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Where do we stand?

Week Module Lecture topic Mini-projects
1 Linear Strong and weak forms
2 lastod . Galerkin method Groups formation
3 crastodynamies FEM global Project 1 statement




Summary
m Recap week 2
m Historical evolution of finite element method
m Finite element method : general ideas
m Finite element method in global coordinate system
m 1D and 2D elements and shape functions

m Example: longitudinal vibration of a bar

Recommended readings
©® Gmiir, Dynamique des structures (§3.1 and §3.2) »(GM]
® Gmiir, Méthode des éléments finis (§ 5.3) &M
® Neto et al., Engineering Computation of Structures (§ 2.3.1 - § 2.3.4) »* ™


https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99116915262405516&context=L&vid=41SLSP_EPF:prod&lang=fr&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20méthode%20elements%20finis&sortby=date_d&facet=frbrgroupid,include,9019009044277850068&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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Formulations of elastodynamics

Strong form:
VICVu + f = pii

|

Weak form:
Jo(Vow)"CVudQ + [, pouTiidQ = [ suTfdl + [, su”fdQ

|

Semi-discrete weak form:
Mq(t) + Kq(t) = r(t)
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Galerkin method

Galerki thod
PDE in weak form’ AT MO0 - ODE

m Shape functions: let u”(x,t) = H(x)q(t) and du”(x) = H(x)dq.
m Semi-discrete weak form of elastodynamics find q € C?([0, 7], R") such
that for every dq € R™ we have

5q” [Md(t) + Kq(t) — ()] =0
coupled with initial conditions:
dq" (a(0) —qo) =0,
5q" (¢(0) — po) =0.
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Definitions

m Stiffness matrix (n x n):
K = / B"CB d
Q

where B is the (6 x n) deformation matrix defined by B = VH.

m Mass matrix (n x n):

M = / pHTH d.
Q

m Applied forces vector (n x 1):

r(t) :/ HdeF+/HdeQ.
T's Q
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Advantages and drawbacks of Galerkin method

Advantages:

v Converges quickly with appropriate
shape functions.

v’ Provides a systematic and
structured approach for
approximating solutions.

v/ The same set of functions is used to
express real and virtual variables.

Recap week 2

Drawbacks:

X Accuracy heavily dependent on
choice of basis functions.

X No physical interpretation of the
unknown variable q(t).

X The formulation of initial and
boundary conditions in the
discretized form is cumbersome.
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Static, modal, and transient analysis

m Static analysis: determines deformations due to constant loads.
Kq=r
m Modal analysis: studies dynamic properties in the frequency domain.

Ma(t) + Ka(t) = 0

® Natural frequency: key structural property essential in structural design.

» Lower frequencies — higher displacement amplitudes — more dangerous.
» Resonance occurs when external excitation frequency matches a natural frequency.
» Prolonged resonance — catastrophic failure.

m Transient analysis: examines time-dependent structural responses to
time-dependent excitations.

Mq(t) + Kq(t) = r(t)
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Historical evolution of finite element
method



Theoretical formulation of finite element method

The FEM is the confluence of three ingredients: matrix structural
analysis, the variational approach and a computer.
(source: Carlos A. Felippa)

1908 “Losung von Variationsproblemen” by W. Ritz
1915 “Weak formulation” by B. Galerkin
1943 “Mathematical foundation” by R. Courant & A. Hrennikoff

Continuum
discretization

£. N
il g i
—@

1943
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The birth of the finite element method

1950 Direct Stiffness Method (DSM) by M.J. Turner
1954 Matrix formulation of structural analysis by Agyris
1960 The term “Finite Element” was coined by Clough
1967 First book on FEM by Zienkiewicz, Taylor, and Zhu

Matrix FEM
formulation LeLEh book

Al

Continuum
discretization

L 4
1943 1950 1954 1960 1967
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Finite element method : general ideas




Divide and conquer mentality

m The geometry of a structure is discretised when it is split into a mesh of finite
elements 1Q, ..., ™Q (smaller components or regular shapes).

m The discretisation introduces another approximation: this discretisation error
can be reduced by using a finer mesh (i.e. more elements), or by increasing
the accuracy of the finite elements chosen.

m Discretisation starts with the definition of a set of nodes: x;, i =1,...,p.
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Nodes, elements and shape functions

Shape functions
h;

Finite elements

°Q

m Finite element method: a special case of the Galerkin method, where
shape functions are systematically defined in terms of nodes.

m Each shape function is non-zero only on a very limited number of finite
elements (compact support).

m The computation of the mass and stiffness matrix in enhanced by the local
nature of the shape functions.
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Example: the forth bridge. (source: A critical analysis of the forth bridge)

Develop a simplified idealisation of the
structure, which can often be
accomplished through conceptual
abstraction.

(Credit: theforthbridges.org)
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Conceptual model:

A \/ :

(Credit: Chatzi and Egger)

Finite element method : general ideas
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Physical system:

Various structural models can be
formulated with differing levels of
complexity in both geometric and
mathematical representations.

(Credit: Chatzi and Egger)
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Decompose the structure into its fundamental components

Idealization Discretization Solution

Mathematical model:

beam element

Assumption: decompose the system
into 1D components, such as trusses and
7 \ beams, to facilitate analysis.

Support Node R
Support

truss element

(Credit: Chatzi and Egger)
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Decompose the structure into its fundamental components

Idealization

Direct stiffness method framework:

— o9

(Credit: Chatzi and Egger)

Finite element method : general ideas

Discretization

Solution

The continuum is disassembled using a
mesh of finite elements that are
connected at nodes located on the
element boundaries.
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Decompose the structure into its fundamental components

Idealization Discretization-

Solve for degrees of freedom: displacements/rotations:

The solution process involves:

m globalisation: assembly of element
equation and application of
boundary conditions,

m post-processing: computation of

strains, stresses, forces, and
moments.

(Credit: Chatzi and Egger)
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Advantages and drawbacks of finite element method

Advantages: Drawbacks:

v/ Versatile for various engineering X Choice of mathematical model is
problems: mechanics of solids and crucial: the solution’s reliability
fluids, dynamics, heat transfer, hinges on selecting an appropriate
electrostatics, and more. model.

v/ Provides a systematic algorithm: X Computational cost: highly refined
defines the underlying shape models increase the computational
functions used in the approximation. burden.

v Accuracy control: solution precision X Requires experience in meshing,
can be improved by refining the boundary conditions, and solver
mesh. settings.
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Finite element method in global coordinate
system




Displacements approximation

Let p the number of nodes of the mesh.
u"(x,#) = H(x)q()
su(x) = H(x)dq

H(x) is a 3 x 3p matrix of shape functions.

q(t) is a 3p x 1 vector of (unknown) time-dependent functions.

dq is a 3p x 1 vector of constants.
H=[mIihd:...
m I is the 3 x 3 identity matrix.

N0 BN
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Displacements approximation - matrix notation

U? hl 0 0 1 h2
ub =10 h 00
ul 0 0 hi!0
Sul hi 0 0 ihy
sub =10 h 010
Sull 0 0 hi!O0

Finite element method in global coordinate system

q1,1
q1,2
q1,3

dp,1
dp,2
4dp,3

5Q1,1
5Q1,2
dq1,3

6Qp,1
5(][),2
6‘]11,3

Linear elastodynamics
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Displacements approximation - index notation

i (t) , g
qi(t) = | @i2(t) and 0q" = | 0gi2
q:,3(t) 0qi3
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Deformation, stiffness, mass matrices and loads vector

m B=VH is a (6 x 3p) matrix:

[ 0,1 O 0 | 9dhy O 0
0 9h1 0 ‘...t 0 9h, 0
|0 0 i 10 0 3hy | _ ;
B=1 0 om oh' | 0 ohy ah |ZLVMI V]
b1 0 Oghii...i8h, O Ohy
| Oyhy Oy O 0 1 9yhy Ophy 0O

m K and M are (3p x 3p) matrices and r is a (3p x 1) vector:

K:/BTCBdQ, M:/pHTHdQ, r(t) = HdeP+/ H'tf dO.
Q Q Ty Q
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Global nodal shape functions - construction guidelines

Global nodal shape functions h; : 2 — R are characterized by the following
properties:

m They form a linearly independent basis of polynomials of a given degree.

m Their values lie in the interval [0, 1].

m They satisfy the Kronecker delta property: h;(x;) =1 and h;(x;) = 0 for i # j.
]

They vanish on all finite elements that are not adjacent to the node x;.

Finite element method in global coordinate system Linear elastodynamics 24 / 42



Properties of shape functions - convergence criteria

Continuity of h; at nodes and interfaces of finite elements.

Differentiability of h; inside each finite element.

Completeness (rigid body motion and constant deformation):

p

Zhi(x) =1 and ZVhi(X) =

i=1 i=1

Approximate real and virtual diplacements at the nodes:

p
uh Xj,t = Zh, Xj qi(t) = Qj(t),
=1

P
Zh’ x;)0q; = 6q;.
=1
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Treatment of initial conditions

Since u(x,0) = up(x), enforcing u”(x, 0) = ug(x) ensures that the approximate
displacement field is consistent with the initial condition. This leads to

q;(0) = u"(x;,0) = uo(x;)-
Similarly, imposing the initial velocity condition, u(x,0) = vo(x), gives
q](O) = flh(Xj,O) = VQ(Xj).

v/ These expressions provide the initial values of the unknown vector q directly
in terms of the given initial data ug and vyg.

Finite element method in global coordinate system Linear elastodynamics
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Treatment of boundary conditions

h

On T', we impose u” = @ and du” = 0. Consequently for every node x; € I'y:

q;(t) = uh(xj,t) =1(x;,t) and 0q; = 5uh(xj,t) =0.

v/ The j-th component of the approximated nodal displacement q is know for
every node x; € I'y.

Finite element method in global coordinate system Linear elastodynamics
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Semi-discrete weak form of elastodynamics

Given Q, I, C, p, f, 1, f, ug, vo, and p nodes x, . . .Xp, find the approximated
nodal displacements vector q € C2([0, 7], R") such that for every dq:

dq” [Mq(t) + Kq(t) —r(t)] =0

coupled with initial conditions
q(0) = uy,

4(0) = vo.

Moreover for every node x; € I';, we have

q;(t) = a(x;,t) and dq; = 0.
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1D and 2D elements and shape functions




Shape functions for one dimensional structures

Linear

Quadratic

Cubic
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1D finite elements

°Q

(a) Linear element

°Q

(c) Cubic element

1D and 2D elements and shape functions

°Q

(b) Quadratic element

Q)

(d) Quartic element

Linear elastodynamics
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Linear shape functions

hi(z)
T — T
lg[xi_l,l‘i](l‘) = G ce 1
1 Tj — Tj—1
hl(x) = ll[xi,xi+1](x) = m €T € EQ
p” 3 g T Ti — Tit1
~ ) L
' ‘ ' 0 otherwise
R/_/H/—/
6719 €Q)

m h; are piecewise linear functions that, within each finite element, corresponds to a
first-degree Lagrange polynomial:

e, eal(@) = [] o

| Tj— Tm
m#j

m Any linear piecewise function can be expressed as a linear combination of the h;.
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1D displacement approximation via linear shape functions

Gi+1hiv1

ZTi—2 Ti—1 Z; Titl  Tiy2

6729 6719 €Q) e+1Q
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Quadratic shape functions

If 7 is even: hi(x)
1 ZQ[Ii_1,$¢,$¢+1K$) T € Q)
ht(ﬂi) =
- 0 otherwise
Ti—1 T Li+1
Q)
If 7 is odd: hi(z)
I3lwi—o, mi1, x5)(x) x€°71Q
1
! " hv(I) = ll[$i,l’i+1,$i+2}(l’) x € Q)
B TiT—Tit2
0 otherwise

e—IQ €Q)
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Shape functions for two-dimensional structures

1D and 2D elements and shape functions

Bilinear

Quadrilateral

Triangular

Biquadratic

Quadrilateral

Triangular

Linear elastodynamics
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2D finite elements

(a) Bilinear Quadrilateral

)

(¢) Biquadratic Quadrilateral

1D and 2D elements and shape functions

°Q

(b) Bilinear Triangular

°Q)

)

(d) Biquadratic Triangular

Linear elastodynamics
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Bilinear quadrilateral finite elements mesh
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Bilinear quadrilateral shape functions

0

1D and 2D elements and shape functions

x € Q)

T € etl()
= e+QQ
x € ¢330

otherwise

Linear elastodynamics
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Bilinear triangular finite elements mesh

e+3Q

Xi+1
e+IQ
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Bilinear triangular shape functions
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Advantages and drawbacks of FEM in global coordinate system

Advantages: Drawbacks:

v/ The unknowns q; have a well-defined X Limited capability in handling
physical interpretation, representing complex mesh topologies.
the approximate displacement at x;. X Algebraic expressions for shape

v Shape functions are systematically functions can be computationally
defined, ensuring a structured cumbersome.
approach to the algorithm. X The assembly of stiffness and mass

v/ The formulation simplifies the matrices is not computationally
implementation of initial conditions. optimal.
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Example: longitudinal vibration of a bar




Example - Finite elements approximation of longitudinal vibrations of a
bar

m A (constant) cross-sectional area

E (constant) Young’s modulus
/ (isotropic)

‘g

p material density

N m / length
E, A p

uy axial displacement

r1 axial coordinate

Objective: determine the first two natural frequencies of the bar using n linear
shape functions and compare the results with those obtained from Galerkin’s
approximation.
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Example - Finite elements approximation of longitudinal vibrations of a
bar

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b
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