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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local Project 1
5 FEM local Project 1 submission



Summary

Recap week 4

3D finite elements

Isoparametric, subparametric, superparametric elements

Numerical integration in 3d

MATLAB PDE Toolbox Examples

Abaqus example

Recommended readings

1 Gmür, Dynamique des structures (§3.3) [GM]

2 Neto et al., Engineering Computation of Structures (chap 7) [N]

https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&searc{}^ah_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&searc{}^ah_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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The local finite element point of view (in 2d)
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Every finite element eΩ has:

Number of nodes ep,

Connectivity (ep× 1),

eq vector of nodal displacements (2ep× 1),
eu vector of displacements (2× 1),

ehi local shape functions (i = 1, . . . , ep),
eH local shape functions matrix (2× 2ep),

eK local stiffness matrix (2ep× 2ep),
eM local mass matrices (2ep× 2ep),
er local loads vector (2ep× 1).
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Archetypal to local
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Paradigm shift: many with few

� Main idea: instead of working with local shape functions ehi (one per node!)
we will deduce them from a small set of archetypal (or master) shape
functions ahi defined on an archetypal element via a transformation eT .

� Clever idea: the transformation eT is defined in terms of archetypal shape
functions and nodes coordinates:

eT : x(ξ) = aH(ξ)ex =

ep∑
i=1

ahi(ξ)
exi

% Archetypal elements follows established conventions (node numbering and
nodes coordinates) that one needs to adopt.
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The clever idea

Nodes:
x1, . . . ,xp

Master functions
ah1, . . . ,

ahep

Connectivity
table

Transformations
1T, . . . ,mT

Local shape functions
eh1, . . . ,

ehp
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Concrete example: bilinear triangular element (2d)

Node id Local Node id Global
local Coord global coord.

1 (0, 0) 4 (x4, y4)
2 (1, 0) 8 (x8, y8)
3 (0, 1) 5 (x5, y5)

Base (archetypal) functions:

ah1 = 1− ξ1 − ξ2
ah2 = ξ1
ah3 = ξ2

1

2

3

4

5

6

7

8

1Ω

ξ1

ξ2

1 2

3

Ωa

1T

Transformation:

1T :

{
x(ξ1, ξ2) = x4h1 + x8h2 + x5h3 = x4 + (x8 − x4)ξ1 + (x5 − x4)ξ2

y(ξ1, ξ2) = y4h1 + y8h2 + y5h3 = y4 + (y8 − y4)ξ1 + (y5 − y4)ξ2

Recap week 4 Linear elastodynamics 8 / 39



Consequence 1: local shape functions are useless

The coordinate transformation eT−1 maps shape functions on eΩ to the
master element space Ωa:

aH(ξ) = eH(x(ξ))

An example of a relationship between local and archetypal shape function:

1h8(x, y) =
ah2

(
ξ1(x, y), ξ2(x, y)

)
� In general, the inverse transformations eT−1 :

(
ξ1(x, y), ξ2(x, y)

)
are not easy

to compute since x(ξ) are nonlinear.

� The local functions ehj may have complex expressions, but they are not
necessary to explicitly compute!
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Consequence 2: integegration over archetypal elements

Thanks to eT , the integrals over eΩ in the definitions of stiffness and mass
matrices and loads vectors can be computed over the regular element Ωa by
performing a change of variables:∫

eΩ
(. . . )dΩ

replaced by7−−−−−−−→
∫
Ωa

(. . . )ejdξ1dξ2

∂

∂xi

replaced by7−−−−−−−→ ∂ξ1
∂xi

∂ξ1 +
∂ξ2
∂xi

∂ξ2

For each transformation, it is necessary to compute the Jacobian matrix, its
determinant, and its inverse.
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Concrete example: bilinear triangular element (2d)

Transformation:

1T :

{
x(ξ1, ξ2) = x4h1 + x8h2 + x5h3 = x4 + (x8 − x4)ξ1 + (x5 − x4)ξ2

y(ξ1, ξ2) = y4h1 + y8h2 + y5h3 = y4 + (y8 − y4)ξ1 + (y5 − y4)ξ2

Jacobian matrix:

1J =

[
∂x/∂ξ1 ∂x/∂ξ2
∂y/∂ξ1 ∂y/∂ξ2

]
=

[
x8 − x4 x5 − x4
y8 − y4 y5 − y4

]
Jacobian determinant:

1j = det 1J = (x8 − x4)(y5 − y4)− (x5 − x4)(y8 − y4)

Jacobian inverse matrix:

1J−1 =
1
1j

[
x8 − x4 −x5 + x4
−y8 + y4 y5 − y4

]
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Concrete example: bilinear triangular element (2d)

Local mass matrix:

1M =

∫
Ωa

ρ aHT aH 1j dξ

=

∫
Ωa

ρ

 ah21I
ah1

ah2I
ah1

ah3I
ah2

ah1I
ah22I

ah2
ah3I

ah3
ah1I

ah3
ah2I

ah23I

 1j dξ2dξ1

Local stiffness matrix:

1K =

∫
Ωa

. . . . . .(
∇ξ

ahi
1J−1

)T
C
(
∇ξ

ahj
1J−1

)
. . . . . .

 1j dξ2dξ1
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Consequence 3: numerical integration: Gauss-Legendre

∫
Ωa

f(ξ1, ξ2)dξ1dξ2 ≈
4∑

i=1

ωif(ξ
i
1, ξ

i
2)

ξ1

ξ2 Gauss points (ξi1, ξ
i
2) Weights (ωi)

(1/5, 1/5) 25/96

(3/5, 1/5) 25/96

(1/5, 3/5) 25/96

(1/3, 1/3) 9/32

If f is a polynomial of degree di = 2ri − 1 in the variable ξi, then the
Gauss-Legendre approximation formula is exact.
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Assembly of the mass matrix: local to global

1M =

∫
Ωa

ρ

 ah21I
ah1

ah2I
ah1

ah3I
ah2

ah1I
ah22I

ah2
ah3I

ah3
ah1I

ah3
ah2I

ah23I

 ej dξ2dξ1 =

1M11
1M12

1M13
1M21

1M22
1M23

1M31
1M32

1M33


We assembly local mass matrices into the global ones using the assembly operator:

M =
m

A
e=1

eM =

m∑
e=1

eLT eMeL

where

1L =

0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I
0 0 0 0 I 0 0 0



Node id. Node id.
local global

1 4
2 8
3 5
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Assembly of the mass matrix: local to global

1LT 1M1L =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1M11

1M13 0 0 1M12

0 0 0 1M31
1M33 0 0 1M32

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1M21

1M23 0 0 1M22


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3D finite elements



Three-dimensional families of finite elements

3D families

Hexahedral

Tetrahedral

Prismatic

LagrangianSerendipity

Hexahedral

Tetrahedral

Prismatic
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Serendipity vs Lagrangian elements

Lagrangian finite elements:
• Defined using Lagrange polynomials.
• Nodes are placed at both element edges and inside the element.
• Suitable for higher-order accuracy in both structured and unstructured meshes.
• Used in applications where internal nodes improve interpolation.

Serendipity finite elements:
• Defined using a reduced number of nodes compared to Lagrangian elements.
• Nodes exist only on the edges (no interior nodes for 2D elements or nodes on

faces for 3D elements).
• More computationally efficient but less accurate for high-order approximations.
• Preferred for quadrilateral and hexahedral elements in structured meshes to

avoids certain types of instabilities.
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Trilinear hexahedral (lagrangian) element

Node Coordinates

1 (−1,−1,−1)
2 (+1,−1,−1)
3 (+1,+1,−1)
4 (−1,+1,−1)
5 (−1,−1,+1)
6 (+1,−1,+1)
7 (+1,+1,+1)
8 (−1,+1,+1)
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8
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Triquadratic hexahedral (lagrangian) element
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Triquadratic hexahedral serendipity element
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Base functions for hexahedral elements

Trilinear hexahedral base functions

ah1 = 0.125(1− ξ1)(1− ξ2)(1− ξ3)
ah2 = 0.125(1 + ξ1)(1− ξ2)(1− ξ3)
ah3 = 0.125(1 + ξ1)(1 + ξ2)(1− ξ3)
ah4 = 0.125(1− ξ1)(1 + ξ2)(1− ξ3)
ah5 = 0.125(1− ξ1)(1− ξ2)(1 + ξ3)
ah6 = 0.125(1 + ξ1)(1− ξ2)(1 + ξ3)
ah7 = 0.125(1 + ξ1)(1 + ξ2)(1 + ξ3)
ah8 = 0.125(1− ξ1)(1 + ξ2)(1 + ξ3)
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Triquadratic hexahedral serendipity base functions

1. Vertex nodes (1-8):

ahi = 0.125 · (1± ξ1) · (1± ξ2) · (1± ξ3)

2. Mid-edge nodes (9-20):

ahi =


0.25 · (1− ξ21) · (1± ξ2) · (1± ξ3)

0.25 · (1± ξ1) · (1− ξ22) · (1± ξ3)

0.25 · (1± ξ1) · (1± ξ2) · (1− ξ23)

3. Correction formula for vertex nodes (1-8):

ahi ← ahi − 0.5 · (ahj1 + ahj2 +
ahj3)

→ Triquadratic hexahedral serendipity base functions
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Triquadratic hexahedral serendipity base functions

4. Mid-face nodes (21-26):

ahi =


0.5 · (1± ξ1) · (1− ξ22) · (1− ξ23)

0.5 · (1− ξ21) · (1± ξ2) · (1− ξ23)

0.5 · (1− ξ21) · (1− ξ22) · (1± ξ3)

5. Vertex nodes (1-8) adjustement:

ahi ← ahi − 0.5 · (ahj1 + ahj2 +
ahj3)

6. Mid-edge nodes (9-20) adjustement:

ahi ← ahi − 0.5(ahj1 +
ahj2)
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Triquadratic hexahedral base functions

7. Interior node (27):

ah27 = (1− ξ21)(1− ξ22)(1− ξ23)

8. Vertex nodes (1-8) adjustement:

ahi ← ahi − 0.125ah27

9. Mid-edge nodes (9-20) adjustement:

ahi ← ahi + 0.25ah27

10. Mid-face nodes (21-26) adjustement:

ahi ← ahi − 0.5ah27

→ Triquadratic hexahedral base functions
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Trilinear tetrahedral element

Node Coordinates

1 (0, 0, 0)
2 (1, 0, 0)
3 (0, 1, 0)
4 (0, 0, 1)

Base functions

ah1 = 1− ξ1 − ξ2 − ξ3
ah2 = ξ1
ah3 = ξ2
ah4 = ξ3
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ξ1
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4
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Triquadratic tetrahedral element

Node Coordinates

1 (0, 0, 0)
2 (1, 0, 0)
3 (0, 1, 0)
4 (0, 0, 1)
5 (0.5, 0, 0)
6 (0.5, 0.5, 0)
7 (0, 0.5, 0)
8 (0, 0, 0.5)
9 (0.5, 0, 0.5)
10 (0, 0.5, 0.5)

ξ2
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ξ1

1

2

3

4

5 6

7

8

9

10

3D finite elements Linear elastodynamics 26 / 39



Triquadratic tetrahedral serendipidy element

Node Coordinates

1 (0, 0, 0)
2 (1, 0, 0)
3 (0, 1, 0)
4 (0, 0, 1)
5 (0.5, 0, 0)
6 (0.5, 0.5, 0)
7 (0, 0.5, 0)
8 (0.5, 0, 0.5)
9 (0, 0.5, 0.5)

ξ2

ξ3

ξ1

1

2

3

4

5 6

7

8

9

3D finite elements Linear elastodynamics 27 / 39



Base functions for tetrahedral elements

Trilinear tetrahedral
base functions

Vertex nodes (ah1, . . . ,
ah4)

Mid-edge nodes
(ah5, . . . ,

ah10)

Correction for vertex nodes
(ah1, . . . ,

ah4)

Triquadratic tetrahedral
base functions
(ah1, . . . ,

ah10)
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Trilinear prismatic element

Node Coordinates

1 (0, 0,−1)
2 (1, 0,−1)
3 (0, 1,−1)
4 (0, 0, 1)
5 (1, 0, 1)
6 (0, 1, 1)
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Triquadratic prismatic element
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Triquadratic prismatic serendipidy element
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Base functions for prismatic elements

Trilinear prismatic element base functions

ah1 = (1− ξ1 − ξ2)(1− ξ3)/2
ah2 = ξ1(1− ξ3)/2
ah3 = ξ2(1− ξ3)/2

ah4 = (1− ξ1 − ξ2)(1 + ξ3)/2
ah5 = ξ1(1 + ξ3)/2
ah6 = ξ2(1 + ξ3)/2

1 Trilinear prismatic base functions: corner nodes (ah1, . . . ,
ah6)

2 Mid-edge nodes definitions: (ah7, . . . ,
ah15)

3 Correction for vertex nodes: (ah1, . . . ,
ah6)

4 Triquadratic prismatic serendipidy base functions (ah1, . . . ,
ah15)

5 Mid-face nodes definitions: (ah16,
ah17,

ah18)

6 Correction for vertex nodes: (ah1, . . . ,
ah6)

7 Correction for mid-edge nodes: (ah7, . . . ,
ah15)

8 Triquadratic prismatic base functions (ah1, . . . ,
ah18)
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Isoparametric, subparametric,
superparametric elements



Geometrical representation and displacement approximation

Displacement field as well as the geometrical representation of the finite elements
could be approximated using different sets of shape functions.

Geometrical representation

eT : x(ξ) = aH(ξ)ex

Displacement field approximation

euh(x, t) = eH(x)eq(t)

1 Subparametric: less nodes for geometric than for displacement,

2 Isoparametric: same nodes for both geometry and displacement,

3 Superparametric: more nodes for geometric than for displacement.
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Numerical integration in 3d



Integration over archetypal elements

∫
Ωa

f dΩ

Hexahedral∫ 1

−1

∫ 1

−1

∫ 1

−1
f dξ1dξ2dξ3

Prismatic∫ 1

0

∫ 1−ξ1

0

∫ 1

−1
f dξ1dξ2dξ3

Tetrahedral∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ1−ξ2

0
f dξ1dξ2dξ3

Numerical integration in 3d Linear elastodynamics 34 / 39



Gauss-Legendre numerical integration

Hexahedral∫ 1

−1

∫ 1

−1

∫ 1

−1
f dξ1dξ2dξ3 ≈

r1∑
i=1

r2∑
j=1

r3∑
k=1

ω1
i ω

2
jω

3
kf(ξ

i
1, ξ

j
2, ξ

k
3 )

Prismatic∫ 1

0

∫ 1−ξ1

0

∫ 1

−1
f dξ1dξ2dξ3 ≈

r1∑
i=1

r3∑
k=1

ω12
i ω3

kf(ξ
i
1, ξ

i
2, ξ

k
3 )

Tetrahedral∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ1−ξ2

0
f dξ1dξ2dξ3

≈
r1∑
i=1

ω123
i f(ξi1, ξ

i
2, ξ

i
3)
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Examples of Gauss point distribution

(Credit: Thomas Gmür - Dynamique numérique des solides et des structures)
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Number of Gauss points for exact integration: trilinear hexahedral

ahi trilinear basis functions.

Exact integration apparently with:
• 2× 2× 2 Gauss points for eM
• 1× 1× 1 Gauss points for eK

Note that in case of distortion:
• ej = ej(ξ)

• ∂eH
∂x = ∂aH

∂ξ
eJ−1

• eJ−1 = eJ−1(ξ) function of ξ at the
denominator.

Thus the Gauss quadrature will never be
exact in case of distortion.

ξ2

ξ3

ξ1

1

2 3

4

5

6 7

8
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Number of Gauss points for exact integration

Rule for exact integration: evaluate the number of Gauss points on the
archetypal element Ωa (not on eΩ). Let ni be the maximum number of nodes in
direction ξi.

Hexahedral: n1 × n2 × n3 Gauss points.

Prismatic: n12 × n3 Gauss points.

Tetrahedral: n123 Gauss points

Example of exact integration for mass matrix:

Trilinear Hexahedral: n1 × n2 × n3 = 2× 2× 2

Trilinear Tetrahedral: n123 = 5

Trilinear Prismatic: n12 × n3 = 4× 2
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Comparison of exact and reduced integration

Exact integration

! Integrals are computed exactly

! Monotonicity of convergence

% Overestimation of stiffness

% Risk of locking in linear elements

Reduced integration

! Reduction of computational costs

% Loss of monotonicity of convergence

% Hourglass effect in hexahedral
structured meshes

Selective reduced integration:

involves using fewer integration points in certain areas and more in others,
based on the specific requirements of the analysis,

reduce computational costs while maintaining accuracy in critical areas,

mitigate the hourglass effect.
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