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Where do we stand?

Week Module Lecture topic Mini-projects
1 Linear Strong and weak forms
2 elastodynamics Galerkin method Groups formation




Summary
m Recap week 1
m Further evidence in favor of the weak form
m Discretisation of the weak form of elastodynamics via Galerkin method
m Example: longitudinal vibration of a bar
m Matlab implementation of Galerkin approximation

Recommended readings
©® Gmiir, Dynamique des structures (§2.3 and §2.4) »[GM]
® Neto et al., Engineering Computation of Structures (§ 2.1 and §2.2) >N


https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures
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Statement of the linear elastodynamics problem

m Object:
A solid Q € R? (beam, shaft, plate etc...) with i
known material properties: C and p.

m Main features:
® Acting loads on the body: f.

® Boundary I' =T, UT, (the surface enclosing f
the solid).

® Boundary conditions: prescribed
displacements @ on the boundary I',, and/or
loads f on the boundary on I',.

=h)>
=h>

® Initial displacement ugy and velocity v at
t=0.
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Statement of the linear elastodynamics problem

m Unknown: displacement u € C?(Q x [0, 7], R?)

Undeformed structure Deformed structure

m PDE governing the evolution of the displacements u:

VICVu(x,t) + f(x,t) = pii(x,t)  V(x,t) € Qx]0,T]
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Strong and weak forms of elastodynamics

Strong form Weak form
PDE: Virtual work:
vICvu +f = pi Jo(VowTCVudQ+ [ pouTtdQ = [ suTFdl + [, sul'fdQ
BC on I'y: Functional spaces:
B= U={ut,-) e H(Q) |lu=tonT,}
- B V={6ve H(Q)|év=0onT,}
BC on I',:
N'CVu = f
L ICatt=0:
IC at t _ 0: / /Q pJuTu‘t=0 dQ = /Q p(5u)Tu0 sy,
u = uy, l'l = vy /Q péuTL'l‘tzo dQ) = /Q p(5u)Tv0 das2.
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Strong form for longitudinal vibrations of a bar

Z m A cross-sectional area

m E Young’s modulus (isotropic bar)

= p material density
x m ¢ length

E A m wuj axial displacement

m z axial coordinate

Find u; € C2([0,¢] x [0,T]) such that
EAQ? uy(x,t) = pAiiy(z,t)
boundary conditions: initial conditions:

u1<0, t) =0
EA@mul(E, t) =0
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Weak form for longitudinal vibrations of a bar

Find u; € U such that Véu; € V we have

0 Y4
EA0,uy 0;(duy) dx + / pAii1dur dxr = 0,
0

Initial conditions

U= {u(-t) e H(]0,£) | u1(0 t) =0Vt €0, T}
V= {6u € Hl(]O £)) | Su1(0) =0}
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Further evidence in favor of the weak form




Weighted residuals

m Let u be a solution of
VICVu + f — pii = 0.

m Let u” an approximate solution:

in general u” does not satisfy the differential equation and hence results in an error
or a restdual:
vicvu" +f — piih = R

m We impose that the residual is zero in a certain Euclidean vector space V" of
finite dimension. Thus

RV =0 wheV
where (-,-) denotes the scalar product.
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Weighted residual

m For vector-valued functions, there is a natural definition of scalar product:
t.g) = [ t7gan
Q
m Hence (R, v") = 0 for all v € V" implies
/ VHT(VICVu" +f —pii")d2 =0  w" eV
Q

m Applying the divergence theorem will result into the integral equation of the
weak form:

/ (Vv Cvu d+ / p(vMTihd = [ (vM)TFdr+ / vhTEdQ  wt e Vi
Q Q Iy Q
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Hamilton’s principle - principle of stationary action

The path taken by the system is defined by the
admissible function u that makes the functional
stationary:

J= / * () — U(w) + W(a) dt.

1

m T is the total kinetic energy,

m U represents the potential (elastic) energy of
the ﬂelele Structure, Credit: Wikipedia - Hamilton’s principle

m W the work done by external loads that are
acting on the body.
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Hamilton’s principle - principle of stationary action.

m The kinetic energy associated with a flexible body that has volume 2 is given

as "
T(0) = / paladQ
2 Ja
m The total elastic energy of a deformable structure is given as

U(u) = ;/QETCE:CZQ

where € is the elastic strain and C is the stifflness material matrix.

m The total work W done by the external mechanical loading is given by

W(u):/qudQ+/ u’fdr
Q I
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Hamilton’s principle

m Computing the first variation §.J, and imposing §J = 0, yields to:

/ ) | [ —pt6wtdo - (3e)7Ce + Guran+ | (6w Ear]de=o

o

for every virtual displacement du which satisfies du = 0 on T',,.

m This implies the weak form of elastodynamics:

/ (Vou)"CVudQ + / p(ou)TiidQ = / (ou)Tfdr + / (bu)TfdQ  Véu.
Q Q e, Q
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Weak form: cornerstone concept

Weigthed residuals

Weak form

Hamilton’s principle
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Galerkin method




General ideas of Galerkin methods

Weak form |— Discrete problem

m Galerkin methods are a class of numerical
techniques used to transform differential equations
in weak formulation, into discrete problems.

m The approximate solution is determined via a finite
set of basis functions.

m Galerkin approximation compute the best possible
approximate solution among a family of potential

solutions. Boris Galerkin 1871 - 1945
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Approximate solution of the weak form

Finite-dimensional functional spaces
Choose subspaces U" C U and V" C V of dimension n and solve the projected
problem into such subspaces.

Displacement approximation
Instead of searching for u € U such that the weak form is satisfied for any du € V,
we shall search for u” € U" such that the weak form is satisfied for any du” € V.

ux,t) ~u(x,t) e cu
du(x) = du(x) e VP c v

The key property of the Galerkin approach is that the error is orthogonal to the
chosen subspaces.

Galerkin method Linear elastodynamics 16 / 33



Shape functions

Let u”(x,t) = H(x)q(t) and

where

m H(x) is a 3 X n matrix of shape functions, defined globally on €.

m q(t) is a n x 1 vector of (unknown) time-dependent functions.

m dq is an x 1 vector of constants.

Shape functions are linearly independent: they form a basis of 4" and V".

u’f(x, t) hi1(x)
uh(x,t) | = |ha1(x)
uf (x,t) hs1(x)

(S’U‘;L (X) h11 (X)
Jus(x) | = |ha21(x)
Sul (%) h31(x)

Galerkin method

h12 (X)
h22 (X)
haa(x)

h12 (X)
haa(x)
h32 (X)

han (x)

hln (X)
han (x)
h3n (X)

hln (X)
hzn (X)

|

a1 ()
a2(1)
qn(t)
5q1
5Q2
Oqn
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Approximate solution of the weak form

m Find u” € U" such that for all u” € V" we have
/ (Vou" T Cvu d + / p(ou) il dQ = / (ou™)Tf dr + / (0u"TfdQ
Q Q & Q

m Find u” € Y" such that for all 6q € R™ we have

/ (VHSq)T'CVHq(t) dQ+ / p(Hoq)THE(t) dQ = / (Hdq) Tt dl'+ / (Hoq)Tf dQ
Q Q r

Q

o

m Rearranging the terms we obtain the following expression:

éqTK/Q(VH)TCVHdQ)q(t)+(/QpHTHdQ)b](t)(/FU HdeF+/QHdeQ)] =0

K M r(t)
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m Stiffness matrix (n x n):
K = / B"CB d
Q

where B is the (6 x n) deformation matrix defined by B = VH.

m Mass matrix (n x n):

M = / pHTH d.
Q

m Applied forces vector (n x 1):

r(t) :/ Hder+/HdeQ.
T's Q
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Semi-discrete weak form of elastodynamics

Given ), I', C, p, f

.1, T, ug, vo, and a matrix of shape functions H, find the
vector q € C?([0,T],R")

such that for every vector dq € R™ we have
dq”’ [M4(t) + Kq(t) —r(t)] =0

coupled with initial conditions
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Treatment of initial conditions (at ¢ = 0)

Recall that
/ p(ou")u|,_, dQ = / p(du™)Tugy d / p(ou™)a|,_, dQ = / p(du™)Tvg dQ
Q Q Q Q

Substituting u”(x,t) = H(z)q(t) and du”(x) = H(z)dq gives

s ( [ pH"HAR )a(0) = 807 (o p HTwg ) sa ([ pHTHAD)a(0) = 80 JorHTv0d0)
N——
M M
a(0) =M~ / pH g d02) a(0) = M~ ( / pH v d0)
¢ Q
qo0 Po
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Treatment of boundary conditions

m Boundary conditons on I';:
u' =1 and du’ =0

Consequently, when defining shape functions, it is necessary to impose that

H(x)q(t) = 4(x,t) and H(x)dq =0 vx € TVt €]0,T7.
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Treatment of boundary conditions

m Boundary conditons on I';:
u' =1 and du’ =0
Consequently, when defining shape functions, it is necessary to impose that
H(x)q(t) = 4(x,t) and H(x)dq =0 vx € TVt €]0,T7.
m Boundary conditon on I',:

NTcvu" = f

Does not affect the choice of shape functions since this condition has already
been used in the derivation of the weak form.
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Example: longitudinal vibration of a bar




Example - Galerkin approximation of longitudinal vibrations of a bar

m A cross-sectional area

E Young’s modulus (isotropic)

m p material density

X ¢ length

E,A,p

m u; axial displacement

m ¢ axial coordinate

Objective: find a Galerkin approximation of the axial displacement u; using
appropriate functional spaces.
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Galerkin approximation of longitudinal vibrations of a bar

Substituting
n
uf(z,t) = H(@)qu(t) = Y hi(z)gi(t) and ouf(z) = H(z)dq = Zh )0gi
i=1
in the integral equation

l l
/ EA3uf 0, (oult) da + / pAilsul de = 0,
0 0

allow us to write
Kaqi(t) + Mg (t) =0
where

¢ ‘
ki :/ EAR(z)h(z) da, mi; = / pAh;(z)hj(x) dx.
0 0
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Initial and boundary conditions

m Initial conditions:
ul'(z,0) = up(z) and al(z,0) = vo(z)

Thus q1(0) = qo = M [, pH updQ and ¢;(0) = po = M [, pH  v(dQ.
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Initial and boundary conditions

m Initial conditions:
ul'(z,0) = up(z) and al(z,0) = vo(z)
Thus q1(0) = qo = M [, pH updQ and ¢;(0) = po = M [, pH  v(dQ.
m Boundary conditions:

ull(0,t) =0 and 6ul(0,t) =0

Therefore H(0) = 0.
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One-term Galerkin approximation

m Let n =1 then

Wl () = H(z)ar () = b (@)an (2)
suli(z) = H(x)da1 = h(w)da

where we choose

hl(l') = %

Notice that hy € H*(]0,£[) and hy(0) = 0.

m The semi-discrete weak form is: find the function ¢ (¢) such that:

k11q1(t) + mi1Gi(t) =0

hu = /Oe EA(%YCLT - ET;LX’ mi = /04 pA(%fda: = ’OSM
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Second order differential equation

The linear homogeneous second order ODE with constant coefficients governing
the free vibration of single degree of freedom conservative system:

kiiqi(t) +miigi(t) =0
¢1(0) =qo
d1(0) = po

admits an unique solution given by
q1(t) = pcos(wit — @)

where wi = \/ki1/mi1, p = /43 + (po/w1)? and tan(p) = po/gows.

Example: longitudinal vibration of a bar Linear elastodynamics
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Displacement approximation

ul(xat) =
14 qq
T
N
(a)t=0
l
T
N

(¢) t=(p+7/2+ km)/wn

Example: longitudinal vibration of a bar

hi(z)q1(t) = ]% cos(wit — )

/ p
95
(b) t = (¢ + 2km) /w1
7 B
T

N

(d) t=(p+ 2k + 1)) /w1

Linear elastodynamics
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Fundamental frequency comparison

m Approximated fundamental frequency: (obtained via one-term Galerkin)

| k E
w1 = %:ﬁ W

m Exact fundamental frequency:

e B
L= 2\ pe2
m Relative error: .
w
relative error = w1 P il =10.3%
w1
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One-term quadratic Galerkin approximation

Let n =1 and .
I —
: T /
ul(z,t) = H(z)qi(t) = hi(z)q () sin (57)
5uif(m) =H(z)dq1 = hi(x)dq gi(l B ﬁ) P z
/ 2 ;

where the shape function is choosen as
2z x .
) =2(1- ). .
1(2) =3 20

Notice hy € H*(]0,]) and hy(0) = 0.
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One-term quadratic Galerkin approximation

m The stiffness and mass 'matrices’ are

ki1 = /f 1EA (1 = E>2al:c = 1A

, 2 ] 3¢
l 2
4pAx x 2 8pAl
= | == (1= e sl
i /0 2 ( 2@) de =5

m Approximated fundamental frequency: (obtained via one-term quadratic

Galerkin)
o = B _ \f B
! mi1 2 pEQ

w1 — wi
w§

m Relative error:
=0.7"%

relative error =
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n-terms Galerkin approximation

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b

Advantages and drawbacks of Galerkin method

In a nutshell: Galerkin method transforms the partial differential equations
(PDE), expressed in their weak formulation, into a system of ordinary differential

equations (ODE).

Advantages:

v Converges quickly with appropriate
shape functions.

v’ Provides a systematic and
structured approach for
approximating solutions.

v/ The same set of functions is used to
express real and virtual variables.

Example: longitudinal vibration of a bar

Drawbacks:

X Accuracy heavily dependent on
choice of basis functions.

X No physical interpretation of the
unknown variable q(t).

X The formulation of initial and
boundary conditions in the
discretized form is cumbersome.
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