

Dynamic analysis of trusses

Classical structural elements

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025

Where do we stand?

Week	Module	Lecture topic	Mini-projects
1	Linear elastodynamics	Strong and weak forms	
2		Galerkin method	Groups formation
3		FEM global	Project 1 statement
4		FEM local	
5		FEM local	Project 1 submission
6	Classical structural elements	Bars and trusses	Project 2 statement

Summary

- Eigenvalues and eigenvectors errors bounds
- Trusses in 2d
- Matlab example of a 2d truss in free vibrations
- Trusses in 3d
- Matlab example of a 3d truss in free vibrations

Recommended readings

- ① Logan, A first course in the finite element method, 6th ed. (chap. 3)
- ② Paz and Leigh, Structural dynamics, 6th ed. (chap. 14)
- ③ Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed. (chap. 4 and 5)

Eigenvalues and eigenvectors errors bounds

A priori error estimates for eigenvalues and eigenvectors

Using principles from Rayleigh and Courant-Fischer, asymptotic error estimates can be established for eigenvalues and eigenvectors.

Error estimates:

$$\lambda_i \leq \lambda_i^h \leq \lambda_i + ch^{2m} \lambda_i^{m+1}$$

$$\|\phi_i^h - \phi_i\|_0 \leq ch^{\min(m+1, 2m)} \lambda_i^{(m+1)/2}$$

$$\|\phi_i^h - \phi_i\|_1 \leq ch^m \lambda_i^{(m+1)/2}$$

- λ_i^h are the approximated eigenvalues and ϕ_i^h the corresponding eigenvectors,
- λ_i are the exact eigenvalues and ϕ_i the corresponding eigenvectors,
- h represents the characteristic mesh size,
- m is the degree of the polynomial used in the finite element method,
- c is a constant independent of h ,
- $\|\cdot\|_0$ Euclidean $H^0 = L^2$ norm and $\|\cdot\|_1$ energy Sobolev H^1 norm.

A priori error estimates for frequencies

From the fundamental relationship between eigenvalues and frequencies:

$$\omega_i = \sqrt{\lambda_i}$$

we deduce the bound on the approximate frequencies:

$$\omega_i \leq \omega_i^h \leq \omega_i + \bar{c}h^{2m}\omega_i^{2m+1}$$

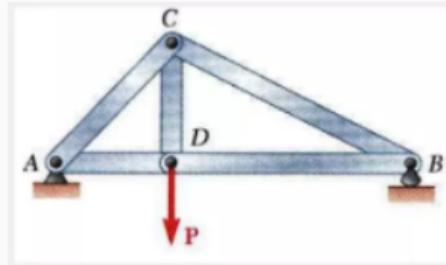
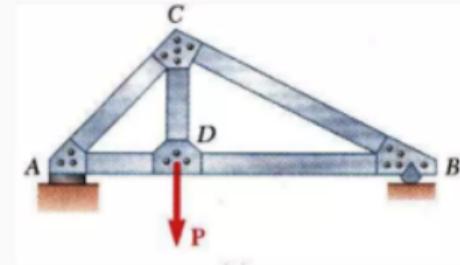
- The eigenvalues are bounded below by their exact values : **approximate frequencies ω_i^h always overestimate the exact frequencies ω_i .**
- The presence of the last term in the expression indicates that **the quality of approximated frequencies degrades for higher modes.**
- The convergence rates for eigenvectors and frequencies are both of order h^{2m} .

Trusses in 2d

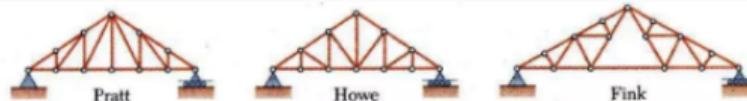
What is a truss structure?

Plane truss

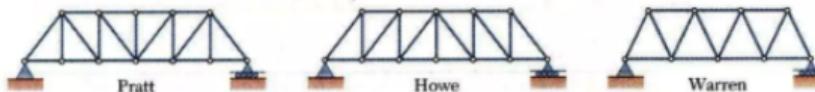
- Structure composed of oriented bar (rod) elements that all lies in a common plane and are connected by frictionless pins.
- Loads are acting only in the common plane and they must be applied at the nodes or joints.
- Very common type of structures used in steel buildings, bridges, towers, etc...



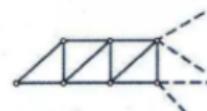
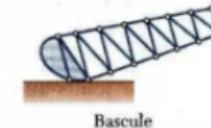
Examples of 2d trusses



Typical Roof Trusses



Typical Bridge Trusses

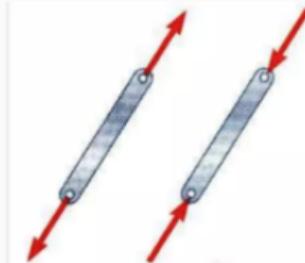
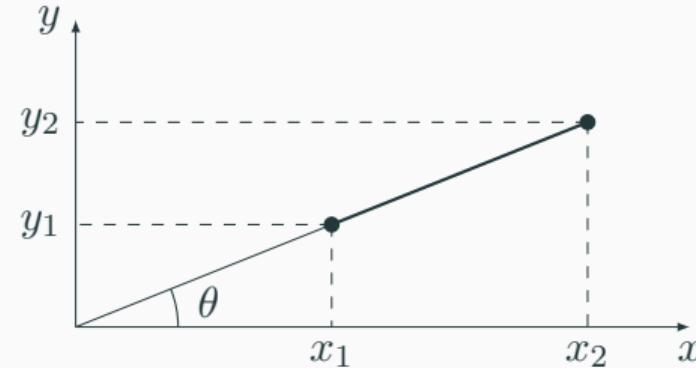


Other Types of Trusses

Kinematic assumptions

Trusses are assumed to exhibit the following characteristics:

- they experience either compressive or tensile forces,
- their weight is considered negligible in comparison to the loads they support,
- they have varying orientations with respect to a fixed global coordinate system, which serves as a stationary reference framework that remains unchanged regardless of the orientation of individual elements.



Equation of motion for non-oriented bar (in local coordinates)

- A cross-sectional area
- E Young's modulus (isotropic bar)
- ρ material density
- ℓ length
- u axial displacement
- x' (local) axial coordinate

- Strong form:

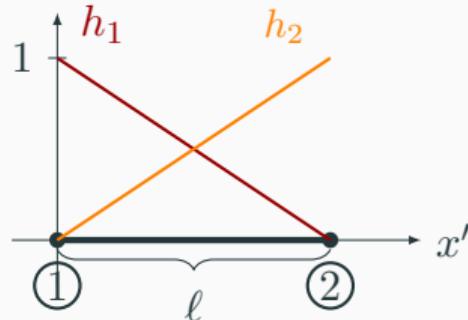
$$\begin{cases} EA\partial_{x'x'}^2 u(x', t) = \rho A \ddot{u}(x', t) \\ EA\partial_{x'} u(0, t) = -f_1(t) \\ EA\partial_{x'} u(\ell, t) = f_2(t) \end{cases}$$

$$\begin{cases} u(x', 0) = u_0(x') \\ \dot{u}(x', 0) = v_0(x') \end{cases}$$

- Semi-discrete weak form:

$$\delta \mathbf{q}_{loc}^T (\mathbf{M}_{loc} \ddot{\mathbf{q}}_{loc}(t) + \mathbf{K}_{loc} \mathbf{q}_{loc}(t) - \mathbf{f}_{loc}(t)) = 0$$

Approximated displacements in local coordinates



Linear local shape functions:

$$h_1(x') = 1 - \frac{x'}{\ell}$$

$$h_2(x') = \frac{x'}{\ell}$$

- Displacements approximation local coordinates:

$$u^h(x', t) = h_1(x')q_1(t) + h_2(x')q_2(t) = \begin{bmatrix} h_1(x') & h_2(x') \end{bmatrix} \begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix}$$

- Virtual displacements approximation local coordinates:

$$\delta u^h(x') = h_1(x')\delta q_1 + h_2(x')\delta q_2 = \begin{bmatrix} h_1(x') & h_2(x') \end{bmatrix} \begin{bmatrix} \delta q_1 \\ \delta q_2 \end{bmatrix}$$

Elementary quantities in local coordinates

- Element stiffness matrix in local coordinates:

$$\mathbf{K}_{loc} = \int_0^\ell EA \begin{bmatrix} (h'_1)^2 & h'_1 h'_2 \\ h'_2 h'_1 & (h'_2)^2 \end{bmatrix} dx' = \frac{EA}{\ell} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

- Element consistent mass matrix in local coordinates:

$$\mathbf{M}_{loc} = \int_0^\ell \rho A \begin{bmatrix} (h_1)^2 & h_1 h_2 \\ h_2 h_1 & (h_2)^2 \end{bmatrix} dx' = \frac{\rho A \ell}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

- Element applied loads vector in local coordinates:

$$\mathbf{f}_{loc}(t) = \begin{bmatrix} h_1(0) \\ h_2(0) \end{bmatrix} f_1(t) + \begin{bmatrix} h_1(\ell) \\ h_2(\ell) \end{bmatrix} f_2(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$$

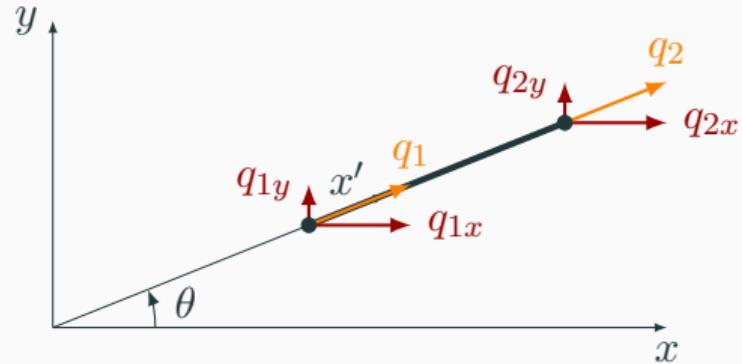
Displacements for oriented bar

- Displacement vector in local coordinates:

$$\mathbf{q}_{loc} = [q_1, q_2]^T.$$

- Displacement vector in global coordinates:

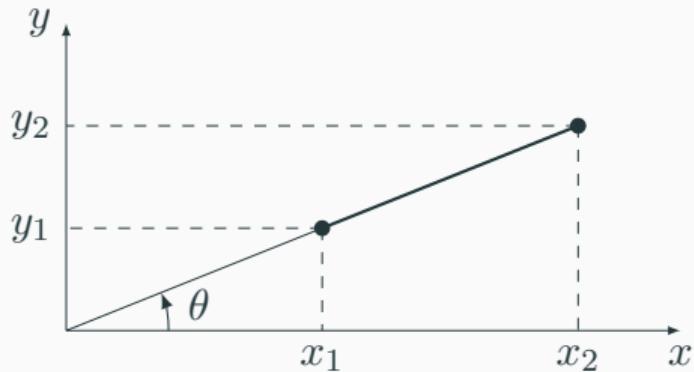
$$\mathbf{q} = [q_{1x}, q_{1y}, q_{2x}, q_{2y}]^T.$$



Relation between local and global displacements:

$$\underbrace{\begin{bmatrix} q_1 \\ q_2 \end{bmatrix}}_{\mathbf{q}_{loc}} = \underbrace{\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 & 0 \\ 0 & 0 & \cos(\theta) & \sin(\theta) \end{bmatrix}}_T \underbrace{\begin{bmatrix} q_{1x} \\ q_{1y} \\ q_{2x} \\ q_{2y} \end{bmatrix}}_{\mathbf{q}}$$

Calculation of direction sines and cosines



The direction sines and cosines can be calculated from the element geometry:

$$\sin(\theta) = \frac{y_2 - y_1}{\ell}$$

$$\cos(\theta) = \frac{x_2 - x_1}{\ell}$$

$$\ell = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Elementary stiffness and consistent mass matrices in global coordinates

- Element stiffness matrix in global coordinates:

$$\mathbf{K} = \mathbf{T}^T \mathbf{K}_{loc} \mathbf{T}$$

$$= \frac{EA}{\ell} \begin{bmatrix} \cos^2(\theta) & \sin(\theta) \cos(\theta) & -\cos^2(\theta) & -\sin(\theta) \cos(\theta) \\ & \sin^2(\theta) & -\sin(\theta) \cos(\theta) & -\sin^2(\theta) \\ & & \cos^2(\theta) & \sin(\theta) \cos(\theta) \\ \text{Symm.} & & & \sin^2(\theta) \end{bmatrix}$$

- Element consistent mass matrix in global coordinates:

$$\mathbf{M} = \mathbf{T}^T \mathbf{M}_{loc} \mathbf{T}$$

$$= \frac{\rho A \ell}{6} \begin{bmatrix} 2 \cos^2(\theta) & 2 \sin(\theta) \cos(\theta) & \cos^2(\theta) & \sin(\theta) \cos(\theta) \\ & 2 \sin^2(\theta) & \sin(\theta) \cos(\theta) & \sin^2(\theta) \\ & & 2 \cos^2(\theta) & 2 \sin(\theta) \cos(\theta) \\ \text{Symm.} & & & 2 \sin^2(\theta) \end{bmatrix}$$

Lumped mass matrix

- Element consistent mass matrix in local coordinates:

$$\mathbf{M}_{loc} = \frac{\rho A \ell}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

- Element lumped mass matrix in local coordinates:

$$\mathbf{M}_{loc} = \frac{\rho A \ell}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Element lumped mass matrix in global coordinates:

$$\mathbf{M} = \mathbf{T}^T \mathbf{M}_{loc} \mathbf{T}$$

$$= \frac{\rho A \ell}{2} \begin{bmatrix} \cos^2(\theta) & \sin(\theta) \cos(\theta) & 0 & 0 \\ \sin(\theta) \cos(\theta) & \sin^2(\theta) & 0 & 0 \\ 0 & 0 & \cos^2(\theta) & \sin(\theta) \cos(\theta) \\ 0 & 0 & \sin(\theta) \cos(\theta) & \sin^2(\theta) \end{bmatrix}$$

Benefits of using lumped mass matrix

- ✓ **Computational efficiency**

Band matrix \Rightarrow Faster computations and lower memory usage.

- ✓ **Improved numerical stability**

Help avoid non-physical coupling between DOFs, which can cause instabilities, in explicit time integration (Newmark or central difference methods).

- ✓ **Physical realism for trusses**

Truss mass is mostly at joints \Rightarrow Lumped mass better reflects reality.

- ✓ **Good approximation in practice**

Accurate enough for natural frequency and mode shape estimation in many cases.

Band mass matrix = faster, simpler, and often accurate enough!

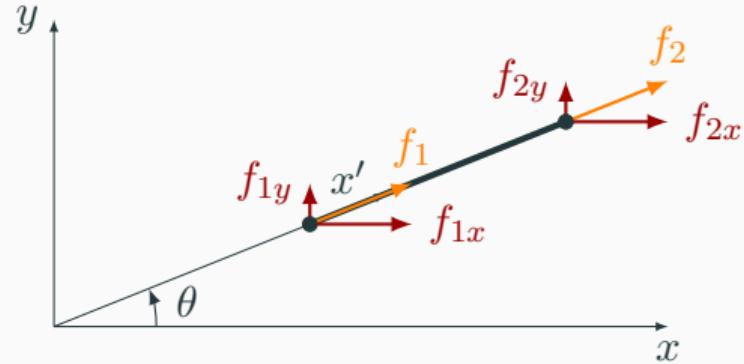
Applied loads for oriented bar

- Nodal force vector in local coordinates:

$$\mathbf{f}_{loc} = [f_1, f_2]^T.$$

- Nodal force vector in global coordinates:

$$\mathbf{f} = [f_{1x}, f_{1y}, f_{2x}, f_{2y}]^T.$$



Forces undergo transformation in the same manner as displacements:

$$\underbrace{\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}}_{\mathbf{f}_{loc}} = \underbrace{\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 & 0 \\ 0 & 0 & \cos(\theta) & \sin(\theta) \end{bmatrix}}_T \underbrace{\begin{bmatrix} f_{1x} \\ f_{1y} \\ f_{2x} \\ f_{2y} \end{bmatrix}}_{\mathbf{f}}$$

Elementary loads vector in global coordinates

- Element applied loads vector in global coordinates:

$$\mathbf{f} = \mathbf{T}^T \mathbf{f}_{loc} = \begin{bmatrix} \cos(\theta) f_1 \\ \sin(\theta) f_1 \\ \cos(\theta) f_2 \\ \sin(\theta) f_2 \end{bmatrix}$$

- Loads are only applied at pins and are given in the global coordinates system, the assembled loads vector can be computed directly.
- Distributed/self-weight loads are transformed to equivalent nodal loads.

Assembly of stiffness and mass matrices and loads vector

Given a 2d truss structure made of m oriented bars, n nodes, and 2 DOFs per node:

1. Element quantities:

- For each bar e , compute the element quantities global coordinates:

$${}^e\mathbf{K} = {}^e\mathbf{T}^T {}^e\mathbf{K}_{loc} {}^e\mathbf{T}$$

$${}^e\mathbf{M} = {}^e\mathbf{T}^T {}^e\mathbf{M}_{loc} {}^e\mathbf{T}$$

$${}^e\mathbf{f} = {}^e\mathbf{T}^T {}^e\mathbf{f}_{loc}$$

2. Global assembly:

- Initialize global stiffness matrix \mathbf{K} and global mass matrix \mathbf{M} of size $2n \times 2n$,
- Initialize global loads vector \mathbf{f} of size $2n \times 1$,
- Assemble each ${}^e\mathbf{K}$, ${}^e\mathbf{M}$ and ${}^e\mathbf{f}$ for $e = 1, \dots, m$, into \mathbf{K} , \mathbf{M} and \mathbf{f} respectively using element connectivity.

3. Boundary conditions:

- Identify constrained (fixed or supported) degrees of freedom,
- Partition global matrices and vectors to separate free and constrained DOFs:

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{ff} & \mathbf{K}_{fc} \\ \mathbf{K}_{cf} & \mathbf{K}_{cc} \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} \mathbf{M}_{ff} & \mathbf{M}_{fc} \\ \mathbf{M}_{cf} & \mathbf{M}_{cc} \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} \mathbf{f}_f \\ \mathbf{f}_c \end{bmatrix}.$$

- Apply constraints by removing or modifying rows and columns corresponding to constrained DOFs.

Modal analysis

- Solve the free vibrations (homogeneous) problem without external loads:

$$\mathbf{M}_{ff}\ddot{\mathbf{q}}_f(t) + \mathbf{K}_{ff}\mathbf{q}_f(t) = \mathbf{0}.$$

- Assume harmonic motion $\mathbf{q}_f(t) = \boldsymbol{\phi} e^{i\omega t}$ and derive the eigenvalue problem:

$$(\mathbf{K}_{ff} - \omega^2 \mathbf{M}_{ff}) \boldsymbol{\phi} = \mathbf{0}.$$

- Solve for eigenvalues $\lambda = \omega^2$ (squared natural frequencies) and eigenvectors $\boldsymbol{\phi}$ (mode shapes).
- Normalize eigenvectors with respect to \mathbf{M}_{ff} or \mathbf{K}_{ff} .

Transient analysis

- The dynamic equilibrium equation for the free DOFs becomes:

$$\mathbf{M}_{ff}\ddot{\mathbf{q}}_f(t) + \mathbf{K}_{ff}\mathbf{q}_f(t) = \mathbf{f}_f(t).$$

- This coupled system of equations can be uncoupled by transforming to modal coordinates using the normal mode matrix Φ , where $\mathbf{q}_f(t) = \Phi\mathbf{z}(t)$.
- Substituting into the equation and pre-multiplying by Φ^T , we obtain a decoupled system:

$$\ddot{\mathbf{z}}(t) + \Lambda\mathbf{z}(t) = \Phi^T\mathbf{f}_f(t),$$

where Λ is a diagonal matrix of squared natural frequencies.

- The decoupled equations in modal space can be solved independently using time integration methods, greatly simplifying the dynamic analysis.

Post-processing: stress computation

- In the local coordinate system, the approximated axial stress in element e is

$${}^e\sigma_{loc}^h = E^e \varepsilon_{loc}^h$$

- Stain-displacement relationship:

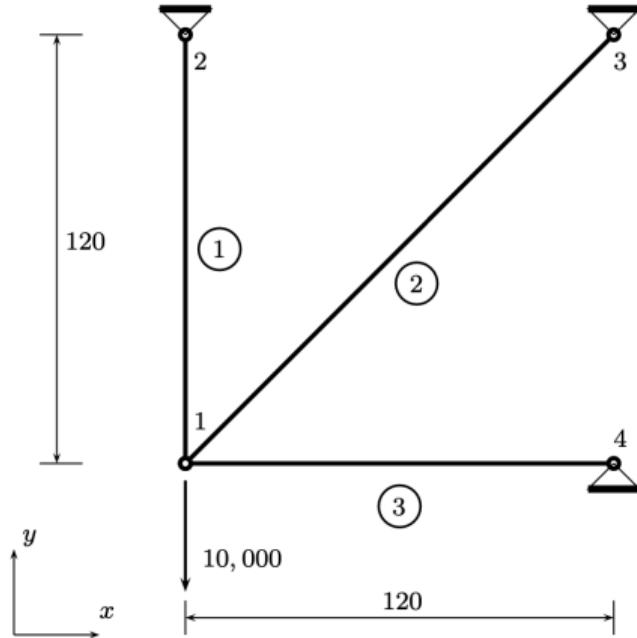
$${}^e\varepsilon_{loc}^h = \frac{d}{dx'} u^h = \begin{bmatrix} \frac{dh_1}{dx'} & \frac{dh_2}{dx'} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \frac{1}{e\ell} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

- Using the coordinate transformation ${}^e\mathbf{q}_{loc} = {}^e\mathbf{T}\mathbf{q}$ it leads to the approximated stress computed in global coordinates:

$$\begin{aligned} {}^e\sigma^h &= \frac{eE}{e\ell} \begin{bmatrix} -\cos({}^e\theta) & -\sin({}^e\theta) & \cos({}^e\theta) & \sin({}^e\theta) \end{bmatrix} \begin{bmatrix} q_{ix} \\ q_{iy} \\ q_{jx} \\ q_{jy} \end{bmatrix} \\ &= \frac{eE}{e\ell} [\cos({}^e\theta)(q_{jx} - q_{ix}) + \sin({}^e\theta)(q_{jy} - q_{iy})] \end{aligned}$$

Note that element e is connected to nodes numbered as i and j .

Illustrative example - problem description



Magnesium alloy material properties:

- cross-sectional area $A = 78.5 \text{ mm}^2$
- Young's modulus $E = 40 \cdot 10^3 \text{ MPa}$
- Density $\rho = 1.810 \text{ ton/mm}^3$

Parameters:

Elements	Nodes	$e\theta$	$e\ell$
1	1, 2	90°	120 mm
2	1, 3	45°	$120\sqrt{2} \text{ mm}$
3	1, 4	0°	120 mm

Objective: Compute the equation of motion in semi-discrete weak form.

Credit: Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis

Example - element stiffness matrices in global coordinates

$${}^1\mathbf{K} = {}^1\mathbf{T}^T \mathbf{K}_{loc} {}^1\mathbf{T}$$

$$\begin{aligned} &= \frac{EA}{{}^1\ell} \begin{bmatrix} \cos(90^\circ) & 0 \\ \sin(90^\circ) & 0 \\ 0 & \cos(90^\circ) \\ 0 & \sin(90^\circ) \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \cos(90^\circ) & \sin(90^\circ) & 0 & 0 \\ 0 & 0 & \cos(90^\circ) & \sin(90^\circ) \end{bmatrix} \\ &= \frac{78500}{3} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \end{aligned}$$

By analogy:

$${}^2\mathbf{K} = \frac{78500}{6\sqrt{2}} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \end{bmatrix} \quad {}^3\mathbf{K} = \frac{78500}{3} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example - element consistent mass matrices in global coordinates

$${}^1\mathbf{M} = {}^1\mathbf{T}^T \mathbf{M}_{loc} {}^1\mathbf{T}$$

$$\begin{aligned} &= \frac{\rho A^1 \ell}{6} \begin{bmatrix} \cos(90^\circ) & 0 \\ \sin(90^\circ) & 0 \\ 0 & \cos(90^\circ) \\ 0 & \sin(90^\circ) \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \cos(90^\circ) & \sin(90^\circ) & 0 & 0 \\ 0 & 0 & \cos(90^\circ) & \sin(90^\circ) \end{bmatrix} \\ &= \frac{28417}{10} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \end{aligned}$$

By analogy:

$${}^2\mathbf{M} = \frac{28417}{20} \sqrt{2} \begin{bmatrix} 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix} \quad {}^3\mathbf{M} = \frac{28417}{10} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example - assembly of the stiffness matrix

Local index	bar 1	bar 2	bar 3
1	1	1	1
2	2	3	4

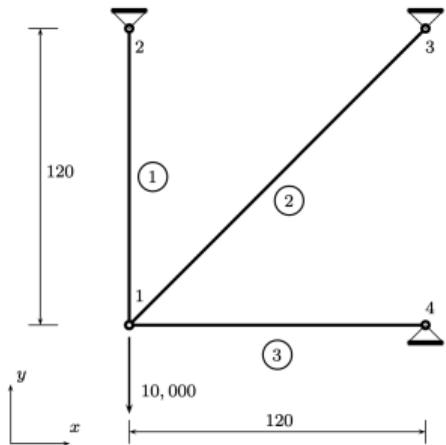
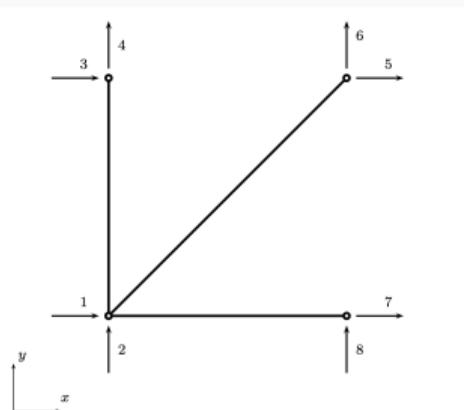
$$\mathbf{K} = \frac{78500}{6} \begin{bmatrix} 2 + 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 & -1/\sqrt{2} & -1/\sqrt{2} & -2 & 0 \\ 1/\sqrt{2} & 2 + 1/\sqrt{2} & 0 & -2 & -1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 2 & 0 & 0 & 0 & 0 \\ -1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example - assembly of the mass matrix

Local index	bar 1	bar 2	bar 3
1	1	1	1
2	2	3	4

$$\mathbf{M} = \frac{28417}{20} \begin{bmatrix} 4 + 2\sqrt{2} & 2\sqrt{2} & 0 & 0 & \sqrt{2} & \sqrt{2} & 2 & 0 \\ 2\sqrt{2} & 4 + 2\sqrt{2} & 0 & 2 & \sqrt{2} & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 4 & 0 & 0 & 0 & 0 \\ -\sqrt{2} & -\sqrt{2} & 0 & 0 & 2\sqrt{2} & 2\sqrt{2} & 0 & 0 \\ \sqrt{2} & \sqrt{2} & 0 & 0 & 2\sqrt{2} & 2\sqrt{2} & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example - applied loads and boundary conditions



$$\mathbf{f} = \begin{bmatrix} 0 \\ -10000 \\ f_{2x} \\ f_{2y} \\ f_{3x} \\ f_{3y} \\ f_{4x} \\ f_{4y} \end{bmatrix} \quad \mathbf{q} = \begin{bmatrix} q_{1x} \\ q_{1y} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Credit: Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis

Example - equations of motions for free nodes

$$\frac{28417}{20} \begin{bmatrix} 4 + 2\sqrt{2} & 2\sqrt{2} \\ 2\sqrt{2}4 + 2\sqrt{2} & \end{bmatrix} \begin{bmatrix} \ddot{q}_{1x} \\ \ddot{q}_{1y} \end{bmatrix} + \frac{78500}{6} \begin{bmatrix} 2 + 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 2 + 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} q_{1x} \\ q_{1y} \end{bmatrix} = \begin{bmatrix} 0 \\ -10000 \end{bmatrix}$$

An example of a 2d truss in free vibration

▶ Go to Matlab Drive

Trusses in 3d

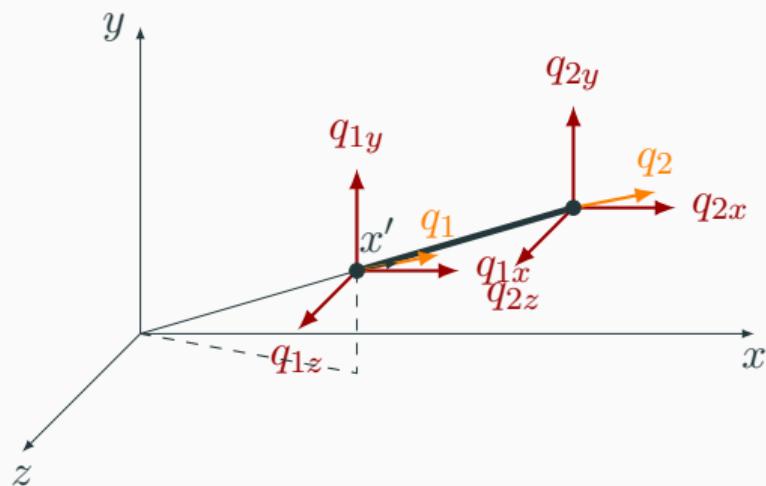
Displacements for oriented bar in 3d

- Displacements in local coord. does not change w.r.t the one in 2d:

$$\mathbf{q}_{loc} = [q_1, q_2]^T.$$

- Displacements in global coordinates projected from nodes 1 and 2 have now 6 components:

$$\mathbf{q} = [q_{1x}, q_{1y}, q_{1z}, q_{2x}, q_{2y}, q_{2z}]^T.$$



Relation between local and global displacements

The relationship between local and global displacements is due to the direction cosines matrix as

$$\underbrace{\begin{bmatrix} q_1 \\ q_2 \end{bmatrix}}_{\mathbf{q}_{loc}} = \underbrace{\begin{bmatrix} l_x & l_y & l_z & 0 & 0 & 0 \\ 0 & 0 & 0 & l_x & l_y & l_z \end{bmatrix}}_{\mathbf{T}} \underbrace{\begin{bmatrix} q_{1x} \\ q_{1y} \\ q_{1z} \\ q_{2x} \\ q_{2y} \\ q_{2z} \end{bmatrix}}_{\mathbf{q}}$$

where

$$l_x = \frac{x_2 - x_1}{e\ell}, \quad l_y = \frac{y_2 - y_1}{e\ell}, \quad l_z = \frac{z_2 - z_1}{e\ell}$$
$$e\ell = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Element stiffness matrix in global coordinates

$$\begin{aligned} {}^e\mathbf{K} &= {}^e\mathbf{T}^T \mathbf{K}_{loc} {}^e\mathbf{T} \\ &= \frac{{}^e(EA)}{{}^e\ell} \begin{bmatrix} l_x & l_y & l_z & 0 & 0 & 0 \\ 0 & 0 & 0 & l_x & l_y & l_z \end{bmatrix}^T \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} l_x & l_y & l_z & 0 & 0 & 0 \\ 0 & 0 & 0 & l_x & l_y & l_z \end{bmatrix} \\ &= \frac{{}^e(EA)}{{}^e\ell} \begin{bmatrix} l_x^2 & l_x l_y & l_x l_z & -l_x^2 & -l_x l_y & -l_x l_z \\ l_y^2 & l_y l_z & -l_x l_y & -l_y^2 & -l_y l_z & \\ l_z^2 & -l_x l_z & -l_y l_z & -l_z^2 & & \\ l_x^2 & l_x l_y & l_x l_z & & & \\ & l_y^2 & l_y l_z & & & \\ & & l_z^2 & & & \end{bmatrix} \\ &\quad \text{Symm.} \end{aligned}$$

Element mass matrices in global coordinates:

- Consistent mass matrix:

$${}^e\mathbf{M} = {}^e\mathbf{T}^T \mathbf{M}_{loc} {}^e\mathbf{T} = \frac{{}^e(\rho A\ell)}{6} \begin{bmatrix} 2l_x^2 & 2l_xl_y & 2l_xl_z & l_x^2 & l_xl_y & l_xl_z \\ 2l_xl_y & 2l_y^2 & 2l_yl_z & l_xl_y & l_y^2 & l_yl_z \\ 2l_xl_z & 2l_yl_z & 2l_z^2 & l_xl_z & l_yl_z & l_z^2 \\ l_x^2 & l_xl_y & l_xl_z & 2l_x^2 & 2l_xl_y & 2l_xl_z \\ l_xl_y & l_y^2 & l_yl_z & 2l_xl_y & 2l_y^2 & 2l_yl_z \\ l_xl_z & l_yl_z & l_z^2 & 2l_xl_z & 2l_yl_z & 2l_z^2 \end{bmatrix}$$

- Lumped mass matrix:

$${}^e\mathbf{M} = {}^e\mathbf{T}^T \mathbf{M}_{loc} {}^e\mathbf{T} = \frac{{}^e(\rho A\ell)}{2} \begin{bmatrix} l_x^2 & l_xl_y & l_xl_z & 0 & 0 & 0 \\ l_xl_y & l_y^2 & l_yl_z & 0 & 0 & 0 \\ l_xl_z & l_yl_z & l_z^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & l_x^2 & l_xl_y & l_xl_z \\ 0 & 0 & 0 & l_xl_y & l_y^2 & l_yl_z \\ 0 & 0 & 0 & l_xl_z & l_yl_z & l_z^2 \end{bmatrix}$$

An example of a 3d truss in free vibration

▶ Go to Matlab Drive