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Where do we stand?

Week Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 lastod . FEM global Project 1 statement
g | Gastodynanies FEM local Project 1
5 FEM local Project 1 submission




Summary
m Recap week 4
m 3D finite elements
m [soparametric, subparametric, superparametric elements
m Numerical integration in 3d
m MATLAB PDE Toolbox Examples

Abaqus example

Recommended readings
©® Gmiir, Dynamique des structures (§3.3) »[GM]
® Neto et al., Engineering Computation of Structures (chap 7) N


https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&searc{}^ah_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&searc{}^ah_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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The local finite element point of view (in 2d)

Every finite element €2 has:
m Number of nodes “p,

m Connectivity (°p x 1),

m °q vector of nodal displacements (2°p x 1),

m “u vector of displacements (2 x 1),

m “h; local shape functions (i = 1,...,°p),

m “H local shape functions matrix (2 x 2p),

m ‘K local stiffness matrix (2°p x 2°p),

m M local mass matrices (2°p x 2°p),

m °r local loads vector (2°p x 1).
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Archetypal to local
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Paradigm shift: many with few

I¥" Main idea: instead of working with local shape functions ¢h; (one per node!)

we will deduce them from a small set of archetypal (or master) shape
functions “h; defined on an archetypal element via a transformation ¢7'.

IZ" Clever idea: the transformation ¢T is defined in terms of archetypal shape
functions and nodes coordinates:

o

T:x(§) = "H(§)x= ) “hi(§)"x
i=1

X Archetypal elements follows established conventions (node numbering and
nodes coordinates) that one needs to adopt.
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The clever idea

Nodes: Master functions Connectivity
X1, ., Xp “hy,...,%e, table
Transformations Local shape functions
YT o o PO ‘hy,...,%h,
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Concrete example: bilinear triangular element (2d)

Node id | Local | Node id | Global
local Coord | global coord.
1 (0,0) 4 (Ta,y1) &
2 (1,0) 8 (78, ys) 3
3 (0,1) 5 (z5,9s5)

Base (archetypal) functions:

hi=1-& —&

“hy =&
“hy =&
Transformation:

17, z(&1,62) = Tah1 + x8hg + T5hy = T4 + (25 — 24)61 + (5 — T4)&2
w6, &) = yaha + yshe + yshs = ya + (ys — ya)é1 + (y5 — ya)&2
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Consequence 1: local shape functions are useless

m The coordinate transformation *7~! maps shape functions on ¢Q to the
master element space 2%:

“H(§) = “H(x(¢))

m An example of a relationship between local and archetypal shape function:
Yhs(z,y) = “ha (&1 (2, ), E2(2,Y))

BZ” In general, the inverse transformations © ({1 (z,y),&(x, y)) are not easy
to compute since x(£) are nonlinear.

B The local functions “h; may have complex expressions, but they are not
necessary to explicitly compute!
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Consequence 2: integegration over archetypal elements

m Thanks to ¢7’, the integrals over ¢€2 in the definitions of stiffness and mass
matrices and loads vectors can be computed over the regular element Q% by
performing a change of variables:

/(...)dQ ZRlre b /(...)ejdgloz»g2
EQ Qa

0 replaced by 861 6§2
ox; oz; Oa t Ox; %

m For each transformation, it is necessary to compute the Jacobian matrix, its
determinant, and its inverse.
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Concrete example: bilinear triangular element (2d)

m Transformation:

1 )21, 62) = mahy + z8ho + 25hs = 24 + (T8 — 4)61 + (75 — T4)E2
| y(&1, &) = yaha + ysha + yshs = ya + (ys — ya)é1 + (ys — ya)&2

m Jacobian matrix:

IJ _ [(%/851 8x/8£2] _ |:«738 — X4 X5 — :L’4j|
dy/0&  dy/0& Ys — Y4 Y5 — Y4

m Jacobian determinant:
1j=det'J = (w5 — 4)(y5 — ya) — (x5 — 74)(ys — Y1)
m Jacobian inverse matrix:

1J1:1[$8—$4 —$5+964]
G l-ys+tys ys—ya
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Concrete example: bilinear triangular element (2d)

m Local mass matrix:

lM _ paHTaHlj dg
Qa
ST kel SRy hsl
= / p | “ha®h, 1 ah%I “ho%hsI
“ |%h3%h I *h3%hsol ah%l

m Local stiffness matrix:

'K = (Veohil3 1T C (Veoh 1371
Qa

Recap week 4
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Consequence 3: numerical integration: Gauss-Legendre

4
| fededen ~ Y wis(€l,6)
=1

Gauss points (&%, £5)
(1/5,1/5)
(3/5,1/5)
(1/5,3/5)
(1/3,1/3)

Weights (w;)
25,96
25,96
25/96
9/32

m If f is a polynomial of degree d; = 2r; — 1 in the variable &;, then the

Gauss-Legendre approximation formula is exact.
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Assembly of the mass matrix: local to global

Sp2l  ohyohyl Oy Ohsl "My "My ‘Mg
Inv = p [he®mI  h3T  %hohgl| €jdéadéy = "My Moy 1Mo
Q* |apgah I Thg®hol @RI M3 M3z Mas

We assembly local mass matrices into the global ones using the assembly operator:

m m
M = AEM:ZELTeMeL Node id. | Node id.
e=1 e=1 local global
where 1 4
2 8
0 00I 00 O0U DO 3 5
L=10 00 000 0 I
0 00 OI 0 O0UDO
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Assembly of the mass matrix: local to global

0 0 O 0 0 0 0 0

0 0 O 0 0 00 0

0 0 O 0 0 0 0 0
17 Tl gl 0 00 'M;; ™3 0 0 My
LML =10 0 0 1My My 0 0 'Msy

0 0 0 0 0 0 0 0

0 0 O 0 0 0 0 0

0 0 0 'My 'My; 0 0 'My |
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3D finite elements




Three-dimensional families of finite elements

Hexahedral

Tetrahedral

Serendipity

Hexahedral

Prismatic

3D finite elements

Lagrangian

Tetrahedral

Prismatic
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Serendipity vs Lagrangian elements

m Lagrangian finite elements:

Defined using Lagrange polynomials.

Nodes are placed at both element edges and inside the element.

Suitable for higher-order accuracy in both structured and unstructured meshes.
Used in applications where internal nodes improve interpolation.

m Serendipity finite elements:

Defined using a reduced number of nodes compared to Lagrangian elements.
Nodes exist only on the edges (no interior nodes for 2D elements or nodes on
faces for 3D elements).

® More computationally efficient but less accurate for high-order approximations.
® Preferred for quadrilateral and hexahedral elements in structured meshes to

avoids certain types of instabilities.
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Trilinear hexahedral (lagrangian) element
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Triquadratic hexahedral (lagrangian) element
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Triquadratic hexahedral serendipity element
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Base functions for hexahedral elements

Trilinear hexahedral base functions

%hy = 0.125(1 — &1)(1 — &9)(1 — &3)
“hy = 0.125(1 + &1)(1 — &) (1 — &)
“hs = 0.125(1 + &1)(1 + &) (1 — &)
“hy = 0.125(1 — &1)(1 + &) (1 — &)
“hs = 0.125(1 — &1)(1 — &) (1 + &)
“he = 0.125(1 + &) (1 — &)(1 + &)
“hy = 0.125(1 + &) (1 + &) (1 + &3)
hg = 0.125(1 — &1)(1 + &)(1 + &3)
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Triquadratic hexahedral serendipity base functions

1. Vertex nodes (1-8):
Uy =0.125- (1£&) (1+&)- (1+&)
2. Mid-edge nodes (9-20):

025 (1—¢7) - (1£&) - (1+&)
“hi=4025-(1+&)-(1-63) - (1£&)
025-(1+&)-(1+&)-(1-&3)

3. Correction formula for vertex nodes (1-8):
R  %h; — 0.5 - (*hj, + “hy, + hjy)

— Triquadratic hexahedral serendipity base functions
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Triquadratic hexahedral serendipity base functions

4. Mid-face nodes (21-26):
0.5-(1£&) (1-£€) - (1-£)
“hi =05 (1-€7) - (1+&) (1-£)
0.5 (1-¢&F) - (1-&3) - (1£8)
5. Vertex nodes (1-8) adjustement:
“h; < %h; — 0.5 - (ahjl + ahj2 + ahjs)
6. Mid-edge nodes (9-20) adjustement:
“hi + “h; — 0.5(ahjl + ahjz)

3D finite elements
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Triquadratic hexahedral base functions

“har = (1= €)1 - &)(1 - &)
8. Vertex nodes (1-8) adjustement:
“h; < “h; — 0.125%97
9. Mid-edge nodes (9-20) adjustement:
%h; < “h; + 0.25%hs97
10. Mid-face nodes (21-26) adjustement:
P h; — 0.5%ha7

— Triquadratic hexahedral base functions
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Trilinear tetrahedral element

Node ‘ Coordinates
1

0
2 (1
3 (0,
4 (0

Base functions

*h1=1-&6-& &

“hy =&
“hy = &
hy = &3
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Triquadratic tetrahedral element
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Triquadratic tetrahedral serendipidy element
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Base functions for tetrahedral elements

Mid-edge nodes
(“hs, . ..

; ath)

Trilinear tetrahedral
base functions
Vertex nodes (*hy,...,%hy)

A

Triquadratic tetrahedral
base functions

(“h1,...,%10)

Correction for vertex nodes

(“ha, ..

., %ha)

3D finite elements
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Trilinear prismatic element

Node Coordinates
T (0,0-1)

2 (1,0, 1)

3 (0717_ )

4 (0,0,1)

5 (1,0,1)

6 (0,1,1)

3D finite elements

&3

&2

Linear elastodynamics

29 / 39



Triquadratic prismatic element
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Triquadratic prismatic serendipidy element
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Base functions for prismatic elements

Trilinear prismatic element base functions

“h1 = (1-& —&)(1—¢&3)/2 Uhy=(1—& — &)(1+&)/2
*hy = &1(1 - &3)/2 “hs = £1(1 + £3)/2
“hy = &(1 — £3)/2 “he = &2(1 +&3)/2
©® Trilinear prismatic base functions: corner nodes (“hq,...,%hs¢)
® Mid-edge nodes definitions: (®hz, ..., “h1s)
® Correction for vertex nodes: (“hi,...,%hg)
@® Triquadratic prismatic serendipidy base functions (®hy,...,%;5)
@ Mid-face nodes definitions: (“hig, “h17,“h1s)
® Correction for vertex nodes: (“hq,...,%sg)
@ Correction for mid-edge nodes: (®hz,...,%;5)
® Triquadratic prismatic base functions (“hq,...,%h1s)
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Isoparametric, subparametric,
superparametric elements




Geometrical representation and displacement approximation

Displacement field as well as the geometrical representation of the finite elements
could be approximated using different sets of shape functions.

m Geometrical representation
T x(€) = “H(¢)x
m Displacement field approximation

“u(x, ) = “H(x)q({)

@ Subparametric: less nodes for geometric than for displacement,
® Isoparametric: same nodes for both geometry and displacement,

® Superparametric: more nodes for geometric than for displacement.
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Numerical integration in 3d




Integration over archetypal elements

Hexahedral

/_11 /_11 /_ 11 f d&1dgadss

Qa

£dQ

Numerical integration in 3d

Prismatic

/0 1 /0 o / 11 f dérdeads

Tetrahedral

/0 1 /0 o /0 T deideds;

J
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Gauss-Legendre numerical integration

Hexahedral
1 1 1 — TL T2 T3
[ raadeds ~ Y SOS Wl (el 6, )
—1J/-1J-1 i=1 j=1 k=1
Prismatic
1 pl-g& 1 . T3
[ raadsds ~ 30 Wil )
0 JO -1 i=1 k=1
Tetrahedral -
1 (-6 pl-ti-& . Y wiBf(E],6,8)
[ raadeds =
0 0 0
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Examples of Gauss point distribution

£ point nodal
3
point de
Gauss /;;2
S

(Credit: Thomas Gmiir - Dynamique numérique des solides et des structures)
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Number of Gauss points for exact integration

m “h; trilinear basis functions.

m Exact integration apparently with:
® 2 x 2 x 2 Gauss points for “M
® 1 x 1 x 1 Gauss points for ‘K
m Note that in case of distortion:
* i =°5(&)
O°H __ 0°Heg—
* =B J!
o ¢J-1 =¢J~1(¢) function of £ at the
denominator.
Thus the Gauss quadrature will never be

exact in case of distortion.

Numerical integration in 3d

: trilinear hexahedral
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Number of Gauss points for exact integration

Rule for exact integration: evaluate the number of Gauss points on the
archetypal element Q% (not on €Q2). Let n; be the maximum number of nodes in
direction &;.

m Hexahedral: n; x no x ng Gauss points.
m Prismatic: nio X ng Gauss points.

m Tetrahedral: ni23 Gauss points

Example of exact integration for mass matrix:
m Trilinear Hexahedral: ny X ng X ng =2 x 2 x 2
m Trilinear Tetrahedral: nijs3 = 5

m Trilinear Prismatic: nig X ng =4 x 2
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Comparison of exact and reduced integration

Exact integration Reduced integration
v/ Integrals are computed exactly v/ Reduction of computational costs
v/ Monotonicity of convergence X Loss of monotonicity of convergence
X Overestimation of stiffness X Hourglass effect in hexahedral
X Risk of locking in linear elements structured meshes

Selective reduced integration:

m involves using fewer integration points in certain areas and more in others,
based on the specific requirements of the analysis,

m reduce computational costs while maintaining accuracy in critical areas,

m mitigate the hourglass effect.
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