
ME473 - Dynamic finite element analysis of structures EPFL
Stefano Burzio 2025

Problem set 5 - solutions

Problem 1

a) Degree of freedom classification:

1

2

1

2

3

1

2

3

4

5

6

DOF index Description

1 q1x
2 q1y
3 q2x
4 q2y
5 q3x
6 q3y

Each node contributes two degrees of freedom
(horizontal and vertical displacements). Thus,
the system has six DOFs. Nodes 2 and 3 are
fully fixed, thus q2x = q2y = q3x = q3y = 0, the
only free DOFs are 1 and 2, the horizontal and
vertical displacements of node 1.

b) Reduced system formulation: the full stiffness and loads vectors are respectively a 6× 6 matrix
and a 6× 1 vector. However, since the unconstrained DOFs are indexed by 1 and 2, these are the
only lines and columns we shall compute and include in the reduced stiffness matrix and applied
loads vector. Bars parameters are:

Elements Orientations (eθ) Lengths (eℓ)
1 45◦ 5 m
2 90◦ 10 m

Therefore, after applying boundary conditions, the two reduced element stiffness matrices in global

1



coordinates are:

1K =
EA
1ℓ

[
cos2(1θ) sin(1θ) cos(1θ)

sin(1θ) cos(1θ) sin2(1θ)

]
=

EA

10

[
1 1
1 1

]
2K =

EA
2ℓ

[
cos2(2θ) sin(2θ) cos(2θ)

sin(2θ) cos(2θ) sin2(2θ)

]
=

EA

10

[
0 0
0 1

]
As we assemble we obtain the reduced stiffness matrix:

K = 1K+ 2K =
EA

10

[
1 1
1 2

]
.

The reduced applied loads vector f can be computed directly without having to estimate the two
elementary loads vectors 1f and 2f . We have

f =

[
−25000

0

]
.

c) Displacement calculation: solving the reduced linear system

EA

10

[
1 1
1 2

] [
q1x
q1y

]
=

[
−25000

0

]
yields to (static) displacements for node 1:

q1x = −500′000

EA
, and q1y =

250′000

EA
.

The displacements indicate that node 1 experiences negative horizontal and positive vertical dis-
placements; this behavior is consistent with the direction of the applied load and the geometry of
the structure.

d) Stress evaluation: the approximated axial stress in each element is computed using the formula:

eσh =
E
eℓ

[
− cos(eθ) − sin(eθ) cos(eθ) sin(eθ)

] 
qix
qiy
qjx
qjy


where we suppose that, in general, element e is connected to nodes numbered as i and j. For
element 1 (θ = 45◦, ℓ = 5 m):

1σh =
E

5

[
−

√
2
2

−
√
2
2

√
2
2

√
2
2

]
−500′000/EA
250′000/EA

0
0

 =
25′000

√
2

A

For element 2 (θ = 90◦, ℓ = 10 m):

2σh =
E

10

[
0 −1 0 1

] 
−500′000/EA
250′000/EA

0
0

 = −25′000

A

2



The computed stresses indicate that element 1 experiences a tensile stress, while element 2 is under
compressive stress. This is consistent with the overall structural behavior: the applied horizontal
load at node 1 pulls on element 1, stretching it, while simultaneously pushing down against the
vertical support, placing element 2 in compression. These stress signs reflect the internal force
directions that balance the applied load and maintain equilibrium.

Problem 2

The MATLAB code provided below solves the transient analysis of a two-dimensional steel truss using
the finite element method. The approach follows standard steps in structural dynamics: material
definition, finite element modeling, modal analysis, and time-domain response.

Material properties

The code begins by defining the material properties of structural steel:

clear all

% E: modulus of elasticity

E = 21010^9;

% A: area of cross section

A = 6.4510-4;

% EA: axial stiffness

EA = E*A;

% rho: density

rho = 7800;

% rhoA: mass per unit length

rhoA = rho*A;

% Applied force

f = 22000;

Geometry and mesh connectivity

The truss geometry is defined through a node coordinate matrix and a connectivity matrix. The
nodes are arranged in a simple triangular configuration, and elements are formed between nodes
via the connectivity table. A plotting function draw2Dtruss is used to visually confirm the mesh.

nodesCoordinates = 6*[0 0; 0 1; 1 0];

connectivity = [1 2; 2 3; 1 3];

numberOfNodes = size(nodesCoordinates,1);

GDof = 2*numberOfNodes;

draw2Dtruss(nodesCoordinates, connectivity, ...

’LineColor’, ’r’, ...

’LineWidth’, 2, ...

’MarkerSize’, 8, ...

’ShowNodeNumbers’, true);

3



Global stiffness and consistent mass matrices

The next step involves the computation of the global stiffness matrix and global consistent mass
matrix using helper functions formStiffness2Dtruss and formConsistentMass2Dtruss. These
matrices represent the elastic and inertial properties of the system, respectively.

% compute and assemble the structure stiffness matrix

stiffness = formStiffness2Dtruss(GDof, connectivity, nodesCoordinates, EA);

% compute and assemble the structure mass matrix

mass = formConsistentMass2Dtruss(GDof, connectivity, nodesCoordinates, rhoA);

Applying boundary conditions and solving the eigenproblem

Boundary conditions are applied by specifying the constrained degrees of freedom. Node 1 is fully
fixed, and node 4 is constrained in the y-direction, leaving three free DOFs.

prescribedDof = transpose([1 2 6]);

activeDof = setdiff(transpose((1:GDof)), prescribedDof);

stiffness_freeDofs = stiffness(activeDof,activeDof);

mass_freeDofs = mass(activeDof,activeDof);

[modal_matrix,frequencies] = computeFrequenciesAndModes(GDof,prescribedDof,stiffness,

mass,0);

Notice that normal modes are only relative values which may be scaled of normalized to some extent
as a matter of choice. Use the following normalization convention is in force:

ni =
ϕi√

ϕT
i Mϕi

The vectors ni are referred as normalized modal vectors.

Mode normalization and orthogonality checks

The eigenvectors computed by the eig function in MATLAB are not guaranteed to follow a particu-
lar normalization convention. In the context of structural dynamics, however, it is often convenient
to normalize the mode shapes with respect to the mass matrix such that:

ΦTMΦ = I,

This normalization ensures that the modal matrix Φ, which collects the mode shapes as columns,
satisfies:

ΦTKΦ = Λ,

where Λ is the diagonal matrix of eigenvalues λi = ω2
i . The following code performs this mass-

normalization of the mode shapes and verifies the orthogonality relations with respect to both the
mass and stiffness matrices. These checks confirm that the system of modal coordinates is decoupled
and can be treated as independent single-degree-of-freedom systems during transient analysis.

4



modes_normalized = zeros(size(modal_matrix));

for modeNumber = 1:size(modal_matrix,2)

norm = sqrt(transpose(modal_matrix(:,modeNumber)) * mass_freeDofs *

modal_matrix(:,modeNumber));

modes_normalized(:,modeNumber) = 1 / norm * modal_matrix(:,modeNumber);

end

% Check orthogonality with respect to stiffness matrix

transpose(modal_matrix) * stiffness_freeDofs * modal_matrix

frequencies.^2

% Check orthogonality with respect to mass matrix

transpose(modal_matrix) * mass_freeDofs * modal_matrix

Transient analysis

The transient response of the structure is evaluated in modal coordinates using the modal superpo-
sition method. The transformation q(t) = Φz(t) yields the modal force vector, which drives each
of the uncoupled second-order ordinary differential equations (ODEs) of the form:

Iz̈(t) +Λz(t) = p

where Λ = diag(λ2
1, λ

2
2, λ

2
3) and the modal force is

p = ΦT f .

The modal equations are given in components by

z̈i(t) + ω2
i zi(t) = pi.

Hence the uncoupled system of equations is
z̈1(t) + 506400 z1(t) = p1

z̈2(t) + 224360 z2(t) = p2

z̈3(t) + 324770 z3(t) = p3

where

p = transpose(modal_matrix) * [f; 0; 0];

The solution of the above equations for zero initial conditions z(0) = ż(0) = 0 is given by
z1(t) =

p1
ω2
1
(1− cos

(
ω2
1t)

)
z2(t) =

p2
ω2
3
(1− cos

(
ω2
2t)

)
z3(t) =

p3
ω2
2
(1− cos

(
ω2
3t)

)
syms t

z = vpa(p ./ frequencies.^2 .* (1 - cos(frequencies.^2 * t)),3);

q = vpa(modal_matrix * z, 3)

The time response at the nodal coordinates is calculated from q(t) = Φ z(t).

5



Plotting the time responses

We now compute and plot the time responses q1(t), q2(t), and q3(t) over a given time interval.

% Define time vector

t_vals = linspace(0, 0.1, 1000);

q_time = zeros(3, length(t_vals));

for i = 1:length(t_vals)

z_t = p ./ frequencies.^2 .* (1 - cos(frequencies .* t_vals(i)));

q_time(:, i) = modal_matrix * z_t;

end

% Plot q_1(t)

figure;

plot(t_vals, q_time(1, :), ’LineWidth’, 2);

xlabel(’Time (s)’); ylabel(’Displacement q_1(t) [m]’);

title(’Time Response of q_1(t)’); grid on;

% Plot q_2(t)

figure;

plot(t_vals, q_time(2, :), ’LineWidth’, 2);

xlabel(’Time (s)’); ylabel(’Displacement q_2(t) [m]’);

title(’Time Response of q_2(t)’); grid on;

% Plot q_3(t)

figure;

plot(t_vals, q_time(3, :), ’LineWidth’, 2);

xlabel(’Time (s)’); ylabel(’Displacement q_3(t) [m]’);

title(’Time Response of q_3(t)’); grid on;

6


