
Linear elastodynamics
Finite element method in global coordinates

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025



Where do we stand?

Week Module Lecture topic Mini-projects

1
Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement



Summary

Recap week 2

Historical evolution of finite element method

Finite element method : general ideas

Finite element method in global coordinate system

1D and 2D elements and shape functions

Example: longitudinal vibration of a bar

Recommended readings

1 Gmür, Dynamique des structures (§3.1 and §3.2) [GM]

2 Gmür, Méthode des éléments finis (§ 5.3) [GM1]

3 Neto et al., Engineering Computation of Structures (§ 2.3.1 - § 2.3.4) [N]

https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99116915262405516&context=L&vid=41SLSP_EPF:prod&lang=fr&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20méthode%20elements%20finis&sortby=date_d&facet=frbrgroupid,include,9019009044277850068&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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Formulations of elastodynamics

Strong form:
∇TC∇u+ f = ρü

Weak form:∫
Ω
(∇δu)TC∇u dΩ+

∫
Ω
ρ δuT ü dΩ =

∫
Γσ

δuT f̂ dΓ +
∫
Ω
δuT f dΩ

Semi-discrete weak form:
Mq̈(t) +Kq(t) = r(t)
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Galerkin method

PDE in weak form ODE
Galerkin method

Shape functions: let uh(x, t) = H(x)q(t) and δuh(x) = H(x)δq.

Semi-discrete weak form of elastodynamics find q ∈ C2([0, T ],Rn) such
that for every δq ∈ Rn we have

δqT
[
Mq̈(t) +Kq(t)− r(t)

]
= 0

coupled with initial conditions:

δqT
(
q(0)− q0

)
= 0,

δqT
(
q̇(0)− p0

)
= 0.
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Definitions

Stiffness matrix (n× n):

K =

∫
Ω
BTCB dΩ

where B is the (6× n) deformation matrix defined by B = ∇H.

Mass matrix (n× n):

M =

∫
Ω
ρHTH dΩ.

Applied forces vector (n× 1):

r(t) =

∫
Γσ

HT f̂ dΓ +

∫
Ω
HT f dΩ.
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Advantages and drawbacks of Galerkin method

Advantages:

! Converges quickly with appropriate
shape functions.

! Provides a systematic and
structured approach for
approximating solutions.

! The same set of functions is used to
express real and virtual variables.

Drawbacks:

% Accuracy heavily dependent on
choice of basis functions.

% No physical interpretation of the
unknown variable q(t).

% The formulation of initial and
boundary conditions in the
discretized form is cumbersome.
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Static, modal, and transient analysis

Static analysis: determines deformations due to constant loads.

Kq = r

Modal analysis: studies dynamic properties in the frequency domain.

Mq̈(t) +Kq(t) = 0

• Natural frequency: key structural property essential in structural design.
▶ Lower frequencies → higher displacement amplitudes → more dangerous.
▶ Resonance occurs when external excitation frequency matches a natural frequency.
▶ Prolonged resonance → catastrophic failure.

Transient analysis: examines time-dependent structural responses to
time-dependent excitations.

Mq̈(t) +Kq(t) = r(t)
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Historical evolution of finite element
method



Theoretical formulation of finite element method

The FEM is the confluence of three ingredients: matrix structural
analysis, the variational approach and a computer.

(source: Carlos A. Felippa)

1908 “Lösung von Variationsproblemen” by W. Ritz
1915 “Weak formulation” by B. Galerkin
1943 “Mathematical foundation” by R. Courant & A. Hrennikoff

1943

Continuum
discretization
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The birth of the finite element method

1950 Direct Stiffness Method (DSM) by M.J. Turner

1954 Matrix formulation of structural analysis by Agyris

1960 The term “Finite Element” was coined by Clough

1967 First book on FEM by Zienkiewicz, Taylor, and Zhu

1943

Continuum
discretization

1950

DSM

1954

Matrix
formulation

1960

FEM

1967

FEM
book
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Finite element method : general ideas



Divide and conquer mentality

The geometry of a structure is discretised when it is split into a mesh of finite
elements 1Ω, . . . ,mΩ (smaller components or regular shapes).

The discretisation introduces another approximation: this discretisation error
can be reduced by using a finer mesh (i.e. more elements), or by increasing
the accuracy of the finite elements chosen.

Discretisation starts with the definition of a set of nodes: xi, i = 1, . . . , p.

eΩ Γ
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Nodes, elements and shape functions

Finite elements
eΩ

Nodes
xi

Shape functions
hi

Finite element method: a special case of the Galerkin method, where
shape functions are systematically defined in terms of nodes.

Each shape function is non-zero only on a very limited number of finite
elements (compact support).

The computation of the mass and stiffness matrix in enhanced by the local
nature of the shape functions.
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Example: the forth bridge. (source: A critical analysis of the forth bridge)

(Credit: theforthbridges.org)

Develop a simplified idealisation of the
structure, which can often be
accomplished through conceptual
abstraction.
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Conceptual model:

(Credit: Chatzi and Egger)
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Physical system:

(Credit: Chatzi and Egger)

Various structural models can be
formulated with differing levels of
complexity in both geometric and
mathematical representations.
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Mathematical model:

(Credit: Chatzi and Egger)

Assumption: decompose the system
into 1D components, such as trusses and
beams, to facilitate analysis.
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Direct stiffness method framework:

(Credit: Chatzi and Egger)

The continuum is disassembled using a
mesh of finite elements that are
connected at nodes located on the
element boundaries.
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Solve for degrees of freedom: displacements/rotations:

(Credit: Chatzi and Egger)

The solution process involves:

globalisation: assembly of element
equation and application of
boundary conditions,

post-processing: computation of
strains, stresses, forces, and
moments.
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Advantages and drawbacks of finite element method

Advantages:

! Versatile for various engineering
problems: mechanics of solids and
fluids, dynamics, heat transfer,
electrostatics, and more.

! Provides a systematic algorithm:
defines the underlying shape
functions used in the approximation.

! Accuracy control: solution precision
can be improved by refining the
mesh.

Drawbacks:

% Choice of mathematical model is
crucial: the solution’s reliability
hinges on selecting an appropriate
model.

% Computational cost: highly refined
models increase the computational
burden.

% Requires experience in meshing,
boundary conditions, and solver
settings.
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Finite element method in global coordinate
system



Displacements approximation

Let p the number of nodes of the mesh.

uh(x, t) = H(x)q(t)

δuh(x) = H(x)δq

H(x) is a 3× 3p matrix of shape functions.

q(t) is a 3p× 1 vector of (unknown) time-dependent functions.

δq is a 3p× 1 vector of constants.

H =
[
h1I h2I . . . hiI . . . hpI

]
I is the 3× 3 identity matrix.
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Displacements approximation - matrix notation

uh
1

uh
2

uh
3

 =

 h1 0 0 h2 0 0 hp 0 0
0 h1 0 0 h2 0 . . . 0 hp 0
0 0 h1 0 0 h2 0 0 hp




q1,1
q1,2
q1,3
...

qp,1
qp,2
qp,3



δuh
1

δuh
2

δuh
3

 =

 h1 0 0 h2 0 0 hp 0 0
0 h1 0 0 h2 0 . . . 0 hp 0
0 0 h1 0 0 h2 0 0 hp




δq1,1
δq1,2
δq1,3
...

δqp,1
δqp,2
δqp,3


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Displacements approximation - index notation

uh(x, t) =

p∑
i=1

hi(x)qi(t)

δuh(x, t) =

p∑
i=1

hi(x)δqi

qi(t) =

qi,1(t)
qi,2(t)
qi,3(t)

 and δqi =

δqi,1
δqi,2
δqi,3


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Deformation, stiffness, mass matrices and loads vector

B = ∇H is a (6× 3p) matrix:

B =



∂xh1 0 0 ∂xhp 0 0
0 ∂yh1 0 . . . 0 ∂yhp 0
0 0 ∂zh1 0 0 ∂zhp
0 ∂zh1 ∂yh1 0 ∂zhp ∂yhp

∂zh1 0 ∂xh1 . . . ∂zhp 0 ∂xhp
∂yh1 ∂xh1 0 ∂yhp ∂xhp 0

 =
[
∇h1 . . . ∇hp

]

K and M are (3p× 3p) matrices and r is a (3p× 1) vector:

K =

∫
Ω
BTCB dΩ, M =

∫
Ω
ρHTH dΩ, r(t) =

∫
Γσ

HT f̂ dΓ+

∫
Ω
HT f dΩ.
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Global nodal shape functions - construction guidelines

Global nodal shape functions hi : Ω → R are characterized by the following
properties:

They form a linearly independent basis of polynomials of a given degree.

Their values lie in the interval [0, 1].

They satisfy the Kronecker delta property: hi(xi) = 1 and hi(xj) = 0 for i ̸= j.

They vanish on all finite elements that are not adjacent to the node xi.
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Properties of shape functions - convergence criteria

Continuity of hi at nodes and interfaces of finite elements.

Differentiability of hi inside each finite element.

Completeness (rigid body motion and constant deformation):

p∑
i=1

hi(x) = 1 and

p∑
i=1

∇hi(x) = 0.

Approximate real and virtual diplacements at the nodes:

uh(xj , t) =

p∑
i=1

hi(xj)qi(t) = qj(t),

δuh(xj) =

p∑
i=1

hi(xj)δqi = δqj .
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Treatment of initial conditions

Since u(x, 0) = u0(x), enforcing uh(x, 0) = u0(x) ensures that the approximate
displacement field is consistent with the initial condition. This leads to

qj(0) = uh(xj , 0) = u0(xj).

Similarly, imposing the initial velocity condition, u̇(x, 0) = v0(x), gives

q̇j(0) = u̇h(xj , 0) = v0(xj).

! These expressions provide the initial values of the unknown vector q directly
in terms of the given initial data u0 and v0.
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Treatment of boundary conditions

On Γu we impose uh = û and δuh = 0. Consequently for every node xj ∈ Γu:

qj(t) = uh(xj , t) = û(xj , t) and δqj = δuh(xj , t) = 0.

Γu

Γσqj1

qj2 qj3

! The j-th component of the approximated nodal displacement q is know for
every node xj ∈ Γu.
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Semi-discrete weak form of elastodynamics

Given Ω, Γ, C, ρ, f , û, f̂ , u0, v0, and p nodes x1, . . .xp, find the approximated
nodal displacements vector q ∈ C2([0, T ],Rn) such that for every δq:

δqT
[
Mq̈(t) +Kq(t)− r(t)

]
= 0

coupled with initial conditions
q(0) = u0,

q̇(0) = v0.

Moreover for every node xj ∈ Γu we have

qj(t) = û(xj , t) and δqj = 0.
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1D and 2D elements and shape functions



Shape functions for one dimensional structures

1D families

Linear

Quadratic

Cubic

. . .
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1D finite elements

eΩ

(a) Linear element

eΩ

(b) Quadratic element

eΩ

(c) Cubic element

eΩ

(d) Quartic element
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Linear shape functions

x

1

xi−1 xi xi+1

hi(x)

e−1Ω eΩ

hi(x) =


l2[xi−1, xi](x) =

x− xi−1

xi − xi−1
x ∈ e−1Ω

l1[xi, xi+1](x) =
x− xi+1

xi − xi+1
x ∈ eΩ

0 otherwise

hi are piecewise linear functions that, within each finite element, corresponds to a
first-degree Lagrange polynomial:

lj [x1, . . . , xn](x) =

n∏
m=1
m̸=j

x− xm

xj − xm

Any linear piecewise function can be expressed as a linear combination of the hi.
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1D displacement approximation via linear shape functions

uh(x, t) =

p∑
i=1

hi(x)qi(t)

x

qi−1
qi

qi+1

xi−2 xi−1 xi xi+1 xi+2

qi−1hi−1
qi+1hi+1

qihi

uh

e−2Ω e−1Ω eΩ e+1Ω
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Quadratic shape functions

If i is even:

x

1

xi−1 xi xi+1

hi(x)

eΩ

hi(x) =

l2[xi−1, xi, xi+1](x) x ∈ eΩ

0 otherwise

If i is odd:

x

1

xi−2 xi xi+2xi−1 xi+1

hi(x)

e−1Ω eΩ

hi(x) =


l3[xi−2, xi−1, xi](x) x ∈ e−1Ω

l1[xi, xi+1, xi+2](x) x ∈ eΩ

0 otherwise
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Shape functions for two-dimensional structures

2D families

Bilinear

Quadrilateral

Triangular

Biquadratic

Quadrilateral

Triangular

. . .
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2D finite elements

eΩ

(a) Bilinear Quadrilateral

eΩ

(b) Bilinear Triangular

eΩ

(c) Biquadratic Quadrilateral

eΩ

(d) Biquadratic Triangular
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Bilinear quadrilateral finite elements mesh

xi+2 xi+3 xi+4

xi−1 xi xi+1

xi−4 xi−3 xi−2

e+2Ω

eΩ

e+3Ω

e+1Ω

x

y
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Bilinear quadrilateral shape functions

xi+2 xi+3 xi+4

xi−1 xi xi+1

xi−4 xi−3 xi−2

e+2Ω

eΩ

e+3Ω

e+1Ω

1

hi(x, y)

x

y

hi(x, y) =



l2[xi−1, xi](x)l2[yi−3, yi](y) x ∈ eΩ

l1[xi, xi+1](x)l2[yi−3, yi](y) x ∈ e+1Ω

l2[xi−1, xi](x)l1[yi, yi+3](y) x ∈ e+2Ω

l1[xi, xi+1](x)l1[yi, yi+3](y) x ∈ e+3Ω

0 otherwise
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Bilinear triangular finite elements mesh

xi+2

xi−1
xi

xi+1

xi−2

e+2Ω

eΩ

e+3Ω

e+1Ω

x

y
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Bilinear triangular shape functions

xi+2

xi−1
xi

xi+1

xi−2

e+2Ω

eΩ

e+3Ω

e+1Ω

1

hi(x, y)

x

y
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Advantages and drawbacks of FEM in global coordinate system

Advantages:

! The unknowns qi have a well-defined
physical interpretation, representing
the approximate displacement at xi.

! Shape functions are systematically
defined, ensuring a structured
approach to the algorithm.

! The formulation simplifies the
implementation of initial conditions.

Drawbacks:

% Limited capability in handling
complex mesh topologies.

% Algebraic expressions for shape
functions can be computationally
cumbersome.

% The assembly of stiffness and mass
matrices is not computationally
optimal.
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Example: longitudinal vibration of a bar



Example - Finite elements approximation of longitudinal vibrations of a
bar

x1

ℓ

E,A, ρ

A (constant) cross-sectional area

E (constant) Young’s modulus
(isotropic)

ρ material density

ℓ length

u1 axial displacement

x1 axial coordinate

Objective: determine the first two natural frequencies of the bar using n linear
shape functions and compare the results with those obtained from Galerkin’s
approximation.
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Example - Finite elements approximation of longitudinal vibrations of a
bar

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b
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