
ME473 - Dynamic finite element analysis of structures EPFL
Stefano Burzio 2025

Problem set 4 - solutions

Problem 1

To derive the weak form, we multiply the governing equation by a virtual temperature (test function)
δT and integrate over the domain Ω:∫

Ω

ρc
∂T

∂t
δT dΩ =

∫
Ω

[div(k∇T ) + f0] δT dΩ.

Then, we apply the divergence theorem to the divergence term:∫
Ω

div(k∇T )δT dΩ = −
∫
Ω

k∇T · ∇δT dΩ +

∫
∂Ω

k∇T · n̂δT dΓ.

Recall that ∇T · n̂ = ∂T
∂n̂

represents the directional derivative of T in the outward normal direction
to the boundary. Since for the virtual temperature δT = 0 on the boundary ∂Ω, the boundary term
vanishes, and we obtain:

∫
Ω

ρc
∂T

∂t
δT dΩ +

∫
Ω

k∇T · ∇δT dΩ =

∫
Ω

f0δT dΩ. (1)

We approximate the real and virtual temperatures using finite element basis functions hi and nodal
values qi(t) for i = 1, . . . , 6:

T h(x, y, t) ≈
6∑

i=1

qi(t)hi(x, y) and δT h(x, y) ≈
6∑

j=1

δqjhj(x, y).

Substituting this into the weak form (1) leads us to

6∑
i=1

6∑
j=1

δqj

(∫
Ω

ρchihj dΩ q̇i(t) +

∫
Ω

k(∇hi)
T∇hj dΩ qi(t)

)
=

6∑
j=1

δqj

∫
Ω

f0hj dΩ

The semi-discrete weak form results in the following system of ordinary differential equations for
the nodal temperatures qi(t):

Mq̇+Kq = r

where:

• q is the vector of unknown nodal temperatures qi(t),

• M is the heat capacity (or capacitance) matrix with components: mij =
∫
Ω
ρchihj dΩ,

• K is the thermal conductivity matrix with components: kij =
∫
Ω
k(∇hi)

T∇hj dΩ,

1



• r is heat source vector with components: ri =
∫
Ω
f0hi dΩ.

The following code, available on the MATLAB drive, solves a transient heat conduction problem. The
code defines the material properties, generates a mesh, computes elementary thermal conductivity
and heat capacity matrices and elementary heat source vector, assembles them into global matrices,
applies boundary conditions, and solves the system using numerical integration. The script is
structured as follows:

• Define material properties and mesh parameters.

• Compute elementary matrices and vectors using the archetypal triangular element.

• Assemble the global system.

• Apply boundary conditions and solve the system using an ODE solver.

• Visualize the temperature distribution over time.

Define material properties and mesh parameters

The first section of the code defines the physical properties of the material being analyzed, such as
density, thermal conductivity, and specific heat capacity. It also specifies the geometry and mesh,
which includes defining the node positions and element connectivity. These parameters are essential
for setting up the finite element model.

clear all

%% Parameters

rho = 2700; % Density of aluminum (kg/m^3)

c = 900; % Specific heat capacity (J/kg.K)

k = 205; % Thermal conductivity (W/m.K)

f0 = 1e6; % Heat source (W/m^2)

a = 0.1; % Radius of the circular plate (m)

t_final = 20; % Total simulation time (s)

% Nodes coordiantes

number_nodes = 6;

x1 = [0, a/2, a, a/(2*sqrt(2)), a*cos(pi/8),a/(sqrt(2))];

y1 = [0, 0, 0, a/(2*sqrt(2)), a*sin(pi/8), a/(sqrt(2))];

nodes = transpose([x1; y1])

% Plot nodes

plot_nodes(nodes)

2



Next, we define the local shape functions for a bilinear 2D triangular finite element and establish a
connectivity matrix for a simple finite element mesh with four elements. The connectivity matrix
proposed here is not unique, and may vary depending on the chosen node numbering within each
element. However, it is important to note that while different connectivity choices may lead to
different local matrices and vectors, the global matrices and vectors must remain invariant to the
connectivity choice in order to ensure consistency in the finite element analysis.

% Local shape functions

syms xi1 xi2

Ha(1) = 1 - xi1 - xi2;

Ha(2) = xi1;

Ha(3) = xi2;

% Connectivity matrix

number_elements = 4;

connectivity = cell(1, number_elements);

connectivity{1} = [1; 2; 4];

connectivity{2} = [2; 3; 5];

connectivity{3} = [2; 5; 4];

connectivity{4} = [4; 5; 6];

Compute elementary matrices and vectors

This code computes the Jacobian matrix, its inverse, and determinant for each element in a finite
element model. Then it loops over all elements, calculating elementary thermal conductivity and
heat capacity matrices and the heat source vector.

% Compute Jacobian

transf = cell(1, number_elements);

jac_mat = cell(1, number_elements);

jac_inv = cell(1, number_elements);

jac_det = cell(1, number_elements);

3



for e = 1:number_elements

local_nodes = connectivity{e};

transf{e} = simplify(Ha * nodes(local_nodes,:));

jac_mat{e} = jacobian(transf{e}, [xi1, xi2]);

jac_det{e} = det(jac_mat{e});

jac_inv{e} = inv(jac_mat{e});

end

plot_trg_elements(transf, xi1, xi2,number_elements,’blue’, ’.’);

% Elementary thermal conductivity and heat capacity matrices and heat source vector

K_elem = cell(1, number_elements);

M_elem = cell(1, number_elements);

r_elem = cell(1, number_elements);

Ba = simplify([diff(Ha,xi1); diff(Ha,xi2)]);

for e=1:number_elements

K_elem{e} = gaussian_trg_ord2(k * transpose(jac_inv{e}*Ba)*jac_inv{e}*Ba*jac_det{e});

M_elem{e} = gaussian_trg_ord2(rho * c * transpose(Ha) * Ha * jac_det{e});

r_elem{e} = gaussian_trg_ord2(f0 * transpose(Ha) * jac_det{e});

end

Assemble the global system

After computing the elementary matrices, they are assembled into global matrices, representing the
entire domain’s behavior. This step involves summing contributions from each element into larger
matrices that describe the entire system’s thermal response.

% Global thermal conductivity and heat capacity matrices and heat source vector

K_global = zeros(number_nodes);

M_global = zeros(number_nodes);

r_global = zeros(number_nodes);

4



for e=1:number_elements

indices = connectivity{e};

K_global(indices,indices) = K_global(indices,indices) + K_elem{e};

M_global(indices,indices) = M_global(indices,indices) + M_elem{e};

r_global(indices) = r_global(indices) + r_elem{e};

end

Apply boundary conditions and solve the system using an ODE solver

The code applies boundary conditions by identifying constrained nodes and modifying the global
system accordingly. The system is then solved using an ODE solver (ode45) to compute the transient
temperature evolution over time.

% Boundary conditions

constrained_nodes = [3 5 6]; % nodes that have prescribed degree of freedom

given_values_at_constrained_nodes = [0 0 0];

indices_free_nodes = setdiff((1:number_nodes)’,constrained_nodes);

K_global_free_nodes = K_global(indices_free_nodes, indices_free_nodes);

M_global_free_nodes = M_global(indices_free_nodes, indices_free_nodes);

r_global_free_nodes = r_global(indices_free_nodes);

% Compute the inverse of the heat capacity matrix

M_inv = inv(M_global_free_nodes);

% Define the system of ODEs

ode_fun = @(t, q) M_inv * (r_global_free_nodes - K_global_free_nodes * q);

% Initial condition (assuming initial temperature is zero at free nodes)

q0 = zeros(length(indices_free_nodes), 1);

% Time span for the simulation

tspan = [0 t_final];

% Solve the system using ode45 (or use ode15s if it’s stiff)

[t_sol, q_sol] = ode45(ode_fun, tspan, q0);

for i = 1:length(t_sol)

% Assign free nodes’ temperatures

q_full(indices_free_nodes, i) = q_sol(i, :)’;

% Assign fixed values

q_full(constrained_nodes, i) = given_values_at_constrained_nodes;

end

5



Visualize the temperature distribution over time

Finally, the results are visualized using a trisurf plot, which displays the temperature distribution
over the domain. The visualization updates at different time steps to show how heat propagates
through the material.

% Plot temperature evolution at selected time steps

tri = [connectivity{1}’; connectivity{2}’; connectivity{3}’; connectivity{4}’];

% Plot temperature evolution as a surface

figure;

for i = 1:5:length(t_sol)

clf;

trisurf(tri, nodes(:,1), nodes(:,2), q_full(:,i), ’FaceColor’, ’interp’);

colorbar;

caxis([min(q_full(:)) max(q_full(:))]); % Keep consistent color scale

shading interp;

title(sprintf(’Temperature Distribution at t = %.2f s’, t_sol(i)));

xlabel(’X Position (m)’);

ylabel(’Y Position (m)’);

view(2); % Top-down view

axis equal;

pause(1); % Pause to create an animation effect

end

6


