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Where do we stand?

Week Module Lecture topic Mini-projects

1
Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 Solid 3D Project 1



Summary

Recap week 3

Localization and elementary quantities

Example: dynamic analysis of a clamped beam

Automating integration and archetypal shape functions

Recommended readings

1 Gmür, Dynamique des structures (§3.3) [GM]

2 Neto et al., Engineering Computation of Structures (§2.3.5 - §2.3.8) [N]

https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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Displacements approximation in finte element method

Let p the number of nodes of the mesh.

uh(x, t) = H(x)q(t) =

p∑
i=1

hi(x)qi(t)

δuh(x) = H(x)δq =

p∑
i=1

hi(x)δqi

H(x) is a 3× 3p matrix of shape functions:

H =
[
h1I h2I . . . hiI . . . hpI

]
I is the 3× 3 identity matrix.

q(t) is a 3p× 1 vector of (unknown) nodal displacements.

δq is a 3p× 1 vector of virtual nodal displacements.
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Global nodal shape functions requirements

xi, hi

qi

eΩ Γ

Propretries of hi:

Linearly independent polynomial basis.

Satisfy Kronecker delta property:

hi(xi) = 1 and hi(xj) = 0.

Vanish on non-adjacent elements.

Continuous at interfaces.

Differentiable inside elements.

Ensure rigid body motion & constant
deformations.
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Drawbacks of the global approach

% Limited capability in handling complex (unstructured) mesh topologies.

% Computationally expensive: it requires defining one shape function per node.

% Limited utilization of the compact support of nodal shape functions.

Local approach: provides a quicker and more sistematic way to compute the
stiffenss and mass matrices and the applied forces vector:

(Credit: Onscale - structured vs unstructured meshes)
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Localization and elementary quantities



Localization

x

y

z

eΩ

Ω

Let p be the number of nodes in the
mesh.

Let m be the number of finite
elements in the mesh.

Let eΩ a finite element in the mesh.

Let ep the number of nodes in the
element eΩ.
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Localization of displacements

Restriction of displacements uh and δuh on the finite element eΩ:

euh(x, t) = eH(x)eq(t) eδuh(x) = eH(x)eδq

euh restriction (3× 1) of the displacement vector uh on the finite element eΩ.
eδuh restriction (3× 1) of the virtual dispolecement vector δuh on the finite
element eΩ.
eH matrix (3× 3ep) of elementary shape functions of the finite element eΩ.
eq vector (3ep× 1) of unknown nodal displacements in the finite element eΩ.
eδq vector (3ep× 1) of nodal displacements in the finite element eΩ.
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Local displacements approximation

x

y

z

eΩ

eq

euh =
[

eh1I
eh2I . . . ehepI

]


eq1
eq2
...

eqep



eδuh =
[

eh1I
eh2I . . . ehepI

]


eδq1
eδq2
...

eδqep


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Localisation matrices

eqep

...

eq1

3ep

1

=

eLep1
eLepp

eL11
eL1p

. . .

. . .

...
...

3ep

·

qp

...

q1

3p

1

eq = eLq

eL is a Boolean location matrix:
eLij = I (3× 3 identity matrix) if global node j corresponds to local node i,
eLij = 0 (3× 3 null matrix) otherwise.
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Localization matrices - example

1

2

3

1

4 1

4

5

3

6

2

7
3

8

21Ω

2Ω

Γ

Number of nodes in the mesh: p = 8.

Number of elements in the mesh: m = 6.

Number of nodes in the element 1Ω: 1p = 3.

1L =

0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I
0 0 0 0 I 0 0 0


Number of nodes in the element 2Ω: 2p = 4.

2L =


0 0 I 0 0 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 I 0 0 0 0


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Localisation matrices - memory usage

Practical example:

Consider a mesh made of

p = 10′000 nodes,

trilinear hexahedral finite elements with
ep = 8 nodes each.

Every localization matrix eL contains

720′000 entries,

of which 3ep = 24 are 1s,

% the remaining 719′976 are 0s.
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Connectivity table: local to global node numbering

Elements and their connectivity are defined using a table.

Example connectivity table:

eΩ 1Ω 2Ω 3Ω 4Ω

1 1 2 4 5
2 2 3 5 6
3 5 6 8 9
4 4 5 7 8

The connectivity matrix provides the global numbering for each node in each
element, corresponding to a column in the table above.

The localization matrix eL is constructed from the connectivity table.
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Additivity of integrals

Approximated weak form:∫
Ω
(∇δuh)TC∇uh dΩ+

∫
Ω
ρ(δuh)T üh dΩ =

∫
Γσ

(δuh)T f̂ dΓ +

∫
Ω
(δuh)T f dΩ

We localize the integration using the additivity of integrals:

m∑
e=1

(∫
eΩ
(∇eδuh)TC∇euh dΩ+

∫
eΩ

ρ(eδuh)T eüh dΩ

)

=

m∑
e=1

(∫
eΓσ

(eδuh)T f̂ dΓ +

∫
eΩ
(eδuh)T f dΩ

)
and consider the local quantities euh = eHeLq and eδuh = eHeLδq.
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Additivity of integrals - inertial forces

Recall euh = eHeLq and eδuh = eHeLδq.

Consider only the term related to the virtual work of inertial forces
(acceleration):

m∑
e=1

∫
eΩ

ρ(eδuh)T eüh dΩ = δqT
[ m∑
e=1

eLT
(∫

eΩ
ρeHT eH dΩ︸ ︷︷ ︸

eM

)
eL

]
q̈
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Additivity of integrals - internal and external forces

Recall euh = eHeLq and eδuh = eHeLδq.

Analogously for the term related to the virtual work of internal forces:

m∑
e=1

∫
eΩ
(∇eδuh)TC∇euh dΩ = δqT

[ m∑
e=1

eLT
(∫

eΩ
∇eHTC∇eH dΩ︸ ︷︷ ︸

eK

)
eL

]
q

Term realted to the virtual work of external forces:

m∑
e=1

∫
eΓσ

(eδuh)T f̂ dΓ +

∫
eΩ
(eδuh)T f dΩ

= δqT
m∑
e=1

eLT
(∫

eΓσ

eHT f̂ dΓ +

∫
eΩ

eHT f dΩ︸ ︷︷ ︸
er(t)

)
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Elementary matrices and vectors

Elementary stiffness matrix (3ep× 3ep):

eK =

∫
eΩ

eBTCeB dΩ

eB = ∇eH =
[
∇eh1 . . . ∇ehep

]
elementery deformation matrix (6× 3ep) .

Elementary mass matrix (3ep× 3ep):

eM =

∫
eΩ

ρ eHT eH dΩ.

Elementary applied forces vector (3ep× 1):

er(t) =

∫
eΓσ

eHT f̂ dΓ +

∫
eΩ

eHT f dΩ.
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Assembly operator

We define the assembly operator as follows:

K =
m

A
e=1

eK =

p∑
e=1

eLT eKeL

M =
m

A
e=1

eM =

p∑
e=1

eLT eMeL

r =
m

A
e=1

er =

p∑
e=1

eLT er
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Example: modal analysis of a clamped beam



Modal analysis of a clamped beam

Kinematic assumptions:

The beam is made of elastic material which is homogeneous and isotropic (E, ν and ρ).

Assume a plane stress state (very small thickness). The structure can be modeled in the
(x, y) plane using two-dimensional finite elements.

x

y

ℓ

h

b

E, ν, ρ

E Young’s modulus

ν Poisson’s ratio

ρ material density

ℓ length

h heigth

b thickness

x axial coordinate

y transversal coordinate

Variables:

u1(x, y, t) axial displacement u2(x, y, t) transversal displacement
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Modal analysis of a clamped beam

Discretization into 8 bilinear quadrilateral finite elements (4 nodes each)

1Ω

2Ω

3Ω

4Ω

5Ω

6Ω

7Ω

8Ω

x

y

ℓ/4 ℓ/4 ℓ/4 ℓ/4

h/2

h/2

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15
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Modal analysis of a clamped beam

Objective: determine the first natural frequencies of the beam.

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b


Automating integration and archetypal
shape functions



Elements

Physical structure:
Ω

Elements:
1Ω, 2Ω, . . . ,mΩ

Master elements:
Ωa,Ωb, . . .

Automating integration and archetypal shape functions Linear elastodynamics 22 / 38



Coordinate transform

To automate the integration and simplify the definition of shape functions, we
transform each distorted elementary domain eΩ into a reference (archetypal or
master) domain Ωa where we can apply standard numerical integration schemes.

The coordinate transformation:

eT : Ωa → eΩ

ξ 7→ x(ξ)

maps any point ξ = {ξ1, ξ2, ξ3}T in Ωa to its corresponding point of coordinate
x = x(ξ) = {x1(ξ), x2(ξ), x3(ξ)}T in eΩ.
eT is a bijective application.
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An illustration of a coordinate transform eT in 3D

(Credit: Joel Cugnoni - Finite Element Method applied to linear statics of deformable solids)
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An illustration of coordinate transforms in 2D

1

2

3

4

5

6

7

8

1Ω

2Ω

Γ

ξ1

ξ2

Ω2

2T1

4

2

3

ξ1

ξ2

1 2

3

Ω1 1T
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Biunivocity of coordinate transformation eT

eJ =


∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3

 eJ−1 =


∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3
∂x2

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3
∂x3


eJ is the Jacobian matrix associated with eT : eJij =

∂xi
∂ξj

(i, j = 1, 2, 3),

eJ−1 is the inverse Jacobian matrix,
ej = det(eJ) is the determinant of the Jacobian matrix eJ.

Sufficient condition for invertibility: if ej > 0 everywhere in eΩ, then eT is
invertible in eΩ and eJ−1 exists.
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Master elements and master shape functions

The coordinate transformation eT−1 maps shape functions on eΩ to the
master element space Ωa:

aH(ξ) = eH(x(ξ))

Inside each element eΩ:
euh[x(ξ)] = aH(ξ)eq

This allows shape function aH(ξ) to be defined only once on each master
element aΩ.

� Result: master shape functions!
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An illustration of a master shape function

(Credit: Joel Cugnoni - Finite Element Method applied to linear statics of deformable solids)
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Choosing a simple coordinate transformation

� Coordinate transformations are defined using the shape functions:

eT : x(ξ) = aH(ξ)ex =

ep∑
i=1

ahi(ξ)
exi

Inside each element eΩ, the local coordinates are interpolated as a linear
combination of master shape functions ahi and nodal coordinates exi.

Kronecker property ensures node correspondence:

ehi(xj) = δij ⇒ ahi(ξj) = δij .

This guarantees that each node of the master element Ωa maps to a
corresponding node in the deformed element eΩ.
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Integration by substitution formulas

Given eT : Ωa → eΩ, an integral over eΩ of a function F : eΩ → R can be
rewritten as an integral over Ωa:∫

eΩ
F (x) dx =

∫
Ωa

F (x(ξ)) ej dξ

When the integrand involves the operator ∇, then:∫
eΩ

∇xF (x) dx =

∫
Ωa

∇ξF (x(ξ))eJ−1 ej dξ

since
∂

∂xi
=

3∑
j=1

∂ξj
∂xi

∂

∂ξj
=

3∑
j=1

eJ−1
ij

∂

∂ξj
.
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Master elements and derivatives

The spatial derivative operator ∇x is defined in the global coordinate system
(x1, x2, x3). Applying the coordinate transform eT−1, we can then extend it to
be applied on the master element Ωa:

∂

∂xi
=

3∑
j=1

∂ξj
∂xi

∂

∂ξj
=

3∑
j=1

eJ−1
ij

∂

∂ξj
.

The elementary strain-displacement matrix eB can be directly derived from
the master shape functions aH:

eB =
[
∇x

eh1 . . . ∇x
ehep

]
=

[
∇ξ

ah1
eJ−1 . . . ∇ξ

ahep
eJ−1

]
.
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Automating the integration

Using the coordinate transform eT and master shape functions, the integrals in the
definitions of eK, eM and er, can be carried out directly on a standard domain Ωa:

eK =

∫
Ωa

(
∇ξ

aHeJ−1
)T

C
(
e∇ξ

aHeJ−1
)

ej dξ

eM =

∫
Ωa

ρ aHT aH ej dξ

er(t) =

∫
Γa
σ

aHT f̂ ej
∣∣
Γa
σ
dΓ +

∫
Ωa

aHT f ej dξ
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Systematization of the algorithm

Nodes
x1, . . . ,xp

Master functions
ah1, . . . ,

ahep

Connectivity
table
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Systematization of the algorithm

Nodes:
x1, . . . ,xp

Master functions
ah1, . . . ,

ahep

Connectivity
table

Transformations
1T, . . . ,mT

Jacobians
eJ, ej, eJ−1 (e = 1, . . . ,m)
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Systematization of the algorithm

Nodes
x1, . . . ,xp

Master functions
ah1, . . . ,

ahep

Connectivity
table

Elementary quantities
eK, eM, er (e = 1, . . . ,m) Global quantities

K, M, r

Transformations
1T, . . . ,mT

Jacobians
eJ, ej, eJ−1 (e = 1, . . . ,m)
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Numerical integration: Gauss-Legendre

Numerical integration helps automate the calculation of the elementary
quantities eK, eM and er.

Integration is approximated as:∫
Ωa

f(ξ)dξ ≈
r1∑
i=1

r2∑
j=1

r3∑
k=1

ω1
i ω

2
jω

3
kf(ξ

i
1, ξ

j
2, ξ

k
3 )

where ξij are known as Gauss points and ωj
i are their associated Gauss weights.

If f is a polynomial of degree di = 2ri − 1 in the variable ξi, then the
Gauss-Legendre approximation formula is exact.

Automating integration and archetypal shape functions Linear elastodynamics 36 / 38



Numerical integration in practice

This allows us to compute the stiffness matrix, the mass matrix and the load
vector numerically as:

eK ≈
r1∑
i=1

r2∑
j=1

r3∑
k=1

ω1
i ω

2
jω

3
k

[
(∇ξ

aHeJ−1)TC(∇ξ
aHeJ−1)ej

]
ξ1=ξi1,ξ2=ξj2,ξ3=ξk3

eM ≈
r1∑
i=1

r2∑
j=1

r3∑
k=1

ω1
i ω

2
jω

3
k

[
ρ aHT aH

]
ξ1=ξi1,ξ2=ξj2,ξ3=ξk3

er ≈
r1∑
i=1

r2∑
j=1

ω̃1
i ω̃

2
j

[
aHT f̂

]
ξ1=ξ̃i1,ξ2=ξ̃j2

+

r1∑
i=1

r2∑
j=1

r3∑
k=1

ω1
i ω

2
jω

3
k

[
aHT f

]
ξ1=ξi1,ξ2=ξj2,ξ3=ξk3
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An illustration of Gauss points

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2
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