,3 | 45° | 120/2 mm

r 10,000 3 1,4 0° 120 mm
z I 120 }

Objective: Compute the equation of motion in semi-discrete weak form.

Credit: Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis
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Example - element stiffness matrices in global coordinates

lK _ 1TTKl0(:1T

cos(90°) 0
_ EA [sin(90°) 0 1 —1] [cos(90°) sin(90°) 0 0
Y 0 cos(90°)| |—-1 1 0 0 cos(90°)  sin(90°)
0 sin(90°)
0 0 0 O
78500 10 1 0 -1
~ 3 [0 0 0 0
0 -1 0 1
By analogy:
1 1 =il =l 10 -1 0
2 _T8500 11 -1 -1 3 _ 78500 [0 0 0 0
6v2 -1 -1 1 1 3 -1 0 1 O
-1 -1 1 1 0 0 0 O
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Example - element consistent mass matrices in global coordinates

"M ="'T"M,,'T
cos(90°) 0
0

_pAlﬁ sin(90°) 2 1| [cos(90°) sin(90°) 0 0
6 0 cos(90°)| [1 2 0 0 cos(90°)  sin(90°)
0 sin(90°)
0 0 0 O]
28417 10 2 0 1
~ 10 |0 0 0 0
0 1 0 2]
By analogy:
2 2 1 1 2 010
28417 2 2 1 1 28417 10 0 0 O
T 3N —
M*20ﬁ1122 M710 10 2 0
11 2 2 0 0 0 O
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Example - assembly of the stiffness matrix

Local index ‘ bar 1 ‘ bar 2 ‘ bar 3

1 1 1 1
[2+1/v2 1/vV/2 0 0 -1/v2 -1/V2 —2 0]
1/vV2 2+1/vV2 0 -2 —-1/V/2 -1/vV2 0 0
0 0 0 0 0 0 0 0
K _ 78500 0 —2 0 2 0 0 0 0
6 -1/v/2  —1/¥V2 0 0 1/v/2 1//2 0 0
-1/v2 -1/¥/2 0 0 1//2 1/¥/2 0 0
—2 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0
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Example - assembly of the mass matrix

Local index ‘ bar 1 ‘ bar 2 ‘ bar 3

1 1 1 1
[44+2v2 22 0 0 V2 V2 2 0
22 442V2 0 2 V2 V2 0 0
0 0 00 0 0 00
N o 23417 0 2 04 0 0 00
20 —V/2 —V2 00 2v2 22 0 0
V2 V2 0 0 2v2 22 0 0
2 0 00 0 0 40
0 0 00 0 0 00

Trusses in 2d Dynamic analysis of trusses 28 / 36



Example - applied loads and boundary conditions

- ¥
2 3 4 6
3 5
120 @
® £
| p 4 1 7
R = 1 7
@ v | 2 8

y
10,000
B
A 120 |
* r 1

Credit: Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis

Trusses in 2d

—10000

f2x
Jfay _
f3a: S
f3y
f4a:

_f4y_
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Example - equations of motions for free nodes

28417[ 442v2 2V/2 [qlx}r?sgoo [2+1/\/§ 1/v2 Hqu}:{ 0 ]

20 |2v24+2V2 Gy 1/vV2  24+1/v2] |quy —10000
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An example of a 2d truss in free vibration

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b

Trusses in 3d




Displacements for oriented bar in 3d

m Displacements in local coord. does
not change w.r.t the one in 2d:
Qioc = [Qla QQ]T

m Displacements in global coordinates
projected from nodes 1 and 2 have
now 6 components:

A = [q1as 1y Q12 920y G2y Q22

Trusses in 3d

Q2y
Q1y

! g Q2

‘ 6.

TG x
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Relation between local and global displacements

The relationship between local and global displacements is due to the direction
cosines matrix as

1z
q1y
|:QI:| — |:lx ly lz 0 0 0 q1z
q2 0 0 O lx ly lz q2z
Qioc T q2y
1922
——
q
where
I T2 — X I _Y2—M4 I 22 — 21
a5 ey ) y = ey ) z — ey

“U=/(m2—21)>+ (y2 — y1)* + (22 — 21)?
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Element stiffness matrix in global coordinates

_ (BA) [l
=[5
2
_ (B4
=5

Trusses in 3d

ly 1, 0 0
0 ey iy
ity Ul
2 Lyl
Y 3’2
Symm.

—2 =i,
ity =i
Lol —lyl.
2 L,
2
ly

Ly I. 0 0 0
0 0 Iy Iy L
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Element mass matrices in global coordinates:

m Consistent mass matrix:
[ 212 Wgslly Pl 12 bty Uiy |
Pty 2l§ Mllle oty 2 Lyl,
“(pAL) (20,1, 2lyl, 212 1, Lyl 12
6 12 Uity Uil 212 Pllgslly Pl
sl lz oty gl 2l§ Pl
Lty Bl 2 2,1, Myl e

z

‘M = eTTMloceT _

m Lumped mass matrix:

(2 Iy ll, 0 0 0

lely 12 Ll 0 0 0

e _emqmT e _e(pAf) lxlz lylz lf 0 0 0
M="T Mo T="2"10" 0 0 2 1l L
0 0 0 Il 12 1l
L0 0 0 Il Ll %]

Trusses in 3d Dynamic analysis of trusses 35 / 36



An example of a 3d truss in free vibration

» Go to Matlab Drive
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