

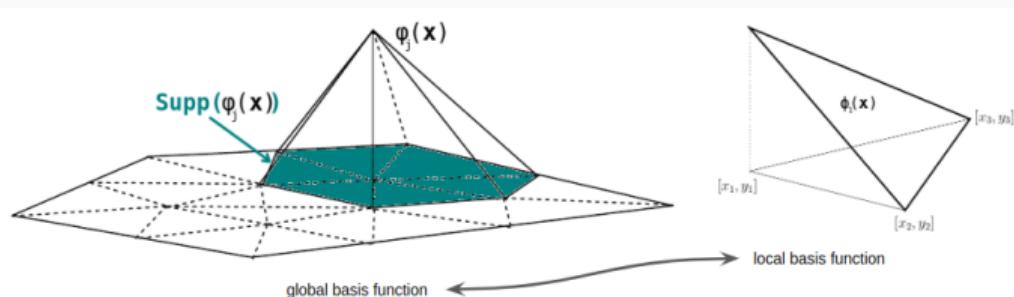
Linear elastodynamics

Finite element method in local coordinates

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025



Where do we stand?

Week	Module	Lecture topic	Mini-projects
1	Linear elastodynamics	Strong and weak forms	
2		Galerkin method	Groups formation
3		FEM global	Project 1 statement
4		Solid 3D	Project 1

Summary

- Recap week 3
- Localization and elementary quantities
- Example: dynamic analysis of a clamped beam
- Automating integration and archetypal shape functions

Recommended readings

- ① Gmür, Dynamique des structures (§3.3) ▶ [GM]
- ② Neto et al., Engineering Computation of Structures (§2.3.5 - §2.3.8) ▶ [N]

Recap week 3

Displacements approximation in finite element method

Let p the number of nodes of the mesh.

$$\mathbf{u}^h(\mathbf{x}, t) = \mathbf{H}(\mathbf{x})\mathbf{q}(t) = \sum_{i=1}^p h_i(\mathbf{x})\mathbf{q}_i(t)$$
$$\delta\mathbf{u}^h(\mathbf{x}) = \mathbf{H}(\mathbf{x})\delta\mathbf{q} = \sum_{i=1}^p h_i(\mathbf{x})\delta\mathbf{q}_i$$

- $\mathbf{H}(\mathbf{x})$ is a $3 \times 3p$ matrix of **shape functions**:

$$\mathbf{H} = [\ h_1\mathbf{I} \ | \ h_2\mathbf{I} \ | \ \dots \ | \ h_i\mathbf{I} \ | \ \dots \ | \ h_p\mathbf{I} \]$$

\mathbf{I} is the 3×3 identity matrix.

- $\mathbf{q}(t)$ is a $3p \times 1$ vector of (*unknown*) nodal displacements.
- $\delta\mathbf{q}$ is a $3p \times 1$ vector of virtual nodal displacements.

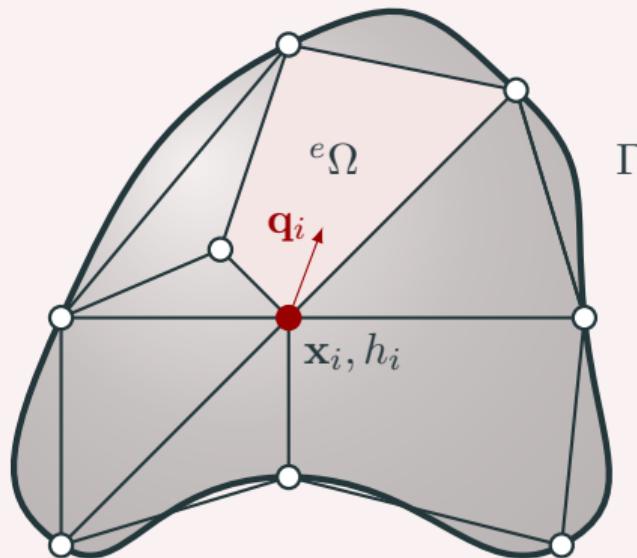
Global nodal shape functions requirements

Properties of h_i :

- Linearly independent polynomial basis.
- Satisfy Kronecker delta property:

$$h_i(\mathbf{x}_i) = 1 \quad \text{and} \quad h_i(\mathbf{x}_j) = 0.$$

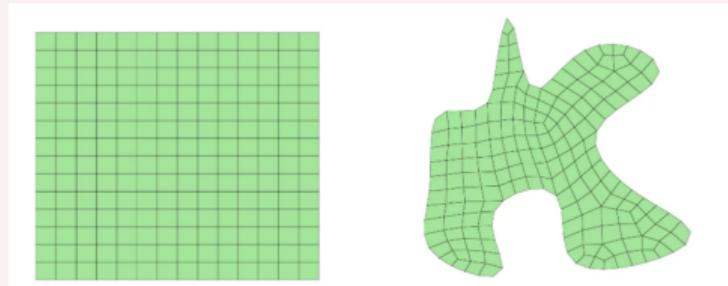
- Vanish on non-adjacent elements.
- Continuous at interfaces.
- Differentiable inside elements.
- Ensure rigid body motion & constant deformations.



Drawbacks of the global approach

- ✗ Limited capability in handling complex (unstructured) mesh topologies.
- ✗ Computationally expensive: it requires defining one shape function per node.
- ✗ Limited utilization of the compact support of nodal shape functions.

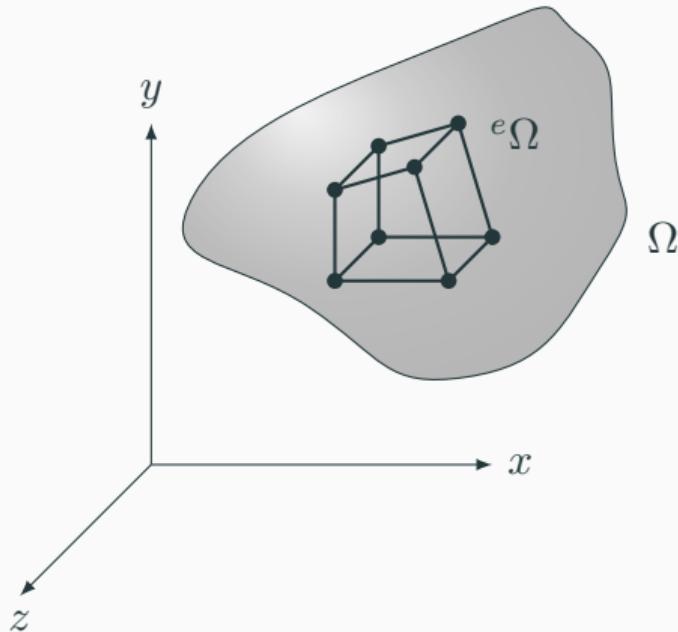
Local approach: provides a quicker and more systematic way to compute the stiffness and mass matrices and the applied forces vector:



(Credit: Onscale - structured vs unstructured meshes)

Localization and elementary quantities

Localization



- Let p be the number of nodes in the mesh.
- Let m be the number of finite elements in the mesh.
- Let ${}^e\Omega$ a finite element in the mesh.
- Let ep the number of nodes in the element ${}^e\Omega$.

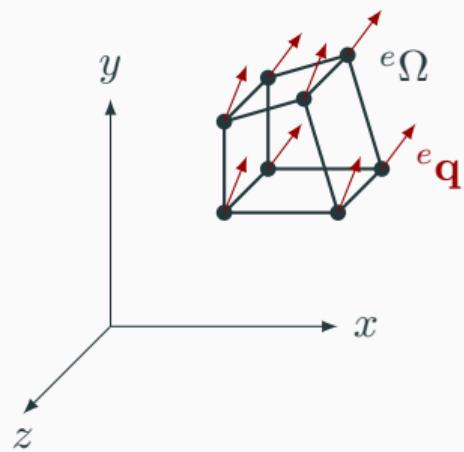
Localization of displacements

Restriction of displacements \mathbf{u}^h and $\delta\mathbf{u}^h$ on the finite element ${}^e\Omega$:

$${}^e\mathbf{u}^h(\mathbf{x}, t) = {}^e\mathbf{H}(\mathbf{x}) {}^e\mathbf{q}(t) \quad {}^e\delta\mathbf{u}^h(\mathbf{x}) = {}^e\mathbf{H}(\mathbf{x}) {}^e\delta\mathbf{q}$$

- ${}^e\mathbf{u}^h$ restriction (3×1) of the displacement vector \mathbf{u}^h on the finite element ${}^e\Omega$.
- ${}^e\delta\mathbf{u}^h$ restriction (3×1) of the virtual displacement vector $\delta\mathbf{u}^h$ on the finite element ${}^e\Omega$.
- ${}^e\mathbf{H}$ matrix ($3 \times 3^e p$) of elementary shape functions of the finite element ${}^e\Omega$.
- ${}^e\mathbf{q}$ vector ($3^e p \times 1$) of unknown nodal displacements in the finite element ${}^e\Omega$.
- ${}^e\delta\mathbf{q}$ vector ($3^e p \times 1$) of nodal displacements in the finite element ${}^e\Omega$.

Local displacements approximation



$${}^e\mathbf{u}^h = \left[{}^e h_1 \mathbf{I} \mid {}^e h_2 \mathbf{I} \mid \dots \mid {}^e h_{e_p} \mathbf{I} \right] \begin{pmatrix} {}^e \mathbf{q}_1 \\ {}^e \mathbf{q}_2 \\ \vdots \\ {}^e \mathbf{q}_{e_p} \end{pmatrix}$$

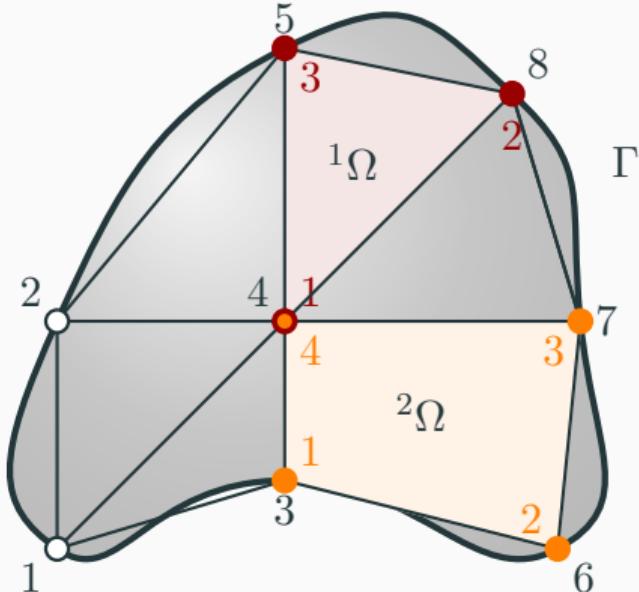
$${}^e\boldsymbol{\delta}\mathbf{u}^h = \left[{}^e h_1 \mathbf{I} \mid {}^e h_2 \mathbf{I} \mid \dots \mid {}^e h_{e_p} \mathbf{I} \right] \begin{pmatrix} {}^e \boldsymbol{\delta}\mathbf{q}_1 \\ {}^e \boldsymbol{\delta}\mathbf{q}_2 \\ \vdots \\ {}^e \boldsymbol{\delta}\mathbf{q}_{e_p} \end{pmatrix}$$

Localisation matrices

$^e\mathbf{L}$ is a Boolean location matrix:

- ${}^e\mathbf{L}_{ij} = \mathbf{I}$ (3×3 identity matrix) if global node j corresponds to local node i ,
- ${}^e\mathbf{L}_{ij} = \mathbf{0}$ (3×3 null matrix) otherwise.

Localization matrices - example



- Number of nodes in the mesh: $p = 8$.
- Number of elements in the mesh: $m = 6$.
- Number of nodes in the element ${}^1\Omega$: ${}^1p = 3$.

$${}^1\mathbf{L} = \begin{bmatrix} 0 & 0 & 0 & \mathbf{I} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{I} \\ 0 & 0 & 0 & 0 & \mathbf{I} & 0 & 0 & 0 \end{bmatrix}$$

- Number of nodes in the element ${}^2\Omega$: ${}^2p = 4$.

$${}^2\mathbf{L} = \begin{bmatrix} 0 & 0 & \mathbf{I} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{I} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0 & 0 & 0 & \mathbf{I} & 0 & 0 & 0 & 0 \end{bmatrix}$$

Localisation matrices - memory usage

Practical example:

Consider a mesh made of

- $p = 10'000$ nodes,
- trilinear hexahedral finite elements with ${}^e p = 8$ nodes each.

Every localization matrix ${}^e \mathbf{L}$ contains

- 720'000 entries,
- of which $3{}^e p = 24$ are 1s,
- ✗ the remaining 719'976 are 0s.

Connectivity table: local to global node numbering

- Elements and their connectivity are defined using a table.
- Example connectivity table:

${}^e\Omega$	${}^1\Omega$	${}^2\Omega$	${}^3\Omega$	${}^4\Omega$
1	1	2	4	5
2	2	3	5	6
3	5	6	8	9
4	4	5	7	8

- The connectivity matrix provides the global numbering for each node in each element, corresponding to a column in the table above.
- The localization matrix ${}^e\mathbf{L}$ is constructed from the connectivity table.

Additivity of integrals

- Approximated weak form:

$$\int_{\Omega} (\nabla \delta \mathbf{u}^h)^T \mathbf{C} \nabla \mathbf{u}^h d\Omega + \int_{\Omega} \rho (\delta \mathbf{u}^h)^T \ddot{\mathbf{u}}^h d\Omega = \int_{\Gamma_{\sigma}} (\delta \mathbf{u}^h)^T \hat{\mathbf{f}} d\Gamma + \int_{\Omega} (\delta \mathbf{u}^h)^T \mathbf{f} d\Omega$$

- We localize the integration using the additivity of integrals:

$$\begin{aligned} & \sum_{e=1}^m \left(\int_{e\Omega} (\nabla^e \delta \mathbf{u}^h)^T \mathbf{C} \nabla^e \mathbf{u}^h d\Omega + \int_{e\Omega} \rho (\delta \mathbf{u}^h)^T \ddot{\mathbf{u}}^h d\Omega \right) \\ &= \sum_{e=1}^m \left(\int_{e\Gamma_{\sigma}} (\delta \mathbf{u}^h)^T \hat{\mathbf{f}} d\Gamma + \int_{e\Omega} (\delta \mathbf{u}^h)^T \mathbf{f} d\Omega \right) \end{aligned}$$

and consider the local quantities ${}^e \mathbf{u}^h = {}^e \mathbf{H}^e \mathbf{L} \mathbf{q}$ and ${}^e \delta \mathbf{u}^h = {}^e \mathbf{H}^e \mathbf{L} \delta \mathbf{q}$.

Additivity of integrals - inertial forces

- Recall ${}^e\mathbf{u}^h = {}^e\mathbf{H}{}^e\mathbf{L}\mathbf{q}$ and ${}^e\boldsymbol{\delta}\mathbf{u}^h = {}^e\mathbf{H}{}^e\mathbf{L}\boldsymbol{\delta}\mathbf{q}$.
- Consider only the term related to the virtual work of inertial forces (acceleration):

$$\sum_{e=1}^m \int_{^e\Omega} \rho ({}^e\boldsymbol{\delta}\mathbf{u}^h)^T {}^e\ddot{\mathbf{u}}^h d\Omega = \boldsymbol{\delta}\mathbf{q}^T \left[\sum_{e=1}^m {}^e\mathbf{L}^T \left(\underbrace{\int_{^e\Omega} \rho {}^e\mathbf{H}^T {}^e\mathbf{H} d\Omega}_{{}^e\mathbf{M}} \right) {}^e\mathbf{L} \right] \ddot{\mathbf{q}}$$

Additivity of integrals - internal and external forces

- Recall ${}^e\mathbf{u}^h = {}^e\mathbf{H}{}^e\mathbf{L}\mathbf{q}$ and ${}^e\boldsymbol{\delta}\mathbf{u}^h = {}^e\mathbf{H}{}^e\mathbf{L}\boldsymbol{\delta}\mathbf{q}$.
- Analogously for the term related to the virtual work of internal forces:

$$\sum_{e=1}^m \int_{e\Omega} (\nabla {}^e\boldsymbol{\delta}\mathbf{u}^h)^T \mathbf{C} \nabla {}^e\mathbf{u}^h d\Omega = \boldsymbol{\delta}\mathbf{q}^T \left[\sum_{e=1}^m {}^e\mathbf{L}^T \left(\underbrace{\int_{e\Omega} \nabla {}^e\mathbf{H}^T \mathbf{C} \nabla {}^e\mathbf{H} d\Omega}_{e\mathbf{K}} \right) {}^e\mathbf{L} \right] \mathbf{q}$$

- Term related to the virtual work of external forces:

$$\begin{aligned} & \sum_{e=1}^m \int_{e\Gamma_\sigma} ({}^e\boldsymbol{\delta}\mathbf{u}^h)^T \hat{\mathbf{f}} d\Gamma + \int_{e\Omega} ({}^e\boldsymbol{\delta}\mathbf{u}^h)^T \mathbf{f} d\Omega \\ &= \boldsymbol{\delta}\mathbf{q}^T \sum_{e=1}^m {}^e\mathbf{L}^T \left(\underbrace{\int_{e\Gamma_\sigma} {}^e\mathbf{H}^T \hat{\mathbf{f}} d\Gamma + \int_{e\Omega} {}^e\mathbf{H}^T \mathbf{f} d\Omega}_{{}^e\mathbf{r}(t)} \right) \end{aligned}$$

Elementary matrices and vectors

- Elementary stiffness matrix ($3^e p \times 3^e p$):

$${}^e \mathbf{K} = \int_{{}^e \Omega} {}^e \mathbf{B}^T \mathbf{C} {}^e \mathbf{B} d\Omega$$

${}^e \mathbf{B} = \nabla {}^e \mathbf{H} = \left[\begin{array}{c|c|c} \nabla {}^e h_1 & \dots & \nabla {}^e h_{3^e p} \end{array} \right]$ elementery deformation matrix ($6 \times 3^e p$) .

- Elementary mass matrix ($3^e p \times 3^e p$):

$${}^e \mathbf{M} = \int_{{}^e \Omega} \rho {}^e \mathbf{H}^T {}^e \mathbf{H} d\Omega.$$

- Elementary applied forces vector ($3^e p \times 1$):

$${}^e \mathbf{r}(t) = \int_{{}^e \Gamma_\sigma} {}^e \mathbf{H}^T \hat{\mathbf{f}} d\Gamma + \int_{{}^e \Omega} {}^e \mathbf{H}^T \mathbf{f} d\Omega.$$

Assembly operator

We define the assembly operator as follows:

$$\mathbf{K} = \bigwedge_{e=1}^m {}^e\mathbf{K} = \sum_{e=1}^p {}^e\mathbf{L}^T {}^e\mathbf{K} {}^e\mathbf{L}$$

$$\mathbf{M} = \bigwedge_{e=1}^m {}^e\mathbf{M} = \sum_{e=1}^p {}^e\mathbf{L}^T {}^e\mathbf{M} {}^e\mathbf{L}$$

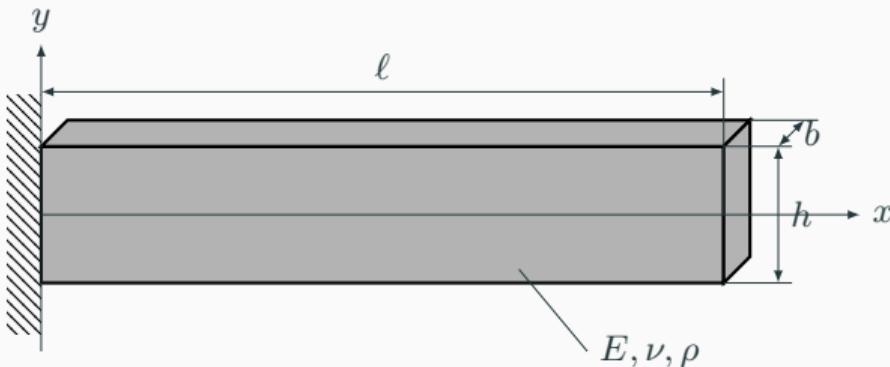
$$\mathbf{r} = \bigwedge_{e=1}^m {}^e\mathbf{r} = \sum_{e=1}^p {}^e\mathbf{L}^T {}^e\mathbf{r}$$

Example: modal analysis of a clamped beam

Modal analysis of a clamped beam

Kinematic assumptions:

- The beam is made of elastic material which is homogeneous and isotropic (E , ν and ρ).
- Assume a plane stress state (very small thickness). The structure can be modeled in the (x, y) plane using two-dimensional finite elements.



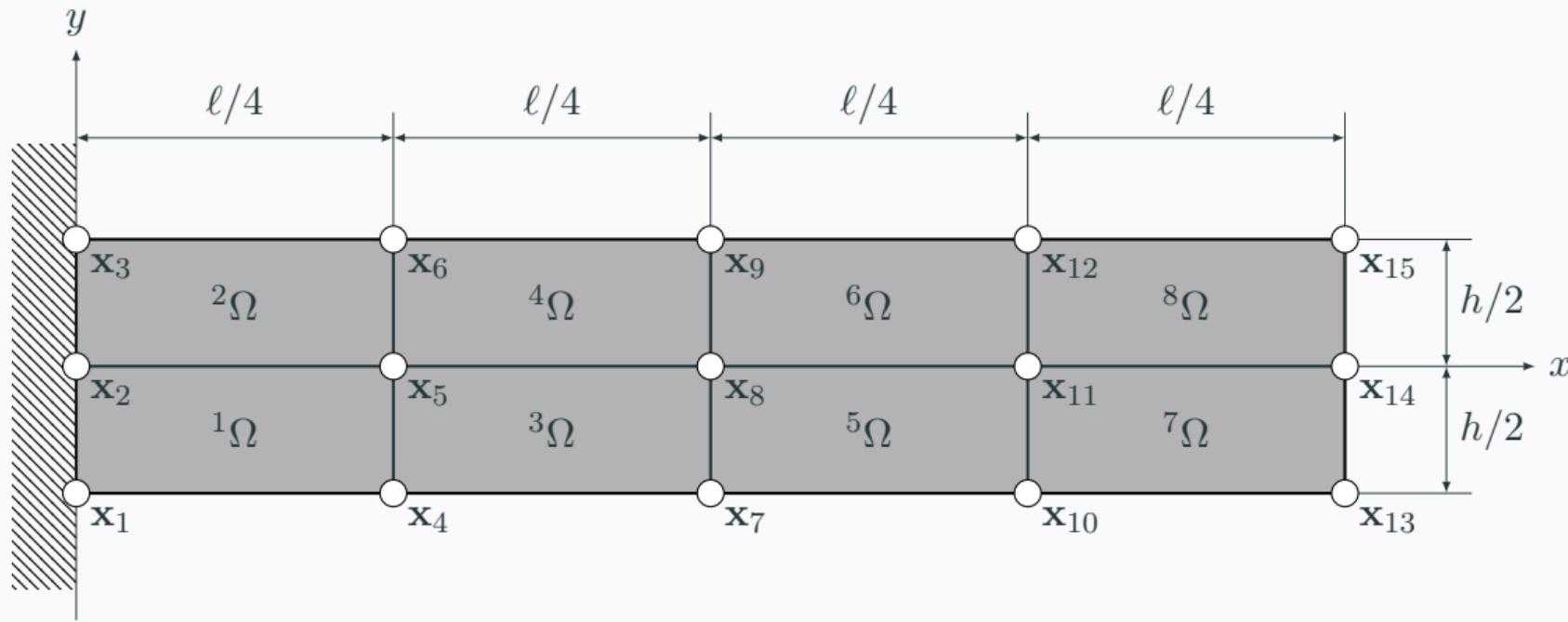
- E Young's modulus
- ν Poisson's ratio
- ρ material density
- ℓ length
- h height
- b thickness
- x axial coordinate
- y transversal coordinate

Variables:

- $u_1(x, y, t)$ axial displacement
- $u_2(x, y, t)$ transversal displacement

Modal analysis of a clamped beam

Discretization into 8 bilinear quadrilateral finite elements (4 nodes each)



Modal analysis of a clamped beam

Objective: determine the first natural frequencies of the beam.

► Go to Matlab Drive

Automating integration and archetypal shape functions

Elements

Physical structure:

$$\Omega$$

Elements:

$$^1\Omega, ^2\Omega, \dots, ^m\Omega$$

Master elements:

$$\Omega^a, \Omega^b, \dots$$

Coordinate transform

To automate the integration and simplify the definition of shape functions, we transform each *distorted* elementary domain ${}^e\Omega$ into a **reference (archetypal or master) domain** Ω^a where we can apply standard numerical integration schemes.

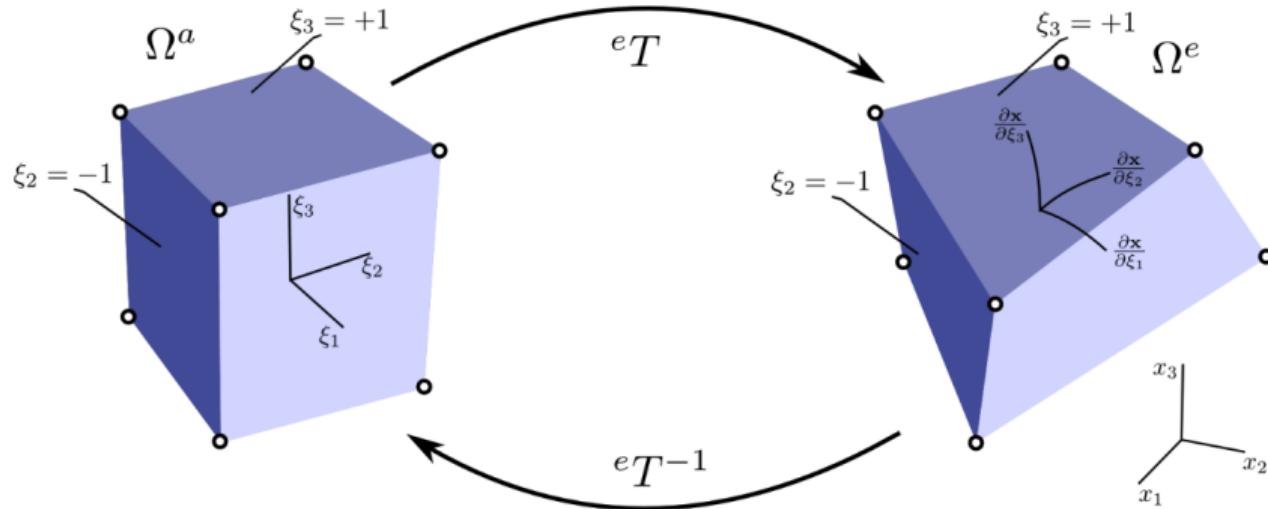
- The coordinate transformation:

$$\begin{aligned} {}^eT : \Omega^a &\rightarrow {}^e\Omega \\ \xi &\mapsto \mathbf{x}(\xi) \end{aligned}$$

maps any point $\xi = \{\xi_1, \xi_2, \xi_3\}^T$ in Ω^a to its corresponding point of coordinate $\mathbf{x} = \mathbf{x}(\xi) = \{x_1(\xi), x_2(\xi), x_3(\xi)\}^T$ in ${}^e\Omega$.

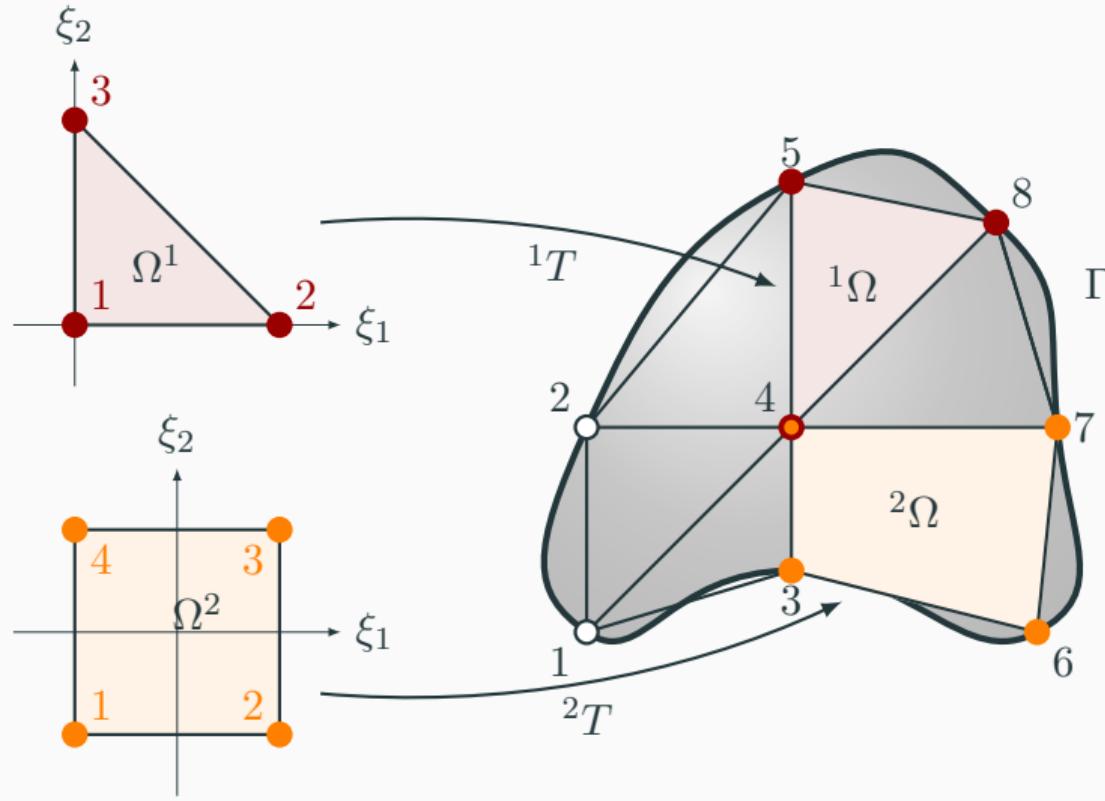
- eT is a bijective application.

An illustration of a coordinate transform eT in 3D



(Credit: Joel Cugnoni - Finite Element Method applied to linear statics of deformable solids)

An illustration of coordinate transforms in 2D



Biunivocity of coordinate transformation eT

$${}^e\mathbf{J} = \begin{bmatrix} \frac{\partial x_1}{\partial \xi_1} & \frac{\partial x_2}{\partial \xi_1} & \frac{\partial x_3}{\partial \xi_1} \\ \frac{\partial x_1}{\partial \xi_2} & \frac{\partial x_2}{\partial \xi_2} & \frac{\partial x_3}{\partial \xi_2} \\ \frac{\partial x_1}{\partial \xi_3} & \frac{\partial x_2}{\partial \xi_3} & \frac{\partial x_3}{\partial \xi_3} \end{bmatrix} \quad {}^e\mathbf{J}^{-1} = \begin{bmatrix} \frac{\partial \xi_1}{\partial x_1} & \frac{\partial \xi_2}{\partial x_1} & \frac{\partial \xi_3}{\partial x_1} \\ \frac{\partial \xi_1}{\partial x_2} & \frac{\partial \xi_2}{\partial x_2} & \frac{\partial \xi_3}{\partial x_2} \\ \frac{\partial \xi_1}{\partial x_3} & \frac{\partial \xi_2}{\partial x_3} & \frac{\partial \xi_3}{\partial x_3} \end{bmatrix}$$

- ${}^e\mathbf{J}$ is the Jacobian matrix associated with eT : ${}^e\mathbf{J}_{ij} = \frac{\partial x_i}{\partial \xi_j}$ ($i, j = 1, 2, 3$),
- ${}^e\mathbf{J}^{-1}$ is the inverse Jacobian matrix,
- ${}^e j = \det({}^e\mathbf{J})$ is the determinant of the Jacobian matrix ${}^e\mathbf{J}$.

Sufficient condition for invertibility: if ${}^e j > 0$ everywhere in ${}^e\Omega$, then eT is invertible in ${}^e\Omega$ and ${}^e\mathbf{J}^{-1}$ exists.

Master elements and master shape functions

- The coordinate transformation ${}^eT^{-1}$ maps shape functions on ${}^e\Omega$ to the master element space ${}^a\Omega$:

$${}^a\mathbf{H}(\xi) = {}^e\mathbf{H}(\mathbf{x}(\xi))$$

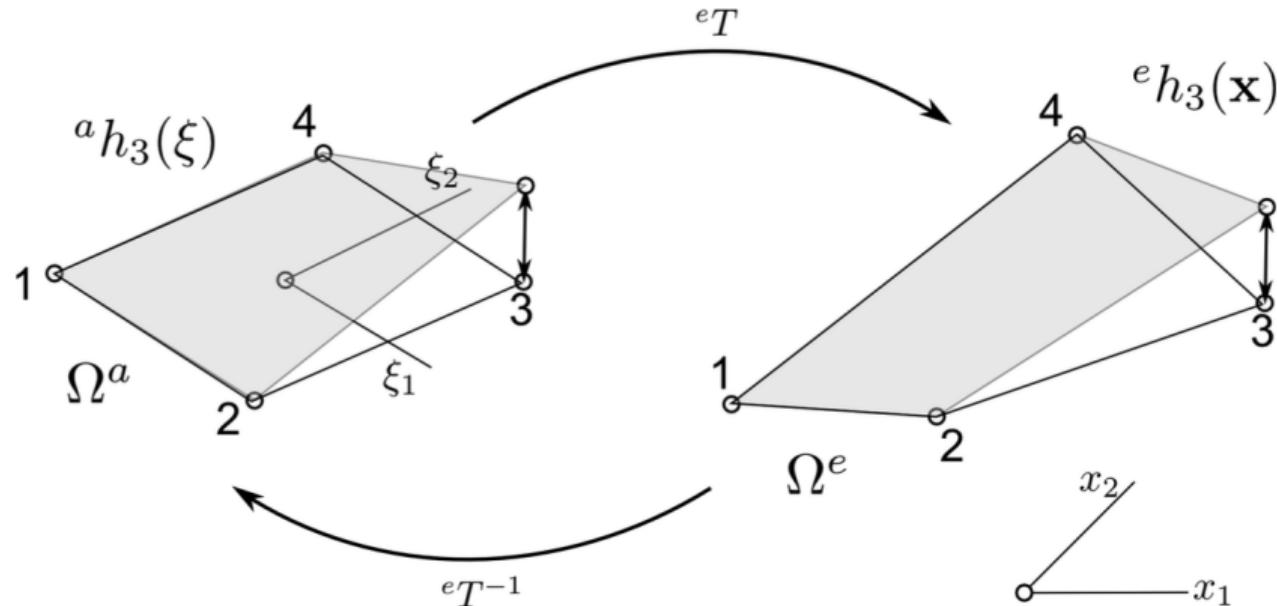
- Inside each element ${}^e\Omega$:

$${}^e\mathbf{u}^h[\mathbf{x}(\xi)] = {}^a\mathbf{H}(\xi){}^e\mathbf{q}$$

- This allows shape function ${}^a\mathbf{H}(\xi)$ to be defined only *once* on each master element ${}^a\Omega$.

 Result: master shape functions!

An illustration of a master shape function



(Credit: Joel Cugnoni - Finite Element Method applied to linear statics of deformable solids)

Choosing a simple coordinate transformation

☞ Coordinate transformations are defined using the shape functions:

$${}^e T : \mathbf{x}(\boldsymbol{\xi}) = {}^a \mathbf{H}(\boldsymbol{\xi}) {}^e \mathbf{x} = \sum_{i=1}^{{}^e p} {}^a h_i(\boldsymbol{\xi}) {}^e \mathbf{x}_i$$

- Inside each element ${}^e \Omega$, the local coordinates are interpolated as a linear combination of master shape functions ${}^a h_i$ and nodal coordinates ${}^e \mathbf{x}_i$.
- Kronecker property ensures node correspondence:

$${}^e h_i(\mathbf{x}_j) = \delta_{ij} \quad \Rightarrow \quad {}^a h_i(\boldsymbol{\xi}_j) = \delta_{ij}.$$

- This guarantees that each node of the master element Ω^a maps to a corresponding node in the deformed element ${}^e \Omega$.

Integration by substitution formulas

- Given ${}^e T : \Omega^a \rightarrow {}^e \Omega$, an integral over ${}^e \Omega$ of a function $F : {}^e \Omega \rightarrow \mathbb{R}$ can be rewritten as an integral over Ω^a :

$$\int_{{}^e \Omega} F(\mathbf{x}) d\mathbf{x} = \int_{\Omega^a} F(\mathbf{x}(\boldsymbol{\xi})) {}^e j d\boldsymbol{\xi}$$

- When the integrand involves the operator ∇ , then:

$$\int_{{}^e \Omega} \nabla_{\mathbf{x}} F(\mathbf{x}) d\mathbf{x} = \int_{\Omega^a} \nabla_{\boldsymbol{\xi}} F(\mathbf{x}(\boldsymbol{\xi})) {}^e \mathbf{J}^{-1} {}^e j d\boldsymbol{\xi}$$

since

$$\frac{\partial}{\partial x_i} = \sum_{j=1}^3 \frac{\partial \xi_j}{\partial x_i} \frac{\partial}{\partial \xi_j} = \sum_{j=1}^3 {}^e \mathbf{J}_{ij}^{-1} \frac{\partial}{\partial \xi_j}.$$

Master elements and derivatives

- The spatial derivative operator $\nabla_{\mathbf{x}}$ is defined in the global coordinate system (x_1, x_2, x_3) . Applying the coordinate transform ${}^eT^{-1}$, we can then extend it to be applied on the master element Ω^a :

$$\frac{\partial}{\partial x_i} = \sum_{j=1}^3 \frac{\partial \xi_j}{\partial x_i} \frac{\partial}{\partial \xi_j} = \sum_{j=1}^3 {}^e\mathbf{J}_{ij}^{-1} \frac{\partial}{\partial \xi_j}.$$

- The elementary strain-displacement matrix ${}^e\mathbf{B}$ can be directly derived from the master shape functions ${}^a\mathbf{H}$:

$${}^e\mathbf{B} = [\ \nabla_{\mathbf{x}} {}^e h_1 \mid \dots \mid \nabla_{\mathbf{x}} {}^e h_{e_p} \] = [\ \nabla_{\xi} {}^a h_1 {}^e\mathbf{J}^{-1} \mid \dots \mid \nabla_{\xi} {}^a h_{e_p} {}^e\mathbf{J}^{-1} \].$$

Automating the integration

Using the coordinate transform eT and master shape functions, the integrals in the definitions of ${}^e\mathbf{K}$, ${}^e\mathbf{M}$ and ${}^e\mathbf{r}$, can be carried out directly on a standard domain Ω^a :

$${}^e\mathbf{K} = \int_{\Omega^a} (\nabla_{\xi} {}^a\mathbf{H} {}^e\mathbf{J}^{-1})^T \mathbf{C} ({}^e\nabla_{\xi} {}^a\mathbf{H} {}^e\mathbf{J}^{-1}) {}^e\mathbf{j} d\xi$$

$${}^e\mathbf{M} = \int_{\Omega^a} \rho {}^a\mathbf{H}^T {}^a\mathbf{H} {}^e\mathbf{j} d\xi$$

$${}^e\mathbf{r}(t) = \int_{\Gamma_{\sigma}^a} {}^a\mathbf{H}^T \hat{\mathbf{f}} {}^e\mathbf{j} \Big|_{\Gamma_{\sigma}^a} d\Gamma + \int_{\Omega^a} {}^a\mathbf{H}^T \mathbf{f} {}^e\mathbf{j} d\xi$$

Systematization of the algorithm

Nodes

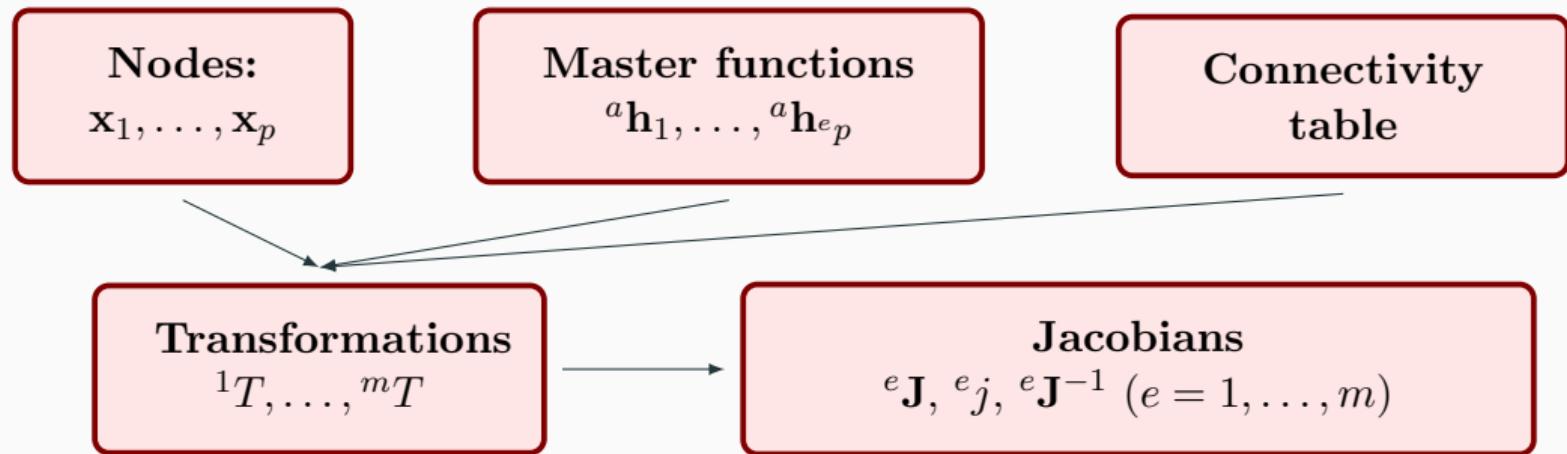
$$\mathbf{x}_1, \dots, \mathbf{x}_p$$

Master functions

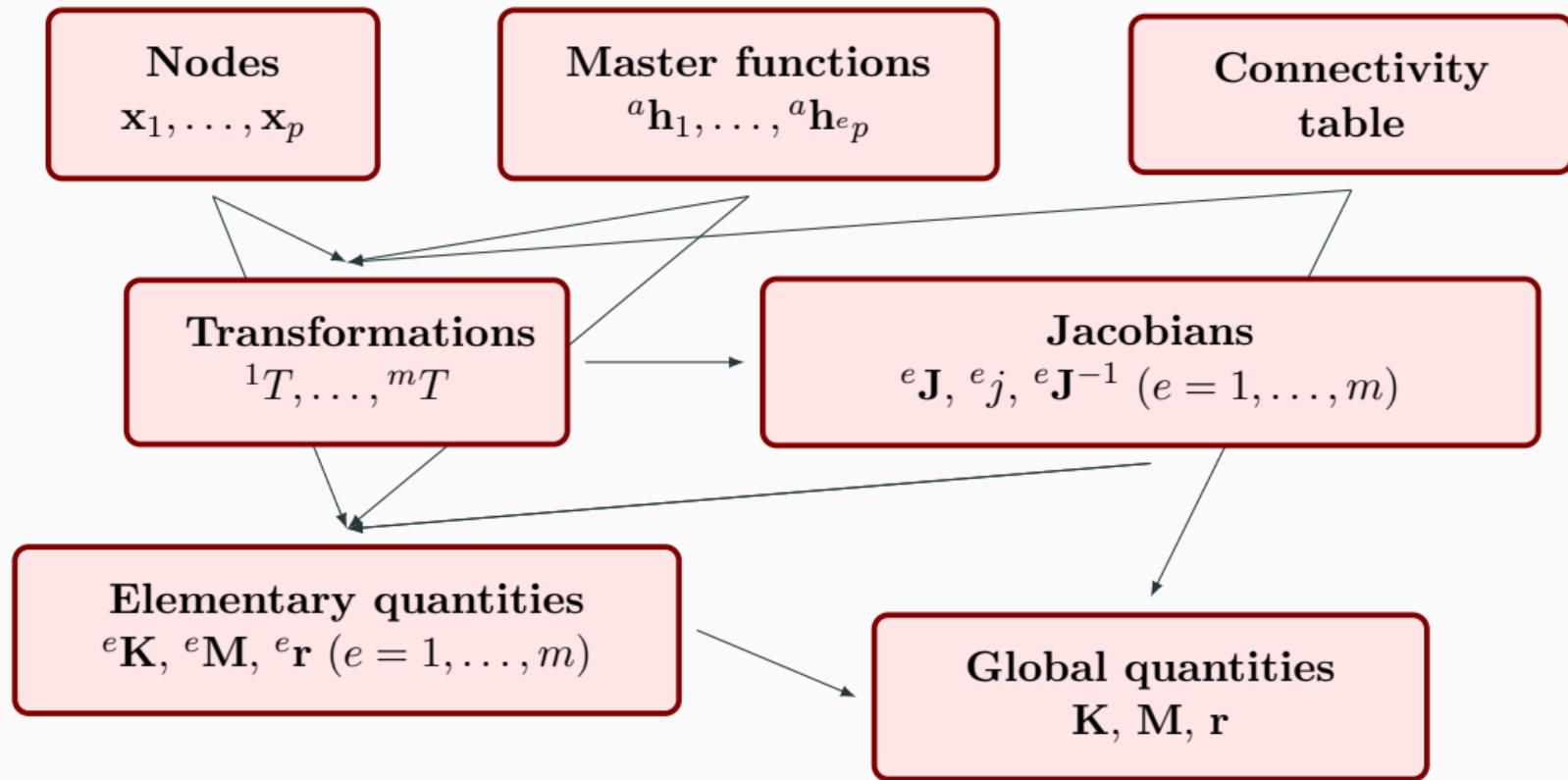
$$^a\mathbf{h}_1, \dots, ^a\mathbf{h}_{e_p}$$

**Connectivity
table**

Systematization of the algorithm



Systematization of the algorithm



Numerical integration: Gauss-Legendre

- Numerical integration helps automate the calculation of the elementary quantities ${}^e\mathbf{K}$, ${}^e\mathbf{M}$ and ${}^e\mathbf{r}$.
- Integration is approximated as:

$$\int_{\Omega^a} f(\xi) d\xi \approx \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \sum_{k=1}^{r_3} \omega_i^1 \omega_j^2 \omega_k^3 f(\xi_1^i, \xi_2^j, \xi_3^k)$$

where ξ_j^i are known as *Gauss points* and ω_i^j are their associated *Gauss weights*.

- If f is a polynomial of degree $d_i = 2r_i - 1$ in the variable ξ_i , then the Gauss-Legendre approximation formula is **exact**.

Numerical integration in practice

This allows us to compute the stiffness matrix, the mass matrix and the load vector numerically as:

$${}^e\mathbf{K} \approx \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \sum_{k=1}^{r_3} \omega_i^1 \omega_j^2 \omega_k^3 \left[(\nabla_{\xi} {}^a\mathbf{H} {}^e\mathbf{J}^{-1})^T \mathbf{C} (\nabla_{\xi} {}^a\mathbf{H} {}^e\mathbf{J}^{-1})^e j \right]_{\xi_1=\xi_1^i, \xi_2=\xi_2^j, \xi_3=\xi_3^k}$$

$${}^e\mathbf{M} \approx \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \sum_{k=1}^{r_3} \omega_i^1 \omega_j^2 \omega_k^3 \left[\rho {}^a\mathbf{H} {}^{Ta}\mathbf{H} \right]_{\xi_1=\xi_1^i, \xi_2=\xi_2^j, \xi_3=\xi_3^k}$$

$${}^e\mathbf{r} \approx \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \tilde{\omega}_i^1 \tilde{\omega}_j^2 \left[{}^a\mathbf{H} {}^T \hat{\mathbf{f}} \right]_{\xi_1=\tilde{\xi}_1^i, \xi_2=\tilde{\xi}_2^j} + \sum_{i=1}^{r_1} \sum_{j=1}^{r_2} \sum_{k=1}^{r_3} \omega_i^1 \omega_j^2 \omega_k^3 \left[{}^a\mathbf{H} {}^T \mathbf{f} \right]_{\xi_1=\xi_1^i, \xi_2=\xi_2^j, \xi_3=\xi_3^k}$$

An illustration of Gauss points

