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Problem set 3 - solutions

Problem 1

Assuming that the approximate longitudinal displacement uh(x, t) can be expressed as

uh(x, t) = h1(x)q1(t) + h2(x)q2(t) + h3(x)q3(t),

where hi(x) represent the quadratic shape functions and qi(t) denote the unknown nodal displace-
ments, the semi-discrete weak formulation is expressed as follows:

Mq̈(t) +Kq(t) = 0, t ∈]0, T [ (1)

where M and K are the global mass and stiffness matrices and q(t) = {q1(t), q2(t), q3(t)}T is the
unknown nodal displacement vector. The components of M and K can be specified as
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Note that the system of equations (3) will still need to be modified to include the homogenoeus
boundary condition q1 = 0.
Since the finite element Ω =]0, ℓ[ is quadratic, the three global parabolic shape functions, which are
linearly independent and satisfy the convergence criteria, are expressed as
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Inserting these expressions into the coefficients mij and kij of the mass and stiffness matrices leads,
after integration, to the system of equations:
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in which the homogeneous boundary condition q1 = 0 and its virtual equivalence must now be
incorporated.
Due to the nature of this boundary condition (clamping), the virtual displacement δq1 is zero since
the virtual displacement field δq is kinematically admissible. It follows that the first equation of
(2) must be eliminated, so that the problem reduces to solving for the displacements q2(t) and q3(t),
t ∈ [0, T ].
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By assuming an harmonic solution of pulsation ω, the above expression becomes:(
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where the coefficients pi (i = 2, 3) are the amplitudes of the harmonic function at nodal points 2
and 3. The characteristic equation 1 associated with

ω4 − ω2
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ρ2ℓ4
= 0

provides the following two solutions, which correspond to the approximate natural frequencies of
the bar,

ω1 = 1.577

√
E

ρℓ2
and ω2 = 5.673

√
E

ρℓ2

Let us note the excellent accuracy of the fundamental frequency, which deviates by only 0.4%
from the exact value. However, the relative error in the second calculated frequency is significantly
higher, reaching 20% compared to the exact result. This significant difference arises because the bar
is discretized using a single finite element. The basis functions, which have a parabolic shape, are
poorly suited for accurately representing the three-quarters sine wave corresponding to the second
mode, while they are sufficiently capable of approximating the quarter sine wave reflecting the first
mode.
Nevertheless, it can be shown that higher-order natural frequencies quickly converge to the exact
values as the mesh refinement increases.

Problem 2

Discretizing the weak form using the finite element procedure leads to the following system of
equations:

Mq̈(t) +Kq(t) = r(t) (3)

1Refer to the MATLAB code for a detailed calculation.
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where the mass and stiffness matrices have compenents given by

mij = ρ

∫ 2

0

∫ 2

0

hi(x, y)hj(x, y) dx dy (i, j = 1, . . . , 9)

kij = S

∫ 2

0

∫ 2

0

∂xhi(x, y)∂xhj(x, y) + ∂yhi(x, y)∂yhj(x, y) dx dy (i, j = 1, . . . , 9)

Moreover the components of the vector of applied forces are

ri(t) =

∫ 2

0

∫ 2

0

hi(x, y)p(x, y, t) dx dy (i, j = 1, . . . , 9).

Notice that, due to the vanishing boundary conditions on Γ, the vector of unknown nodal dis-
placements q = {q1, . . . , q9}T has only one non zero component q5, representing the transveral
displacement of the center of the membrane. Therefore the system (3) reduces to one single equa-
tion:

m55q̈5(t) + k55q5(t) = r5(t)

coupled with the initial conditions q5(0) = q̇5(0) = 0. Finally, the bilinear quadrilateral shape
function h5 is defined as follows:

h5(x, y) =


xy 0 ≤ x, y ≤ 1

(2− x)y 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

x(2− y) 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

(2− x)(2− y) π ≤ x, y ≤ 2,

The following code, available on the MATLAB drive, is used to calculate and to plot the time
response of the geometric center of the membrane q5(t). We start by definig the physical parameters
that describe the membrane’s properties and the symolic variables.

clc; clear; close all;

%% Problem Parameters

% Membrane length in x and y directions (m)

l = 2;

% Tension per unit length (N/m)

S = 1000;

% Material density (kg/m^2)

rho = 1200;

% Load amplitude (N/m^2)

A = 100;

% Forcing frequency (rad/s)

omega_bar = 10*pi;

% Define symbolic variables

syms x y t q(t)

The forcing function (p) represents the time-dependent external force (pressure) applied to the
membrane. This force will vary with time and cause the membrane to oscillate.
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% Define forcing function

p = A*sin(omega_bar*t);

The shape function (h5) is a piecewise function that defines the displacement shape of the membrane
as a function of spatial coordinates x and y. The function is broken into four regions of the
membrane, each with a different mathematical expression.

% Define shape function and plot it

h_5=piecewise((x >= 0) & (x <= l/2) & (y >= 0) & (y <= l/2), x*y, ...

(x >= l/2) & (x <= l) & (y >= 0) & (y <= l/2), (2-x)*y, ...

(x >= 0) & (x <= l/2) & (y >=l/2) & (y <= l), x*(2-y),...

(x >= l/2) & (x <= l) & (y >=l/2) & (y <= l),(2-x)*(2-y));

figure;

fsurf(h_5, [0, 2, 0, 2])

xlabel(’x’)

ylabel(’y’)

zlabel(’h_5(x,y)’)

title(’3D Plot of base function h_5’)

grid on

% Compute the components of the stiffness and mass matrices and forces vector

grad_h_5 = gradient(h_5, [x, y]);

k_55 = vpa(S * int(int(transpose(grad_h_5)*grad_h_5,x,[0,l]),y,[0,l]),4)

m_55 = vpa(rho * int(int(h_5^2,x,[0,l]),y,[0,l]),4)

r_5(t) = int(int(p*h_5,x,[0,l]),y,[0,l])

Equation of Motion (ODE): this is the core of the problem: the second-order ordinary differential
equation (ODE) that describes the motion of the membrane over time. The displacement and the
velocity at time t = 0 is assumed to be zero. This represents the initial rest state of the membrane.
Solving the ODE: dsolve: This command solves the ODE symbolically to find the displacement of
the membrane as a function of time.
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% Define the ODE resulting form the discretization and solve it to find the

% time response at the node x_5

ode = m_55 * diff(q, t, 2) + k_55 * q == r_5(t);

initial_cond = [q(0) == 0, subs(diff(q, t), t, 0) == 0];

q_5 = dsolve(ode, initial_cond);

fplot(q_5,[0,10]);

xlabel(’Time (seconds)’)

ylabel(’q_5(t) (meters)’)

grid on
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