

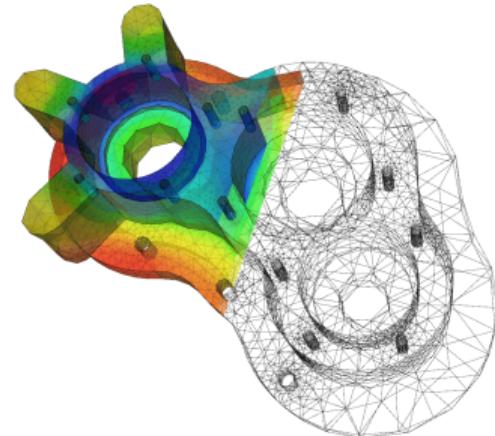
Linear elastodynamics

Finite element method in global coordinates

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025



Where do we stand?

Week	Module	Lecture topic	Mini-projects
1	Linear elastodynamics	Strong and weak forms	
2		Galerkin method	Groups formation
3		FEM global	Project 1 statement

Summary

- Recap week 2
- Historical evolution of finite element method
- Finite element method : general ideas
- Finite element method in global coordinate system
- 1D and 2D elements and shape functions
- Example: longitudinal vibration of a bar

Recommended readings

- ① Gmür, Dynamique des structures (§3.1 and §3.2) ▶ [GM]
- ② Gmür, Méthode des éléments finis (§ 5.3) ▶ [GM1]
- ③ Neto et al., Engineering Computation of Structures (§ 2.3.1 - § 2.3.4) ▶ [N]

Recap week 2

Formulations of elastodynamics

Strong form:

$$\nabla^T \mathbf{C} \nabla \mathbf{u} + \mathbf{f} = \rho \ddot{\mathbf{u}}$$

Weak form:

$$\int_{\Omega} (\nabla \delta \mathbf{u})^T \mathbf{C} \nabla \mathbf{u} d\Omega + \int_{\Omega} \rho \delta \mathbf{u}^T \ddot{\mathbf{u}} d\Omega = \int_{\Gamma_{\sigma}} \delta \mathbf{u}^T \hat{\mathbf{f}} d\Gamma + \int_{\Omega} \delta \mathbf{u}^T \mathbf{f} d\Omega$$

Semi-discrete weak form:

$$\mathbf{M} \ddot{\mathbf{q}}(t) + \mathbf{K} \mathbf{q}(t) = \mathbf{r}(t)$$

Galerkin method

- **Shape functions:** let $\mathbf{u}^h(\mathbf{x}, t) = \mathbf{H}(\mathbf{x})\mathbf{q}(t)$ and $\delta\mathbf{u}^h(\mathbf{x}) = \mathbf{H}(\mathbf{x})\delta\mathbf{q}$.
- **Semi-discrete weak form of elastodynamics** find $\mathbf{q} \in C^2([0, T], \mathbb{R}^n)$ such that for every $\delta\mathbf{q} \in \mathbb{R}^n$ we have

$$\delta\mathbf{q}^T [\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) - \mathbf{r}(t)] = 0$$

coupled with initial conditions:

$$\delta\mathbf{q}^T (\mathbf{q}(0) - \mathbf{q}_0) = 0,$$

$$\delta\mathbf{q}^T (\dot{\mathbf{q}}(0) - \mathbf{p}_0) = 0.$$

Definitions

- **Stiffness matrix** ($n \times n$):

$$\mathbf{K} = \int_{\Omega} \mathbf{B}^T \mathbf{C} \mathbf{B} d\Omega$$

where \mathbf{B} is the $(6 \times n)$ deformation matrix defined by $\mathbf{B} = \nabla \mathbf{H}$.

- **Mass matrix** ($n \times n$):

$$\mathbf{M} = \int_{\Omega} \rho \mathbf{H}^T \mathbf{H} d\Omega.$$

- **Applied forces vector** ($n \times 1$):

$$\mathbf{r}(t) = \int_{\Gamma_{\sigma}} \mathbf{H}^T \hat{\mathbf{f}} d\Gamma + \int_{\Omega} \mathbf{H}^T \mathbf{f} d\Omega.$$

Advantages and drawbacks of Galerkin method

Advantages:

- ✓ Converges quickly with appropriate shape functions.
- ✓ Provides a systematic and structured approach for approximating solutions.
- ✓ The same set of functions is used to express real and virtual variables.

Drawbacks:

- ✗ Accuracy heavily dependent on choice of basis functions.
- ✗ No physical interpretation of the unknown variable $\mathbf{q}(t)$.
- ✗ The formulation of initial and boundary conditions in the discretized form is cumbersome.

Static, modal, and transient analysis

- **Static analysis:** determines deformations due to constant loads.

$$\mathbf{K}\mathbf{q} = \mathbf{r}$$

- **Modal analysis:** studies dynamic properties in the frequency domain.

$$\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) = \mathbf{0}$$

- Natural frequency: key structural property essential in structural design.
 - ▶ Lower frequencies \rightarrow higher displacement amplitudes \rightarrow more dangerous.
 - ▶ Resonance occurs when external excitation frequency matches a natural frequency.
 - ▶ Prolonged resonance \rightarrow catastrophic failure.

- **Transient analysis:** examines time-dependent structural responses to time-dependent excitations.

$$\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) = \mathbf{r}(t)$$

Historical evolution of finite element method

Theoretical formulation of finite element method

The FEM is the confluence of three ingredients: matrix structural analysis, the variational approach and a computer.

(source: Carlos A. Felippa)

1908 “*Lösung von Variationsproblemen*” by W. Ritz

1915 “*Weak formulation*” by B. Galerkin

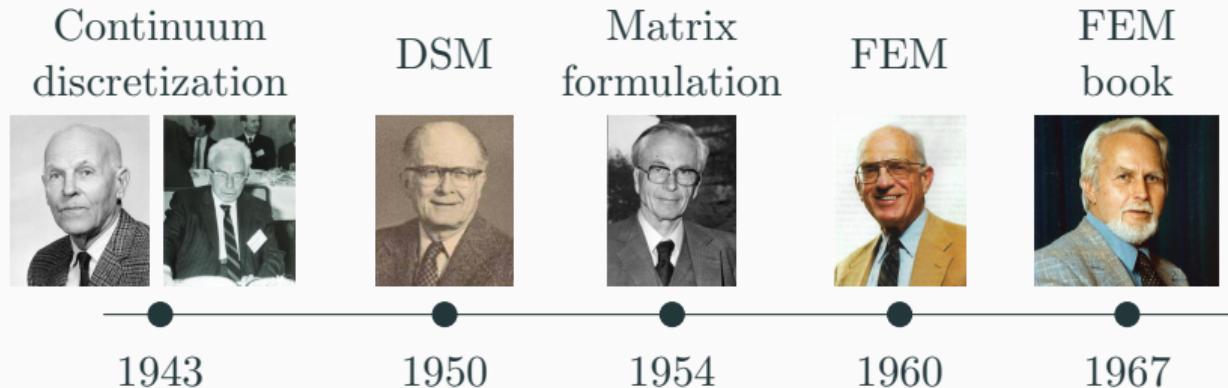
1943 “*Mathematical foundation*” by R. Courant & A. Hrennikoff

Continuum
discretization

1943

The birth of the finite element method

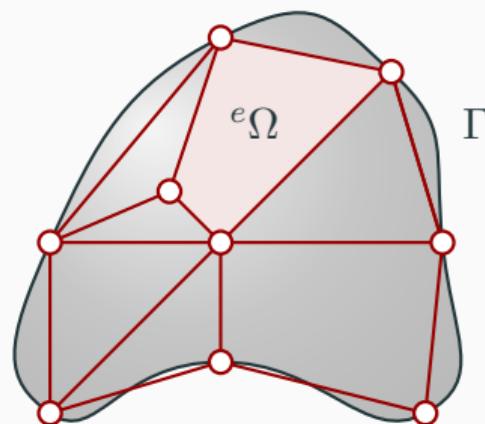
- 1950** Direct Stiffness Method (DSM) by M.J. Turner
- 1954** Matrix formulation of structural analysis by Agyris
- 1960** The term “Finite Element” was coined by Clough
- 1967** First book on FEM by Zienkiewicz, Taylor, and Zhu



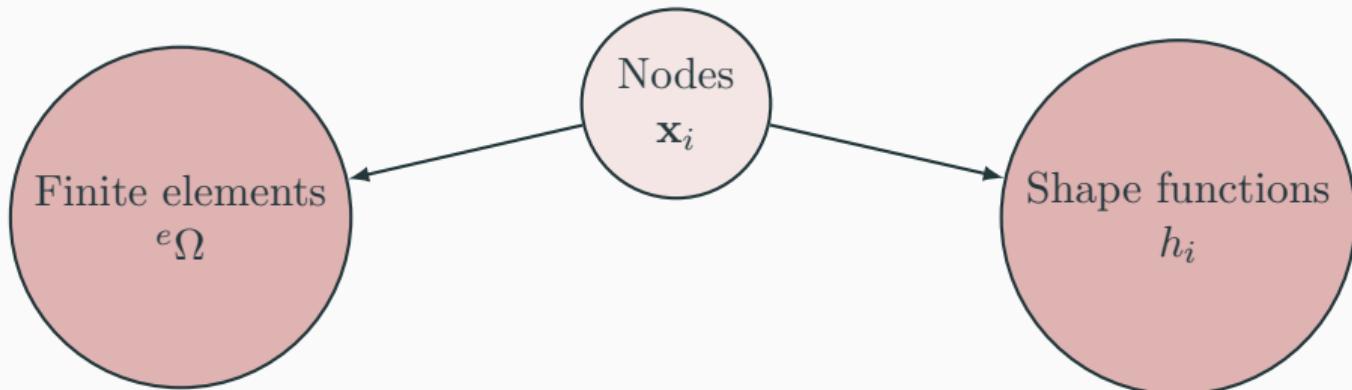
Finite element method : general ideas

Divide and conquer mentality

- The geometry of a structure is discretised when it is split into a mesh of finite elements ${}^1\Omega, \dots, {}^m\Omega$ (smaller components or regular shapes).
- The discretisation introduces another approximation: this discretisation error can be reduced by using a finer mesh (i.e. more elements), or by increasing the accuracy of the finite elements chosen.
- Discretisation starts with the definition of a **set of nodes**: $\mathbf{x}_i, i = 1, \dots, p$.



Nodes, elements and shape functions



- **Finite element method:** a special case of the Galerkin method, where shape functions are systematically defined in terms of nodes.
- Each shape function is non-zero only on a very limited number of finite elements (compact support).
- The computation of the mass and stiffness matrix is enhanced by the local nature of the shape functions.

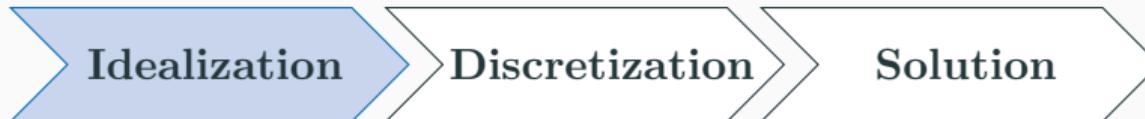
Decompose the structure into its fundamental components

Example: the forth bridge. (source: [A critical analysis of the forth bridge](#))

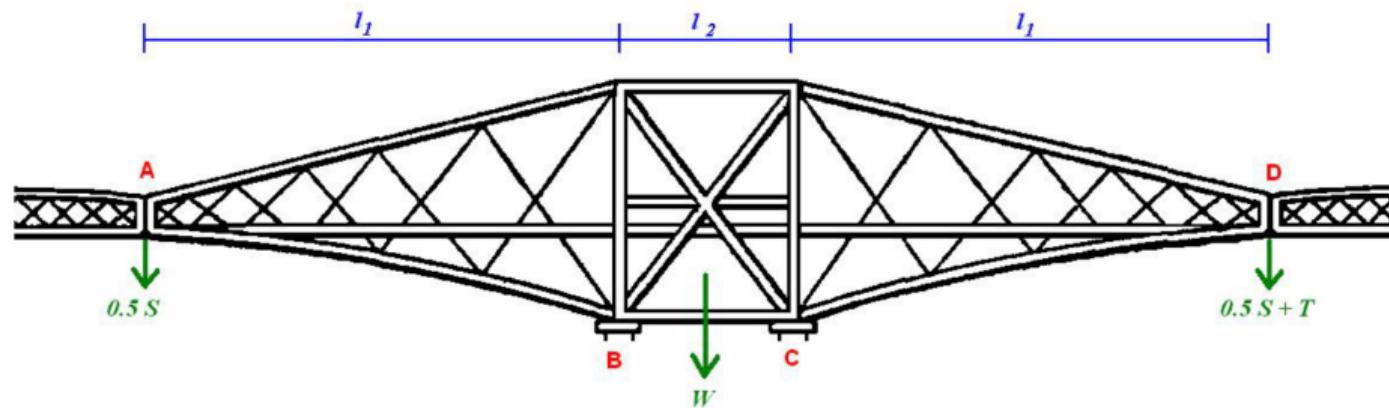
(Credit: theforthbridges.org)

Develop a simplified idealisation of the structure, which can often be accomplished through conceptual abstraction.

Decompose the structure into its fundamental components



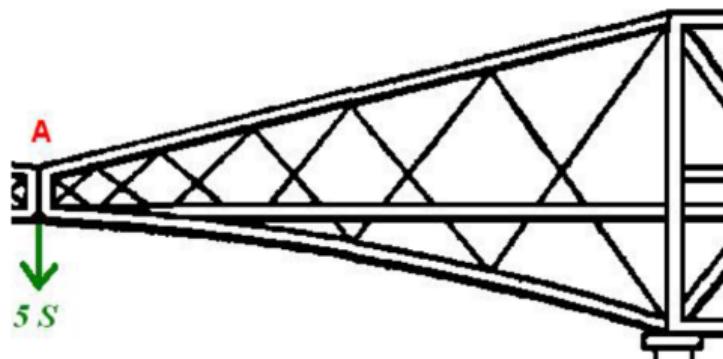
Conceptual model:



(Credit: Chatzi and Egger)

Decompose the structure into its fundamental components

Physical system:

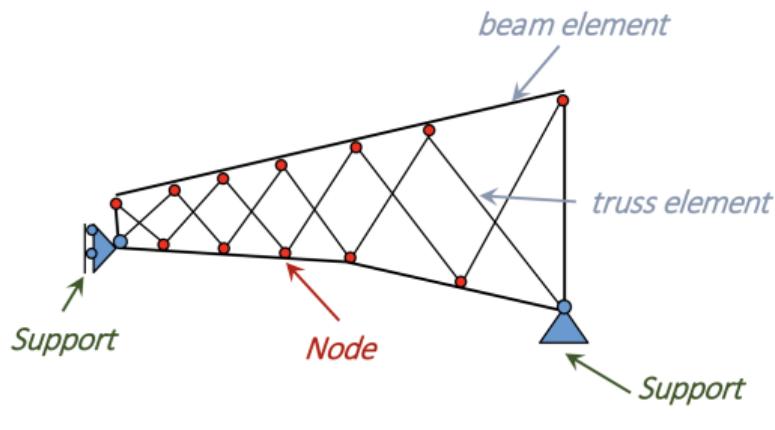


Various structural models can be formulated with differing levels of complexity in both geometric and mathematical representations.

(Credit: Chatzi and Egger)

Decompose the structure into its fundamental components

Mathematical model:

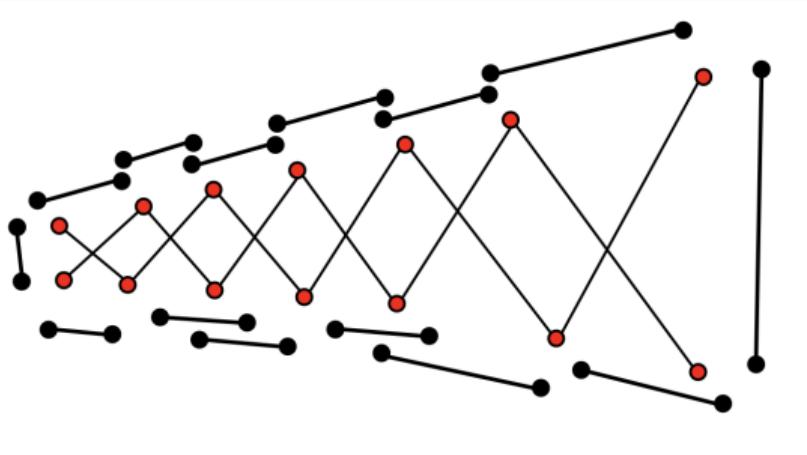


Assumption: decompose the system into 1D components, such as trusses and beams, to facilitate analysis.

(Credit: Chatzi and Egger)

Decompose the structure into its fundamental components

Direct stiffness method framework:

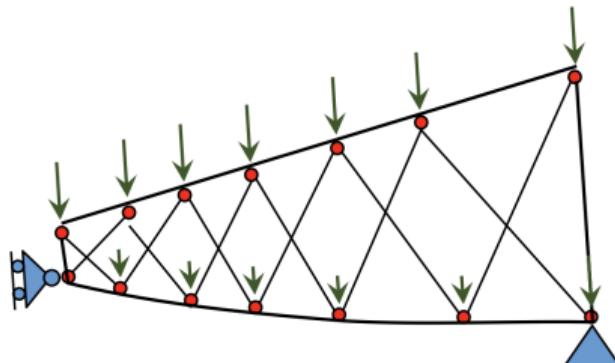


The continuum is disassembled using a mesh of finite elements that are connected at nodes located on the element boundaries.

(Credit: Chatzi and Egger)

Decompose the structure into its fundamental components

Solve for degrees of freedom: displacements/rotations:



The solution process involves:

- **globalisation:** assembly of element equation and application of boundary conditions,
- **post-processing:** computation of strains, stresses, forces, and moments.

(Credit: Chatzi and Egger)

Advantages and drawbacks of finite element method

Advantages:

- ✓ Versatile for various engineering problems: mechanics of solids and fluids, dynamics, heat transfer, electrostatics, and more.
- ✓ Provides a systematic algorithm: defines the underlying shape functions used in the approximation.
- ✓ Accuracy control: solution precision can be improved by refining the mesh.

Drawbacks:

- ✗ Choice of mathematical model is crucial: the solution's reliability hinges on selecting an appropriate model.
- ✗ Computational cost: highly refined models increase the computational burden.
- ✗ Requires experience in meshing, boundary conditions, and solver settings.

Finite element method in global coordinate system

Displacements approximation

Let p the number of nodes of the mesh.

$$\mathbf{u}^h(\mathbf{x}, t) = \mathbf{H}(\mathbf{x})\mathbf{q}(t)$$

$$\delta\mathbf{u}^h(\mathbf{x}) = \mathbf{H}(\mathbf{x})\delta\mathbf{q}$$

- $\mathbf{H}(\mathbf{x})$ is a $3 \times 3p$ matrix of **shape functions**.
- $\mathbf{q}(t)$ is a $3p \times 1$ vector of (*unknown*) time-dependent functions.
- $\delta\mathbf{q}$ is a $3p \times 1$ vector of constants.

$$\mathbf{H} = [\ h_1\mathbf{I} \ | \ h_2\mathbf{I} \ | \ \dots \ | \ h_i\mathbf{I} \ | \ \dots \ | \ h_p\mathbf{I} \]$$

- \mathbf{I} is the 3×3 identity matrix.

Displacements approximation - matrix notation

$$\begin{pmatrix} u_1^h \\ u_2^h \\ u_3^h \end{pmatrix} = \begin{bmatrix} h_1 & 0 & 0 & h_2 & 0 & 0 & \dots & h_p & 0 & 0 \\ 0 & h_1 & 0 & 0 & h_2 & 0 & \dots & 0 & h_p & 0 \\ 0 & 0 & h_1 & 0 & 0 & h_2 & \dots & 0 & 0 & h_p \end{bmatrix} \begin{pmatrix} q_{1,1} \\ q_{1,2} \\ q_{1,3} \\ \vdots \\ q_{p,1} \\ q_{p,2} \\ q_{p,3} \end{pmatrix}$$

$$\begin{pmatrix} \delta u_1^h \\ \delta u_2^h \\ \delta u_3^h \end{pmatrix} = \begin{bmatrix} h_1 & 0 & 0 & h_2 & 0 & 0 & \dots & h_p & 0 & 0 \\ 0 & h_1 & 0 & 0 & h_2 & 0 & \dots & 0 & h_p & 0 \\ 0 & 0 & h_1 & 0 & 0 & h_2 & \dots & 0 & 0 & h_p \end{bmatrix} \begin{pmatrix} \delta q_{1,1} \\ \delta q_{1,2} \\ \delta q_{1,3} \\ \vdots \\ \delta q_{p,1} \\ \delta q_{p,2} \\ \delta q_{p,3} \end{pmatrix}$$

Displacements approximation - index notation

$$\mathbf{u}^h(\mathbf{x}, t) = \sum_{i=1}^p h_i(\mathbf{x}) \mathbf{q}_i(t)$$

$$\boldsymbol{\delta} \mathbf{u}^h(\mathbf{x}, t) = \sum_{i=1}^p h_i(\mathbf{x}) \boldsymbol{\delta} \mathbf{q}_i$$

$$\mathbf{q}_i(t) = \begin{pmatrix} q_{i,1}(t) \\ q_{i,2}(t) \\ q_{i,3}(t) \end{pmatrix} \quad \text{and} \quad \boldsymbol{\delta} \mathbf{q}^i = \begin{pmatrix} \delta q_{i,1} \\ \delta q_{i,2} \\ \delta q_{i,3} \end{pmatrix}$$

Deformation, stiffness, mass matrices and loads vector

- $\mathbf{B} = \nabla \mathbf{H}$ is a $(6 \times 3p)$ matrix:

$$\mathbf{B} = \left[\begin{array}{ccc|c|ccc} \partial_x h_1 & 0 & 0 & \dots & \partial_x h_p & 0 & 0 \\ 0 & \partial_y h_1 & 0 & & 0 & \partial_y h_p & 0 \\ 0 & 0 & \partial_z h_1 & & 0 & 0 & \partial_z h_p \\ 0 & \partial_z h_1 & \partial_y h_1 & & 0 & \partial_z h_p & \partial_y h_p \\ \partial_z h_1 & 0 & \partial_x h_1 & \dots & \partial_z h_p & 0 & \partial_x h_p \\ \partial_y h_1 & \partial_x h_1 & 0 & & \partial_y h_p & \partial_x h_p & 0 \end{array} \right] = \left[\begin{array}{c|c|c} \nabla h_1 & \dots & \nabla h_p \end{array} \right]$$

- \mathbf{K} and \mathbf{M} are $(3p \times 3p)$ matrices and \mathbf{r} is a $(3p \times 1)$ vector:

$$\mathbf{K} = \int_{\Omega} \mathbf{B}^T \mathbf{C} \mathbf{B} d\Omega, \quad \mathbf{M} = \int_{\Omega} \rho \mathbf{H}^T \mathbf{H} d\Omega, \quad \mathbf{r}(t) = \int_{\Gamma_{\sigma}} \mathbf{H}^T \hat{\mathbf{f}} d\Gamma + \int_{\Omega} \mathbf{H}^T \mathbf{f} d\Omega.$$

Global nodal shape functions - construction guidelines

Global nodal shape functions $h_i : \Omega \rightarrow \mathbb{R}$ are characterized by the following properties:

- They form a linearly independent basis of polynomials of a given degree.
- Their values lie in the interval $[0, 1]$.
- They satisfy the Kronecker delta property: $h_i(\mathbf{x}_i) = 1$ and $h_i(\mathbf{x}_j) = 0$ for $i \neq j$.
- They vanish on all finite elements that are not adjacent to the node \mathbf{x}_i .

Properties of shape functions - convergence criteria

- Continuity of h_i at nodes and interfaces of finite elements.
- Differentiability of h_i inside each finite element.
- Completeness (rigid body motion and constant deformation):

$$\sum_{i=1}^p h_i(\mathbf{x}) = 1 \quad \text{and} \quad \sum_{i=1}^p \nabla h_i(\mathbf{x}) = \mathbf{0}.$$

- Approximate real and virtual displacements at the nodes:

$$\mathbf{u}^h(\mathbf{x}_j, t) = \sum_{i=1}^p h_i(\mathbf{x}_j) \mathbf{q}_i(t) = \mathbf{q}_j(t),$$

$$\delta \mathbf{u}^h(\mathbf{x}_j) = \sum_{i=1}^p h_i(\mathbf{x}_j) \delta \mathbf{q}_i = \delta \mathbf{q}_j.$$

Treatment of initial conditions

Since $\mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x})$, enforcing $\mathbf{u}^h(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x})$ ensures that the approximate displacement field is consistent with the initial condition. This leads to

$$\mathbf{q}_j(0) = \mathbf{u}^h(\mathbf{x}_j, 0) = \mathbf{u}_0(\mathbf{x}_j).$$

Similarly, imposing the initial velocity condition, $\dot{\mathbf{u}}(\mathbf{x}, 0) = \mathbf{v}_0(\mathbf{x})$, gives

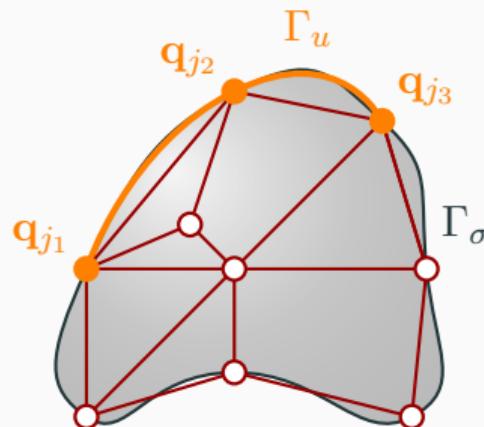
$$\dot{\mathbf{q}}_j(0) = \dot{\mathbf{u}}^h(\mathbf{x}_j, 0) = \mathbf{v}_0(\mathbf{x}_j).$$

- ✓ These expressions provide the initial values of the unknown vector \mathbf{q} directly in terms of the given initial data \mathbf{u}_0 and \mathbf{v}_0 .

Treatment of boundary conditions

On Γ_u we impose $\mathbf{u}^h = \hat{\mathbf{u}}$ and $\delta \mathbf{u}^h = \mathbf{0}$. Consequently for every node $\mathbf{x}_j \in \Gamma_u$:

$$\mathbf{q}_j(t) = \mathbf{u}^h(\mathbf{x}_j, t) = \hat{\mathbf{u}}(\mathbf{x}_j, t) \quad \text{and} \quad \delta \mathbf{q}_j = \delta \mathbf{u}^h(\mathbf{x}_j, t) = \mathbf{0}.$$



- ✓ The j -th component of the approximated nodal displacement \mathbf{q} is known for every node $\mathbf{x}_j \in \Gamma_u$.

Semi-discrete weak form of elastodynamics

Given Ω , Γ , \mathbf{C} , ρ , \mathbf{f} , $\hat{\mathbf{u}}$, $\hat{\mathbf{f}}$, \mathbf{u}_0 , \mathbf{v}_0 , and p nodes $\mathbf{x}_1, \dots, \mathbf{x}_p$, find the approximated nodal displacements vector $\mathbf{q} \in C^2([0, T], \mathbb{R}^n)$ such that for every $\delta\mathbf{q}$:

$$\delta\mathbf{q}^T [\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) - \mathbf{r}(t)] = 0$$

coupled with initial conditions

$$\mathbf{q}(0) = \mathbf{u}_0,$$

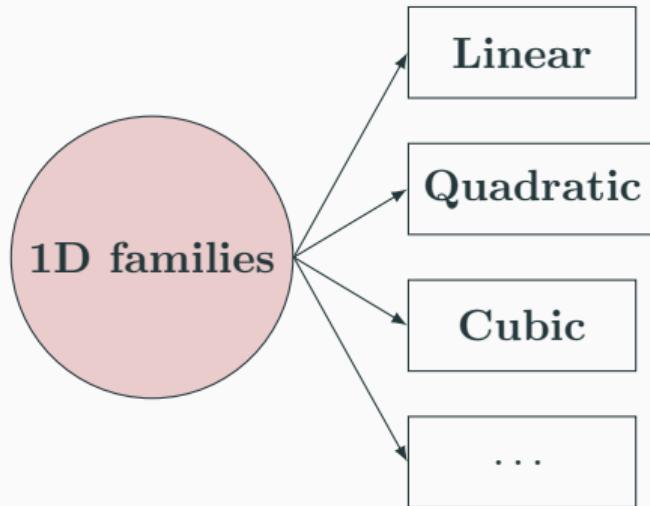
$$\dot{\mathbf{q}}(0) = \mathbf{v}_0.$$

Moreover for every node $\mathbf{x}_j \in \Gamma_u$ we have

$$\mathbf{q}_j(t) = \hat{\mathbf{u}}(\mathbf{x}_j, t) \quad \text{and} \quad \delta\mathbf{q}_j = \mathbf{0}.$$

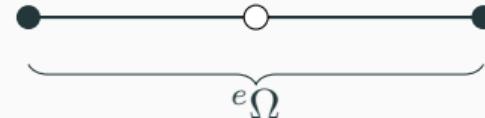
1D and 2D elements and shape functions

Shape functions for one dimensional structures

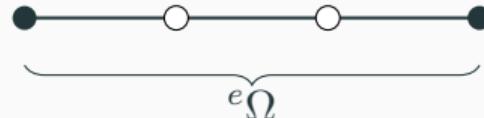


1D finite elements

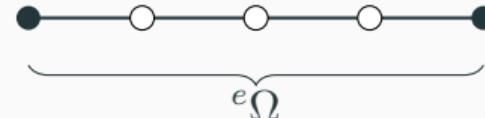
(a) Linear element



(b) Quadratic element

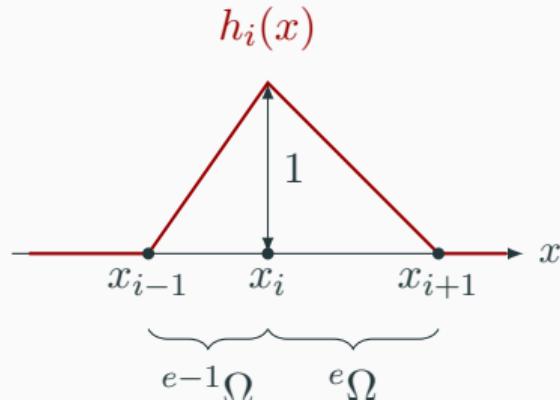


(c) Cubic element



(d) Quartic element

Linear shape functions



$$h_i(x) = \begin{cases} l_2[x_{i-1}, x_i](x) = \frac{x - x_{i-1}}{x_i - x_{i-1}} & x \in {}^{e-1}\Omega \\ l_1[x_i, x_{i+1}](x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} & x \in {}^e\Omega \\ 0 & \text{otherwise} \end{cases}$$

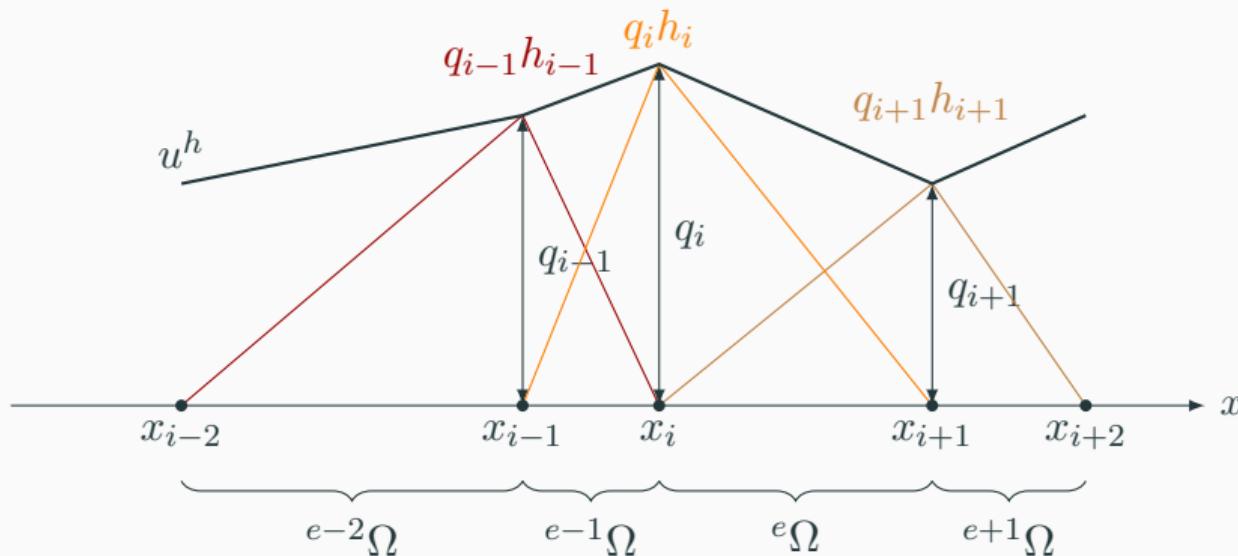
- h_i are piecewise linear functions that, within each finite element, corresponds to a first-degree Lagrange polynomial:

$$l_j[x_1, \dots, x_n](x) = \prod_{\substack{m=1 \\ m \neq j}}^n \frac{x - x_m}{x_j - x_m}$$

- Any linear piecewise function can be expressed as a linear combination of the h_i .

1D displacement approximation via linear shape functions

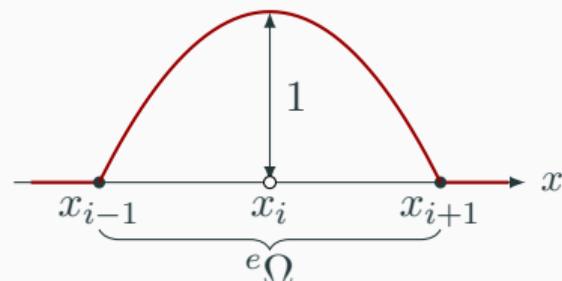
$$u^h(x, t) = \sum_{i=1}^p h_i(x) q_i(t)$$



Quadratic shape functions

If i is even:

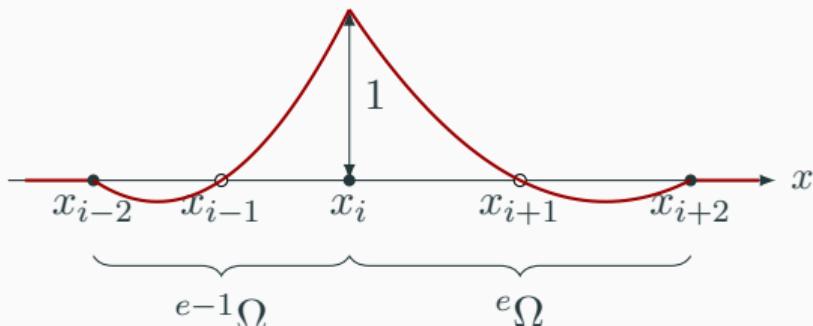
$$h_i(x)$$



$$h_i(x) = \begin{cases} l_2[x_{i-1}, x_i, x_{i+1}](x) & x \in {}^e\Omega \\ 0 & \text{otherwise} \end{cases}$$

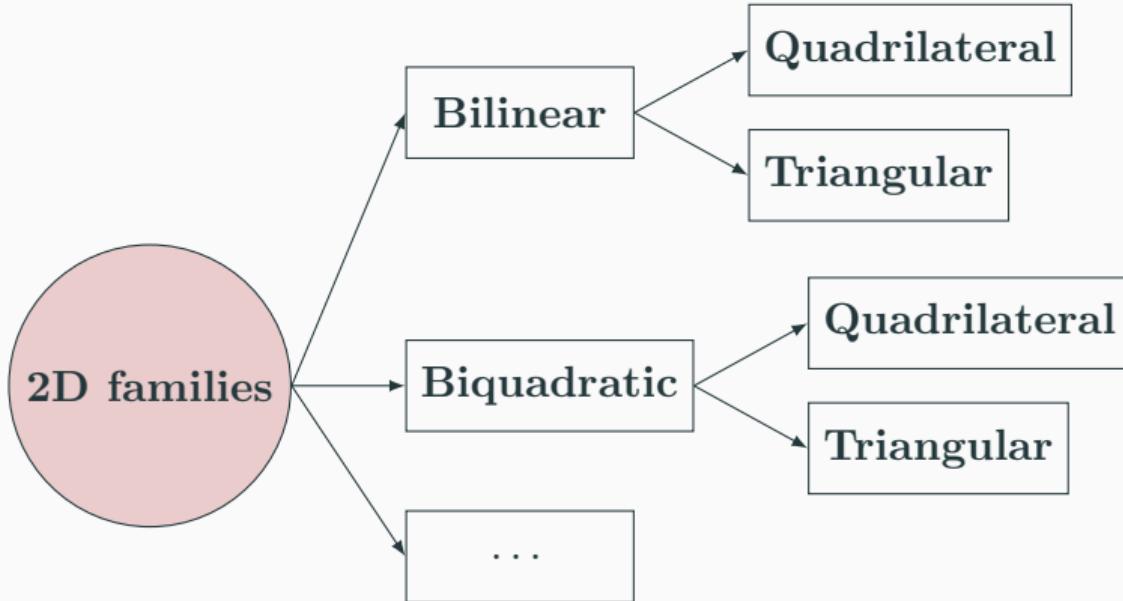
If i is odd:

$$h_i(x)$$

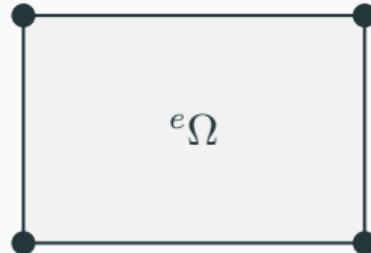


$$h_i(x) = \begin{cases} l_3[x_{i-2}, x_{i-1}, x_i](x) & x \in {}^{e-1}\Omega \\ l_1[x_i, x_{i+1}, x_{i+2}](x) & x \in {}^e\Omega \\ 0 & \text{otherwise} \end{cases}$$

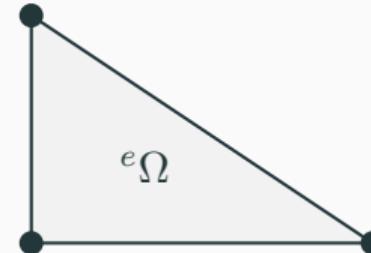
Shape functions for two-dimensional structures



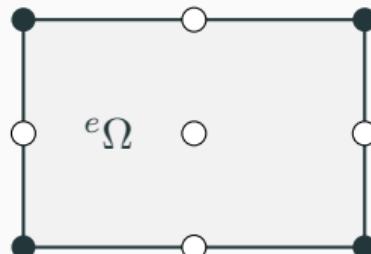
2D finite elements



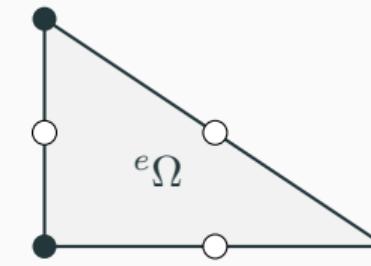
(a) Bilinear Quadrilateral



(b) Bilinear Triangular

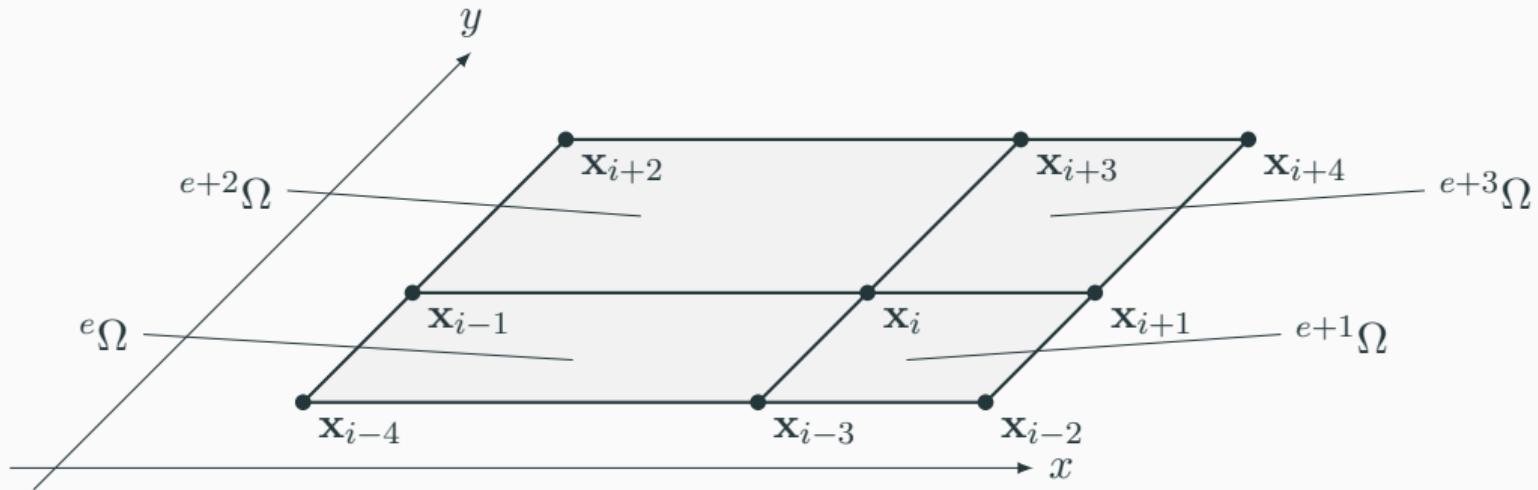


(c) Biquadratic Quadrilateral

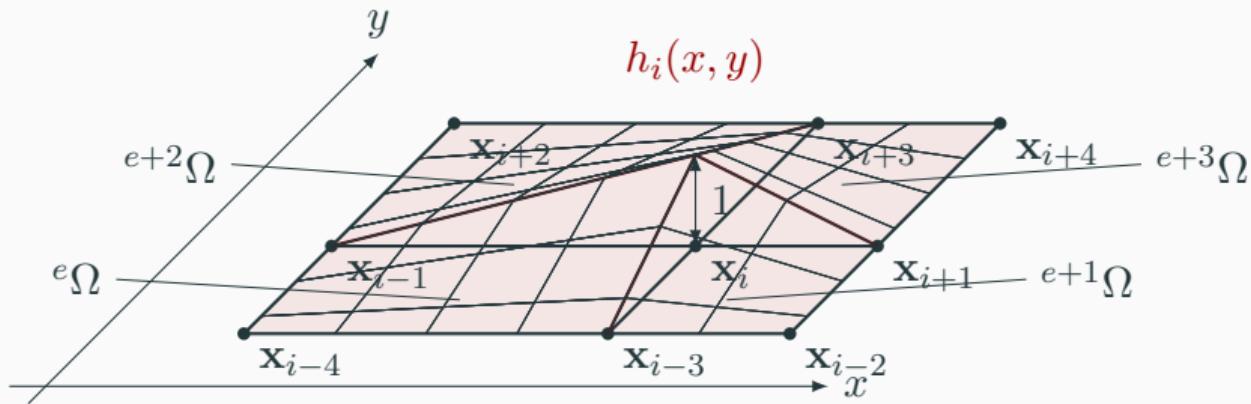


(d) Biquadratic Triangular

Bilinear quadrilateral finite elements mesh



Bilinear quadrilateral shape functions

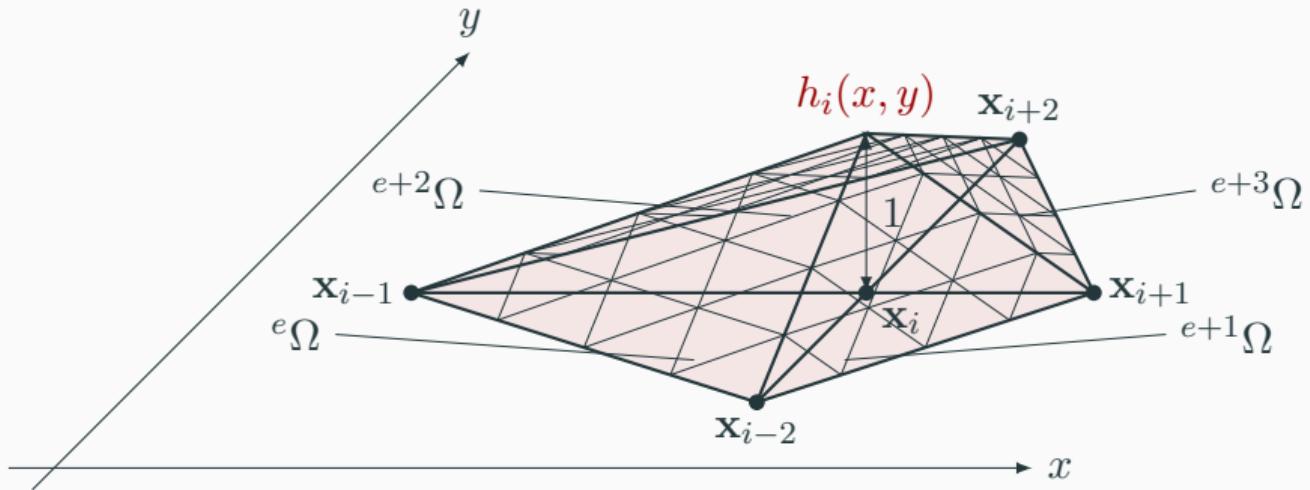


$$h_i(x, y) = \begin{cases} l_2[x_{i-1}, x_i](x)l_2[y_{i-3}, y_i](y) & x \in {}^e\Omega \\ l_1[x_i, x_{i+1}](x)l_2[y_{i-3}, y_i](y) & x \in {}^{e+1}\Omega \\ l_2[x_{i-1}, x_i](x)l_1[y_i, y_{i+3}](y) & x \in {}^{e+2}\Omega \\ l_1[x_i, x_{i+1}](x)l_1[y_i, y_{i+3}](y) & x \in {}^{e+3}\Omega \\ 0 & \text{otherwise} \end{cases}$$

Bilinear triangular finite elements mesh



Bilinear triangular shape functions



Advantages and drawbacks of FEM in global coordinate system

Advantages:

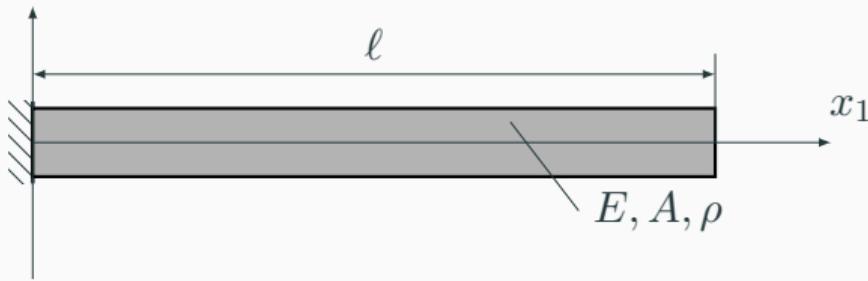
- ✓ The unknowns \mathbf{q}_i have a well-defined physical interpretation, representing the approximate displacement at \mathbf{x}_i .
- ✓ Shape functions are systematically defined, ensuring a structured approach to the algorithm.
- ✓ The formulation simplifies the implementation of initial conditions.

Drawbacks:

- ✗ Limited capability in handling complex mesh topologies.
- ✗ Algebraic expressions for shape functions can be computationally cumbersome.
- ✗ The assembly of stiffness and mass matrices is not computationally optimal.

Example: longitudinal vibration of a bar

Example - Finite elements approximation of longitudinal vibrations of a bar



- A (constant) cross-sectional area
- E (constant) Young's modulus (isotropic)
- ρ material density
- ℓ length
- u_1 axial displacement
- x_1 axial coordinate

Objective: determine the first two natural frequencies of the bar using n linear shape functions and compare the results with those obtained from Galerkin's approximation.

Example - Finite elements approximation of longitudinal vibrations of a bar

▶ Go to Matlab Drive