=PrL

Linear elastodynamics
Finite element method in local coordinates

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025

Supp(@(x)
/

L, —
/ local basis function
global basis function



Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics | FEM global Project 1 statement
4 Solid 3D Project 1




Summary
m Recap week 3
m Localization and elementary quantities
m Example: dynamic analysis of a clamped beam

m Automating integration and archetypal shape functions

Recommended readings
©® Gmiir, Dynamique des structures (§3.3) *[GM]
® Neto et al., Engineering Computation of Structures (§2.3.5 - §2.3.8) »


https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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Displacements approximation in finte element method

Let p the number of nodes of the mesh.

uh (X, t) hz

HMv

p
su(x) = H(x)dq = th )0q;
i=1
m H(x) is a 3 x 3p matrix of shape functions:
H=[mI hl: ... kL. . ihl]

I is the 3 x 3 identity matrix.
m q(t) is a 3p x 1 vector of (unknown) nodal displacements.

m dq is a 3p x 1 vector of virtual nodal displacements.
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Global nodal shape functions requirements

Propretries of h;:
m Linearly independent polynomial basis.

m Satisfy Kronecker delta property:
hi(x;) =1 and h;(x;) =0.

m Vanish on non-adjacent elements.

m Continuous at interfaces.
m Differentiable inside elements.

m Ensure rigid body motion & constant
deformations.
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Drawbacks of the global approach

X Limited capability in handling complex (unstructured) mesh topologies.
X Computationally expensive: it requires defining one shape function per node.
X Limited utilization of the compact support of nodal shape functions.

Local approach: provides a quicker and more sistematic way to compute the
stiffenss and mass matrices and the applied forces vector:

(Credit: Onscale - structured vs unstructured meshes)
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Localization and elementary quantities



Localization

y m Let p be the number of nodes in the
mesh.

@
o)

m Let m be the number of finite
elements in the mesh.

m Let ¢Q) a finite element in the mesh.

m Let “p the number of nodes in the
element €€).
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Localization of displacements

Restriction of displacements u” and du” on the finite element °Q:
‘ul(x,t) = “H(x)°q(t) ¢ou’(x) = “H(x)%q

h h

m “u” restriction (3 x 1) of the displacement vector u” on the finite element Q.

m “du” restriction (3 x 1) of the virtual dispolecement vector du” on the finite
element ).

m “H matrix (3 x 3°p) of elementary shape functions of the finite element ().

m °q vector (3°p x 1) of unknown nodal displacements in the finite element €.

m “dq vector (3°p x 1) of nodal displacements in the finite element €€2.
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Local displacements approximation

“ut = [ I Chol | ... heyl |

z ou = [ “hI | Chol | ... | hepl |

Localization and elementary quantities

€

q1
q2

e

e

qep

€dq;
“oqp

edqep
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Localisation matrices

‘L . eLlp qi

‘a1
3°p = 3p

eqep

— “Lept " “Lepy ap

1 Y
3°p 1
‘q="‘Lq

°L is a Boolean location matrix:
m °L;; =1 (3 x 3 identity matrix) if global node j corresponds to local node ¢,

m °L;; = 0 (3 x 3 null matrix) otherwise.
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Localization matrices - example

m Number of nodes in the mesh: p = 8.
m Number of elements in the mesh: m = 6.
m Number of nodes in the element ': 1p = 3.
0 00OI O0O0OOTP O
'L={000000O0TI
0 00O0OTI 0O0TUO

m Number of nodes in the element 2Q: ?p = 4.

2L:

© O OO
© O oo
S O O -
- o O O
©c O oo
S O = O
o = O O
©c O oo
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Localisation matrices - memory usage

Localization and elementary quantities

Practical example:
Consider a mesh made of
m p = 10’000 nodes,

m trilinear hexahedral finite elements with
“p = 8 nodes each.

Every localization matrix °L contains
m 720'000 entries,
m of which 3°p = 24 are s,
X the remaining 719'976 are Os.
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Connectivity table: local to global node numbering

m Elements and their connectivity are defined using a table.
m Example connectivity table:

c0 |10 20 30 40
1 2 4 5

Q
1
212 3 5 6
315 6 8 9
414 5 7 8

m The connectivity matrix provides the global numbering for each node in each
element, corresponding to a column in the table above.

m The localization matrix €L is constructed from the connectivity table.
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Additivity of integrals

m Approximated weak form:

/ (Véu)T'Cvu’ d + /
JQ

p(ouM Tl dQ = / (6uM)Tfdr + / (6u)Tf dO
Q T JQ

m We localize the integration using the additivity of integrals:

m

Z( / (vesu)TCveu d0 + / p(eéuh)Teiith)
JeqQ e

e=1
—Z ( / cuM)Tfdr + / (‘75u]")Tf(I£2>
Jeq

and consider the local quantities ‘u” = “H°Lq and ¢du” = “H°Ldq.
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Additivity of integrals - inertial forces

m Recall “u” = *H°Lq and ¢6u” = “H*Léq.

m Consider only the term related to the virtual work of inertial forces

(acceleration):
m m
Z/ p(eouM)Teih 4 = 5&[2 eLT(/ p°HT°H dQ)eL] g
e=1"°9 e=1 °Q
‘M
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Additivity of integrals - internal and external forces

m Recall “u” = “H°Lq and ¢6u” = “HLéq.

m Analogously for the term related to the virtual work of internal forces:

i / (Vesuh)T Cveu! d :6qT[§:eLT( / VBHTCVeHdQ)eL}q
e—1" Q) €Q

e=1

‘K

m Term realted to the virtual work of external forces:

Z/ ("511/')”'?(1r+/ (¢ou™)Tf dQ
= Jer, Jeq

:(quiELT(/EF eHdeF—i—LQeHdeQ)
e=1 o .,

°r(t)
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Elementary matrices and vectors

m Elementary stiffness matrix (3°p x 3¢p):
‘K= / ‘BT'C’Bd0
eQ

‘B=V‘H=| V'l 1 1 V¢hep | elementery deformation matrix (6 x 3°p) .

m Elementary mass matrix (3°p x 3°p):
‘M = / p“HTH dQ.
eQ
m Elementary applied forces vector (3°p x 1):

er(t):/ eHTf"dF+/ “HTf dQ.
el"a eq)

Localization and elementary quantities Linear elastodynamics



Assembly operator

We define the assembly operator as follows:

m p
K= A K — Z eLTeKe

e=1 =3
m p
hdiz:fﬁxehdiz EE:GLT%hdeL
e=1 e=1
m p
r::fA&erzzzgjeLTer
e=1 e=1
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Example: modal analysis of a clamped beam




Modal analysis of a clamped beam

Kinematic assumptions:
m The beam is made of elastic material which is homogeneous and isotropic (F, v and p).

m Assume a plane stress state (very small thickness). The structure can be modeled in the
(z,y) plane using two-dimensional finite elements.

m v Poisson’s ratio

b m p material density
m ¢ length
m h heigth

m b thickness

m x axial coordinate

m y transversal coordinate

m ui(z,y,t) axial displacement m uz(z,y,t) transversal displacement
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Modal analysis of a clamped beam

Discretization into 8 bilinear quadrilateral finite elements (4 nodes each)

Y
¢/4 ¢/4 /4 t/4

X15

h/2

X14
h/2

3 X1 X4 X7 X10 X13
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Modal analysis of a clamped beam

Objective: determine the first natural frequencies of the beam.

» Go to Matlab Drive

Example: modal analysis of a clamped beam Linear elastodynamics 21 / 38


https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b

Automating integration and archetypal
shape functions




Elements

Physical structure:

Q

T

Elements:

10,2Q,...,mQ

T

Master elements:
Q% Qb, .
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Coordinate transform

To automate the integration and simplify the definition of shape functions, we
transform each distorted elementary domain €2 into a reference (archetypal or
master) domain Q% where we can apply standard numerical integration schemes.

m The coordinate transformation:
°T: Q% = °Q
§—x(§)
maps any point & = {£1, &, &3} in Q% to its corresponding point of coordinate

x = x(&) = {z1(€), 22(£), z3(€)}" in “Q.

m °7 is a bijective application.
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An illustration of a coordinate transform €7 in 3D

o
e —1 T
\L/ T

(Credit: Joel Cugnoni - Finite Element Method applied to linear statics of deformable solids)
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An illustration of coordinate transforms in 2D

13

il 3
QQ
o
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Biunivocity of coordinate transformation “7T’

O0r; Oz Oz3 &1 &2 €3

651 851 8&1 8CE1 81’1 azl

eJ = oz Oxa oxs eJ—l _ | 9& 23] 03
- 8§2 652 652 - 81‘2 3.102 8&?2
ox1 Oxa  Oxs &1 0&a 0€3

653 853 853 8;133 8:63 8:63

m “J is the Jacobian matrix associated with “T": ¢J;; = % (i,j =1,2,3),
m °J ! is the inverse Jacobian matrix,

m 5 = det(°J) is the determinant of the Jacobian matrix €J.

Sufficient condition for invertibility: if ¢j > 0 everywhere in °€), then T is
invertible in ¢ and ¢J~! exists.
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Master elements and master shape functions

m The coordinate transformation ¢7~! maps shape functions on ¢} to the
master element space 2%:

“H(&) = “H(x(£))
m Inside each element “€2:
“u"[x(¢)] = "H(¢)’q
m This allows shape function “H(§) to be defined only once on each master
element “(2.

I¥" Result: master shape functions!
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An illustration of a master shape function

‘T

“h3 (&)

0e & 1

eT—l

(Credit: Joel Cugnoni - Finite Element Method applied to linear statics of deformable solids)
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Choosing a simple coordinate transformation

%" Coordinate transformations are defined using the shape functions:

e

P

°T:x(€) = “H()x =) “hi(§)*;
=1

m Inside each element “2, the local coordinates are interpolated as a linear
combination of master shape functions “h; and nodal coordinates €x;.

m Kronecker property ensures node correspondence:
hi(xj) = 0i5 = “hi(&;) = dij-

m This guarantees that each node of the master element 2 maps to a
corresponding node in the deformed element ().
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Integration by substitution formulas

m Given T : Q% — €Q, an integral over “Q2 of a function F : °Q2 — R can be
rewritten as an integral over Q%:

| Pedx= | Pae)*ide
m When the integrand involves the operator V, then:
/ ViF(x)dx = | VeF(x(€)°I ' ¢jd¢
eQ Qa

since
3

ag] _ e —1i
856, Z@xz ¢ JZ:; Tij o
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Master elements and derivatives

m The spatial derivative operator Vy is defined in the global coordinate system
(21,72, 73). Applying the coordinate transform ¢7~!, we can then extend it to
be applied on the master element 2¢:

3

aé—] _ e 71i
8@ Zaxz & ]Z; Jij &5

m The elementary strain-displacement matrix ¢*B can be directly derived from
the master shape functions “H:

‘B=[ Vxh1 ... Vxhep | =[ Vehi®I7 1. Ve@hep, 70 ]
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Automating the integration

Using the coordinate transform “7" and master shape functions, the integrals in the
definitions of °K, M and “r, can be carried out directly on a standard domain Q%:

K= [ (VeHI N CVHT ) ¢ dg
Qa

eM = paHTaH ej dE
Qa

°r(t) = / g

- dr+/m “HTfe)de
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Systematization of the algorithm

Nodes
X1y Xp

Master functions
“hy,...,%he,

Connectivity
table

Automating integration and archetypal shape functions
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Systematization of the algorithm

Nodes:
X1y Xp

Master functions
“hi,...,%e,

Connectivity
table

T~

Transformations
1
T,...,™T

Jacobians

eJ,¢j, eI (e=1,...,m)

Automating integration and archetypal shape functions
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Systematization of the algorithm

X1, -, Xp %hy,..

Nodes Master functions Connectivity
ahE
., %he,

table

™.

Transformations
1 m
T,...,mT

Jacobians
eJ, ¢j, eJ-! (e=1,...,m)

v

Elementary quantities
‘K, M, °r (e=1,...,m)

Automating integration and archetypal shape functions

T

Global quantities
K, M, r
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Numerical integration: Gauss-Legendre

m Numerical integration helps automate the calculation of the elementary
quantities °K, M and °r.
m Integration is approximated as:

Tt Tr2 T3

JRIGLED I I FIGHN)

=1l 7=l (5=l

where 5} are known as Gauss points and wf- are their associated Gauss weights.

m If f is a polynomial of degree d; = 2r; — 1 in the variable &;, then the
Gauss-Legendre approximation formula is exact.

Automating integration and archetypal shape functions Linear elastodynamics 36 / 38



Numerical integration in practice

This allows us to compute the stiffness matrix, the mass matrix and the load
vector numerically as:

T T2 T3

6K Z Z Zwllw 3 aHeJ )TC(V aHEJ ) ]51—51752 52753 53
i=1 j=1 k=1

M~ > Y wwiw} [p*H “H] 61=¢ £o=t] £s=tb

i=1 j=1 k=1
e T2 L T T3
~ ~2 |agyT 1 2 3raggT v
LRI [ H f} P DD wiwwi [H f]a:si,gg:sg,sa:sg
i=1 J 1 51 51»52 52 5=l j:l k=1
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An illustration of Gauss points
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