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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6 Classical structural Bars and trusses Project 2 statement
elements



Summary

Eigenvalues and eigenvectors errors bounds

Trusses in 2d

Matlab example of a 2d truss in free vibrations

Trusses in 3d

Matlab example of a 3d truss in free vibrations

Recommended readings

1 Logan, A first course in the finite element method, 6th ed. (chap. 3)

2 Paz and Leigh, Structural dynamics, 6th ed. (chap. 14)

3 Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis, 2nd ed.
(chap. 4 and 5)



Eigenvalues and eigenvectors errors bounds



A priori error estimates for eigenvalues and eigenvectors

Using principles from Rayleigh and Courant-Fischer, asymptotic error estimates
can be established for eigenvalues and eigenvectors.

Error estimates:

λi ≤ λh
i ≤ λi + ch2mλm+1

i

∥ϕh
i − ϕi∥0 ≤ chmin(m+1,2m)λ

(m+1)/2
i

∥ϕh
i − ϕi∥1 ≤ chmλ

(m+1)/2
i

λh
i are the approximated eigenvalues and ϕh

i the corresponding eigenvectors,

λi are the exact eigenvalues and ϕi the corresponding eigenvectors,

h represents the characteristic mesh size,

m is the degree of the polynomial used in the finite element method,

c is a constant independent of h,

∥ · ∥0 Euclidean H0 = L2 norm and ∥ · ∥1 energy Sobolev H1 norm.
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A priori error estimates for frequencies

From the fundamental relationship between eigenvalues and frequencies:

ωi =
√

λi

we deduce the bound on the approximate frequencies:

ωi ≤ ωh
i ≤ ωi + c̄h2mω2m+1

i

The eigenvalues are bounded below by their exact values : approximate
frequencies ωh

i always overestimate the exact frequencies ωi.

The presence of the last term in the expression indicates that the quality of
approximated frequencies degrades for higher modes.

The convergence rates for eigenvectors and frequencies are both of order h2m.
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Trusses in 2d



What is a truss structure?

Plane truss

Structure composed of oriented bar (rod) elements that all lies in a common
plane and are connected by frictionless pins.

Loads are acting only in the common plane and they must be applied at the
nodes or joints.

Very common type of structures used in steel buildings, bridges, towers, etc...
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Examples of 2d trusses
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Kinematic assumptions

Trusses are assumed to exhibit the following characteristics:

they experience either compressive or tensile forces,

their weight is considered negligible in comparison to the loads they support,

they have varying orientations with respect to a fixed global coordinate
system, which serves as a stationary reference framework that remains
unchanged regardless of the orientation of individual elements.

y

xx1

y1

x2

y2

θ
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Equation of motion for non-oriented bar (in local coordinates)

x′f1
f2

ℓ

E,A, ρ

A cross-sectional area

E Young’s modulus (isotropic bar)

ρ material density

ℓ length

u axial displacement

x′ (local) axial coordinate

Strong form:
EA∂2

x′x′u(x′, t) = ρAü(x′, t)

EA∂x′u(0, t) = −f1(t)

EA∂x′u(ℓ, t) = f2(t)

{
u(x′, 0) = u0(x

′)

u̇(x′, 0) = v0(x
′)

Semi-discrete weak form:

δqT
loc

(
Mlocq̈loc(t) +Klocqloc(t)− floc(t)

)
= 0

Trusses in 2d Dynamic analysis of trusses 9 / 36



Approximated displacements in local coordinates

1 2
x′

1
h1 h2

ℓ

Linear local shape functions:

h1(x
′) = 1− x′

ℓ

h2(x
′) =

x′

ℓ

Displacements approximation local coordinates:

uh(x′, t) = h1(x
′)q1(t) + h2(x

′)q2(t) =
[
h1(x

′) h2(x
′)
] [q1(t)

q2(t)

]
Virtual displacements approximation local coordinates:

δuh(x′) = h1(x
′)δq1 + h2(x

′)δq2 =
[
h1(x

′) h2(x
′)
] [δq1

δq2

]
Trusses in 2d Dynamic analysis of trusses 10 / 36



Elementary quantities in local coordinates

Element stiffness matrix in local coordinates:

Kloc =

∫ ℓ

0
EA

[
(h′1)

2 h′1h
′
2

h′2h
′
1 (h′2)

2

]
dx′ =

EA

ℓ

[
1 −1
−1 1

]
Element consistent mass matrix in local coordinates:

Mloc =

∫ ℓ

0
ρA

[
(h1)

2 h1h2
h2h1 (h2)

2

]
dx′ =

ρAℓ

6

[
2 1
1 2

]
Element applied loads vector in local coordinates:

floc(t) =

[
h1(0)
h2(0)

]
f1(t) +

[
h1(ℓ)
h2(ℓ)

]
f2(t) =

[
f1(t)
f2(t)

]
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Displacements for oriented bar

Displacement vector in local
coordinates:

qloc = [q1, q2]
T .

Displacement vector in global
coordinates:

q = [q1x, q1y, q2x, q2y]
T .

y

x

q1y
q1x

q2y
q2x

x′

θ

q1

q2

Relation between local and global displacements:

[
q1
q2

]
︸︷︷︸
qloc

=

[
cos(θ) sin(θ) 0 0

0 0 cos(θ) sin(θ)

]
︸ ︷︷ ︸

T


q1x
q1y
q2x
q2y


︸ ︷︷ ︸

q

Trusses in 2d Dynamic analysis of trusses 12 / 36



Calculation of direction sines and cosines

y

xx1

y1

x2

y2

θ

The direction sines and cosines can be calculated from the element geometry:

sin(θ) =
y2 − y1

ℓ

cos(θ) =
x2 − x1

ℓ

ℓ =
√
(x2 − x1)2 + (y2 − y1)2
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Elementary stiffness and consistent mass matrices in global coordinates

Element stiffness matrix in global coordinates:

K = TTKlocT

=
EA

ℓ


cos2(θ) sin(θ) cos(θ) − cos2(θ) − sin(θ) cos(θ)

sin2(θ) − sin(θ) cos(θ) − sin2(θ)
cos2(θ) sin(θ) cos(θ)

Symm. sin2(θ)


Element consistent mass matrix in global coordinates:

M = TTMlocT

=
ρAℓ

6


2 cos2(θ) 2 sin(θ) cos(θ) cos2(θ) sin(θ) cos(θ)

2 sin2(θ) sin(θ) cos(θ) sin2(θ)
2 cos2(θ) 2 sin(θ) cos(θ)

Symm. 2 sin2(θ)


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Lumped mass matrix

Element consistent mass matrix in local coordinates:

Mloc =
ρAℓ

6

[
2 1
1 2

]
Element lumped mass matrix in local coordinates:

Mloc =
ρAℓ

2

[
1 0
0 1

]
Element lumped mass matrix in global coordinates:

M = TTMlocT

=
ρAℓ

2


cos2(θ) sin(θ) cos(θ) 0 0

sin(θ) cos(θ) sin2(θ) 0 0
0 0 cos2(θ) sin(θ) cos(θ)
0 0 sin(θ) cos(θ) sin2(θ)


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Benefits of using lumped mass matrix

! Computational efficiency

Band matrix ⇒ Faster computations and lower memory usage.

! Improved numerical stability

Help avoid non-physical coupling between DOFs, which can cause instabilities,
in explicit time integration (Newmark or central difference methods).

! Physical realism for trusses

Truss mass is mostly at joints ⇒ Lumped mass better reflects reality.

! Good approximation in practice

Accurate enough for natural frequency and mode shape estimation in many
cases.

Band mass matrix = faster, simpler, and often accurate enough!
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Applied loads for oriented bar

Nodal force vector in local
coordinates:

floc = [f1, f2]
T .

Nodal force vector in global
coordinates:

f = [f1x, f1y, f2x, f2y]
T .

y

x

f1y
f1x

f2y
f2x

x′

θ

f1

f2

Forces undergo transformation in the same manner as displacements:

[
f1
f2

]
︸︷︷︸
floc

=

[
cos(θ) sin(θ) 0 0

0 0 cos(θ) sin(θ)

]
︸ ︷︷ ︸

T


f1x
f1y
f2x
f2y


︸ ︷︷ ︸

f
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Elementary loads vector in global coordinates

Element applied loads vector in global coordinates:

f = TT floc =


cos(θ)f1
sin(θ)f1
cos(θ)f2
sin(θ)f2


Loads are only applied at pins and are given in the global coordinates system,
the assembled loads vector can be computed directly.

Distributed/self-weight loads are transformed to equivalent nodal loads.
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Assembly of stiffness and mass matrices and loads vector

Given a 2d truss structure made of m oriented bars, n nodes, and 2 DOFs per
node:

1. Element quantities:

For each bar e, compute the element quantities global coordinates:

eK = eTT eKloc
eT

eM = eTT eMloc
eT

ef = eTT efloc

2. Global assembly:

Initialize global stiffness matrix K and global mass matrix M of size 2n× 2n,

Initialize global loads vector f of size 2n× 1,

Assemble each eK, eM and ef for e = 1, . . . ,m, into K, M and f respectively
using element connectivity.
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Reduced stiffness and mass matrices and loads vector

3. Boundary conditions:

Identify constrained (fixed or supported) degrees of freedom,

Partition global matrices and vectors to separate free and constrained DOFs:

K =

[
Kff Kfc

Kcf Kcc

]
, M =

[
Mff Mfc

Mcf Mcc

]
, f =

[
ff
fc

]
.

Apply constraints by removing or modifying rows and columns corresponding
to constrained DOFs.
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Modal analysis

Solve the free vibrations (homogeneous) problem without external loads:

Mff q̈f (t) +Kffqf (t) = 0.

Assume harmonic motion qf (t) = ϕ eiωt and derive the eigenvalue problem:(
Kff − ω2Mff

)
ϕ = 0.

Solve for eigenvalues λ = ω2 (squared natural frequencies) and eigenvectors ϕ
(mode shapes).

Normalize eigenvectors with respect to Mff or Kff .
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Transient analysis

The dynamic equilibrium equation for the free DOFs becomes:

Mff q̈f (t) +Kffqf (t) = ff (t).

This coupled system of equations can be uncoupled by transforming to modal
coordinates using the normal mode matrix Φ, where qf (t) = Φz(t).

Substituting into the equation and pre-multiplying by ΦT , we obtain a
decoupled system:

z̈(t) +Λz(t) = ΦT ff (t),

where Λ is a diagonal matrix of squared natural frequencies.

The decoupled equations in modal space can be solved independently using
time integration methods, greatly simplifying the dynamic analysis.
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Post-processing: stress computation

In the local coordinate system, the approximated axial stress in element e is

eσh
loc = Eeεhloc

Stain-displacement relationship:

eεhloc =
d

dx′
uh =

[
dh1
dx′

dh2
dx′

] [
q1
q2

]
=

1
eℓ

[
−1 1

] [q1
q2

]
Using the coordinate transformation eqloc =

eTq it leads to the approximated
stress computed in global coordinates:

eσh =
eE
eℓ

[
− cos(eθ) − sin(eθ) cos(eθ) sin(eθ)

] 
qix
qiy
qjx
qjy


=

eE
eℓ

[cos(eθ)(qjx − qix) + sin(eθ)(qjy − qiy)]

Note that element e is connected to nodes numbered as i and j.
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Illustrative example - problem description

Magnesium alloy material properties:

cross-sectional area A = 78.5 mm2

Young’s modulus E = 40 · 103 MPa

Density ρ = 1.810 ton/mm3

Parameters:

Elements Nodes eθ eℓ

1 1, 2 90◦ 120 mm

2 1, 3 45◦ 120
√
2 mm

3 1, 4 0◦ 120 mm

Objective: Compute the equation of motion in semi-discrete weak form.

Credit: Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis
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Example - element stiffness matrices in global coordinates

1K = 1TTKloc
1T

=
EA
1ℓ


cos(90◦) 0
sin(90◦) 0

0 cos(90◦)
0 sin(90◦)

[
1 −1
−1 1

] [
cos(90◦) sin(90◦) 0 0

0 0 cos(90◦) sin(90◦)

]

=
78500

3


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1


By analogy:

2K =
78500

6
√
2


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

 3K =
78500

3


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


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Example - element consistent mass matrices in global coordinates

1M = 1TTMloc
1T

=
ρA1ℓ

6


cos(90◦) 0
sin(90◦) 0

0 cos(90◦)
0 sin(90◦)

[
2 1
1 2

] [
cos(90◦) sin(90◦) 0 0

0 0 cos(90◦) sin(90◦)

]

=
28417

10


0 0 0 0
0 2 0 1
0 0 0 0
0 1 0 2


By analogy:

2M =
28417

20

√
2


2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

 3M =
28417

10


2 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0


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Example - assembly of the stiffness matrix

Local index bar 1 bar 2 bar 3

1 1 1 1
2 2 3 4

K =
78500

6



2 + 1/
√
2 1/

√
2 0 0 −1/

√
2 −1/

√
2 −2 0

1/
√
2 2 + 1/

√
2 0 −2 −1/

√
2 −1/

√
2 0 0

0 0 0 0 0 0 0 0
0 −2 0 2 0 0 0 0

−1/
√
2 −1/

√
2 0 0 1/

√
2 1/

√
2 0 0

−1/
√
2 −1/

√
2 0 0 1/

√
2 1/

√
2 0 0

−2 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0


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Example - assembly of the mass matrix

Local index bar 1 bar 2 bar 3

1 1 1 1
2 2 3 4

M =
28417

20



4 + 2
√
2 2

√
2 0 0

√
2

√
2 2 0

2
√
2 4 + 2

√
2 0 2

√
2

√
2 0 0

0 0 0 0 0 0 0 0
0 2 0 4 0 0 0 0

−
√
2 −

√
2 0 0 2

√
2 2

√
2 0 0√

2
√
2 0 0 2

√
2 2

√
2 0 0

2 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0


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Example - applied loads and boundary conditions

f =



0
−10000
f2x
f2y
f3x
f3y
f4x
f4y


q =



q1x
q1y
0
0
0
0
0
0



Credit: Ferreira and Fantuzzi, MATLAB Codes for Finite Element Analysis
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Example - equations of motions for free nodes

28417

20

[
4 + 2

√
2 2

√
2

2
√
24 + 2

√
2

] [
q̈1x
q̈1y

]
+
78500

6

[
2 + 1/

√
2 1/

√
2

1/
√
2 2 + 1/

√
2

] [
q1x
q1y

]
=

[
0

−10000

]
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An example of a 2d truss in free vibration

Go to Matlab Drive
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Trusses in 3d



Displacements for oriented bar in 3d

Displacements in local coord. does
not change w.r.t the one in 2d:

qloc = [q1, q2]
T .

Displacements in global coordinates
projected from nodes 1 and 2 have
now 6 components:

q = [q1x, q1y, q1z, q2x, q2y, q2z]
T .

y

x

z

q1y

q1x

q1z

q2y

q2x

q2z

q1

q2

x′
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Relation between local and global displacements

The relationship between local and global displacements is due to the direction
cosines matrix as

[
q1
q2

]
︸︷︷︸
qloc

=

[
lx ly lz 0 0 0
0 0 0 lx ly lz

]
︸ ︷︷ ︸

T



q1x
q1y
q1z
q2x
q2y
q2z


︸ ︷︷ ︸

q

where

lx =
x2 − x1

eℓ
, ly =

y2 − y1
eℓ

, lz =
z2 − z1

eℓ

eℓ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
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Element stiffness matrix in global coordinates

eK = eTTKloc
eT

=
e(EA)

eℓ

[
lx ly lz 0 0 0
0 0 0 lx ly lz

]T [
1 −1
−1 1

] [
lx ly lz 0 0 0
0 0 0 lx ly lz

]

=
e(EA)

eℓ



l2x lxly lxlz −l2x −lxly −lxlz
l2y lylz −lxly −l2y −lylz

l2z −lxlz −lylz −l2z
l2x lxly lxlz

Symm. l2y lylz
l2z


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Element mass matrices in global coordinates:

Consistent mass matrix:

eM = eTTMloc
eT =

e(ρAℓ)

6



2l2x 2lxly 2lxlz l2x lxly lxlz
2lxly 2l2y 2lylz lxly l2y lylz
2lxlz 2lylz 2l2z lxlz lylz l2z
l2x lxly lxlz 2l2x 2lxly 2lxlz
lxly l2y lylz 2lxly 2l2y 2lylz
lxlz lylz l2z 2lxlz 2lylz 2l2z


Lumped mass matrix:

eM = eTTMloc
eT =

e(ρAℓ)

2



l2x lxly lxlz 0 0 0
lxly l2y lylz 0 0 0

lxlz lylz l2z 0 0 0
0 0 0 l2x lxly lxlz
0 0 0 lxly l2y lylz
0 0 0 lxlz lylz l2z


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An example of a 3d truss in free vibration

Go to Matlab Drive
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