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Where do we stand?
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Strong and weak forms
2 Galerkin method Groups formation



Summary

Recap week 1

Further evidence in favor of the weak form

Discretisation of the weak form of elastodynamics via Galerkin method

Example: longitudinal vibration of a bar

Matlab implementation of Galerkin approximation

Recommended readings

1 Gmür, Dynamique des structures (§2.3 and §2.4) [GM]

2 Neto et al., Engineering Computation of Structures (§ 2.1 and §2.2) [N]

https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=alma99117030362305516&context=L&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Gmür%20Dynamique%20des%20structures&sortby=date_d&facet=frbrgroupid,include,9023061793468147787&offset=0
https://epfl.swisscovery.slsp.ch/discovery/fulldisplay?docid=cdi_globaltitleindex_catalog_335884842&context=PC&vid=41SLSP_EPF:prod&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=41SLSP_EPF_MyInst_and_CI&query=any,contains,Neto%20et%20al.,%20Engineering%20Computation%20of%20Structures


Recap week 1



Statement of the linear elastodynamics problem

Object:
A solid Ω ⊂ R3 (beam, shaft, plate etc...) with
known material properties: C and ρ.

Main features:
• Acting loads on the body: f .

• Boundary Γ = Γu ∪ Γσ (the surface enclosing
the solid).

• Boundary conditions: prescribed
displacements û on the boundary Γu and/or
loads f̂ on the boundary on Γσ.

• Initial displacement u0 and velocity v0 at
t = 0.

Ω

Γu
û

Γσ

f̂ f̂

f̂
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Statement of the linear elastodynamics problem

Unknown: displacement u ∈ C2(Ω̄× [0, T ],R3)

Undeformed structure

Ω

Γ

Deformed structure

Ω

Γu

PDE governing the evolution of the displacements u:

∇TC∇u(x, t) + f(x, t) = ρü(x, t) ∀(x, t) ∈ Ω×]0, T [
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Strong and weak forms of elastodynamics

Strong form Weak form

PDE:
∇TC∇u+ f = ρü

BC on Γu:
u = û

BC on Γσ:
NTC∇u = f̂

IC at t = 0:
u = u0, u̇ = v0

Virtual work:∫
Ω(∇δu)TC∇u dΩ+

∫
Ω ρ δuT ü dΩ =

∫
Γσ

δuT f̂ dΓ+
∫
Ω δuT f dΩ

Functional spaces:
U = {u(t, ·) ∈ H1(Ω) | u = û on Γu

}
V = {δv ∈ H1(Ω) | δv = 0 on Γu

}
IC at t = 0:∫

Ω
ρ δu

T
u
∣∣
t=0

dΩ =

∫
Ω

ρ(δu)
T
u0 dΩ,∫

Ω
ρ δu

T
u̇
∣∣
t=0

dΩ =

∫
Ω

ρ(δu)
T
v0 dΩ.
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Strong form for longitudinal vibrations of a bar

x

ℓ

E,A, ρ

A cross-sectional area

E Young’s modulus (isotropic bar)

ρ material density

ℓ length

u1 axial displacement

x axial coordinate

Find u1 ∈ C2([0, ℓ]× [0, T ]) such that

EA∂2
xxu1(x, t) = ρAü1(x, t)

boundary conditions:

u1(0, t) = 0

EA∂xu1(ℓ, t) = 0

initial conditions:

u1(x, 0) = u0(x)

u̇1(x, 0) = v0(x)
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Weak form for longitudinal vibrations of a bar

Find u1 ∈ U such that ∀δu1 ∈ V we have∫ ℓ

0
EA∂xu1 ∂x(δu1) dx+

∫ ℓ

0
ρAü1δu1 dx = 0,

∫ ℓ

0
ρAu(x, 0)δu1(x) dx =

∫ ℓ

0
ρAu0(x)δu1(x) dx,∫ ℓ

0
ρAu̇(x, 0)δu1(x) dx =

∫ ℓ

0
ρAv0(x)δu1(x) dx.

 Initial conditions

U =
{
u1(·, t) ∈ H1(]0, ℓ[) | u1(0, t) = 0 ∀t ∈]0, T [

}
V =

{
δu1 ∈ H1(]0, ℓ[) | δu1(0) = 0

}
Recap week 1 Linear elastodynamics 8 / 33



Further evidence in favor of the weak form



Weighted residuals

Let u be a solution of
∇TC∇u+ f − ρü = 0.

Let uh an approximate solution:

in general uh does not satisfy the differential equation and hence results in an error
or a residual:

∇TC∇uh + f − ρüh = Rh.

We impose that the residual is zero in a certain Euclidean vector space Vh of
finite dimension. Thus

⟨Rh,vh⟩ = 0 ∀vh ∈ Vh

where ⟨·, ·⟩ denotes the scalar product.
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Weighted residual

For vector-valued functions, there is a natural definition of scalar product:

⟨f ,g⟩ =
∫
Ω
fTg dΩ.

Hence ⟨Rh,vh⟩ = 0 for all vh ∈ Vh implies∫
Ω
(vh)T

(
∇TC∇uh + f − ρüh

)
dΩ = 0 ∀vh ∈ Vh.

Applying the divergence theorem will result into the integral equation of the
weak form:∫
Ω
(∇vh)TC∇uh dΩ+

∫
Ω
ρ(vh)T üh dΩ =

∫
Γσ

(vh)T f̂ dΓ+

∫
Ω
(vh)T f dΩ ∀vh ∈ Vh.
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Hamilton’s principle - principle of stationary action

The path taken by the system is defined by the
admissible function u that makes the functional
stationary:

J =

∫ t2

t1

T (u̇)− U(u) +W (u) dt.

T is the total kinetic energy,

U represents the potential (elastic) energy of
the flexible structure,

W the work done by external loads that are
acting on the body.

Credit: Wikipedia - Hamilton’s principle
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Hamilton’s principle - principle of stationary action.

The kinetic energy associated with a flexible body that has volume Ω is given
as

T (u̇) =
1

2

∫
Ω
ρu̇T u̇ dΩ

The total elastic energy of a deformable structure is given as

U(u) =
1

2

∫
Ω
εTCε dΩ

where ε is the elastic strain and C is the stiffness material matrix.

The total work W done by the external mechanical loading is given by

W (u) =

∫
Ω
uT f dΩ+

∫
Γσ

uT f̂ dΓ
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Hamilton’s principle

Computing the first variation δJ , and imposing δJ = 0, yields to:∫ t2

t1

[ ∫
Ω
−ρ(δu)T ü dΩ− (δε)TCε+ (δu)T f dΩ+

∫
Γσ

(δu)T f̂ dΓ
]
dt = 0

for every virtual displacement δu which satisfies δu = 0 on Γu.

This implies the weak form of elastodynamics:∫
Ω
(∇δu)TC∇u dΩ+

∫
Ω
ρ(δu)T ü dΩ =

∫
Γσ

(δu)T f̂ dΓ +

∫
Ω
(δu)T f dΩ ∀δu.
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Weak form: cornerstone concept

Weigthed residuals

Hamilton’s principle

Weak form
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Galerkin method



General ideas of Galerkin methods

Weak form Discrete problem

Galerkin methods are a class of numerical
techniques used to transform differential equations
in weak formulation, into discrete problems.

The approximate solution is determined via a finite
set of basis functions.

Galerkin approximation compute the best possible
approximate solution among a family of potential
solutions. Boris Galerkin 1871 - 1945
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Approximate solution of the weak form

Finite-dimensional functional spaces
Choose subspaces Uh ⊂ U and Vh ⊂ V of dimension n and solve the projected
problem into such subspaces.

Displacement approximation
Instead of searching for u ∈ U such that the weak form is satisfied for any δu ∈ V,
we shall search for uh ∈ Uh such that the weak form is satisfied for any δuh ∈ Vh.

u(x, t) ≈ uh(x, t) ∈ Uh ⊂ U
δu(x) ≈ δuh(x) ∈ Vh ⊂ V

The key property of the Galerkin approach is that the error is orthogonal to the
chosen subspaces.
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Shape functions

Let uh(x, t) = H(x)q(t) and δuh(x) = H(x)δq where

H(x) is a 3× n matrix of shape functions, defined globally on Ω.

q(t) is a n× 1 vector of (unknown) time-dependent functions.

δq is a n× 1 vector of constants.

Shape functions are linearly independent: they form a basis of Uh and Vh.

uh
1 (x, t)

uh
2 (x, t)

uh
3 (x, t)

 =

h11(x) h12(x) . . . h1n(x)
h21(x) h22(x) . . . h2n(x)
h31(x) h32(x) . . . h3n(x)



q1(t)
q2(t)
...

qn(t)


δuh

1 (x)

δuh
2 (x)

δuh
3 (x)

 =

h11(x) h12(x) . . . h1n(x)
h21(x) h22(x) . . . h2n(x)
h31(x) h32(x) . . . h3n(x)



δq1
δq2
...

δqn


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Approximate solution of the weak form

Find uh ∈ Uh such that for all δuh ∈ Vh we have∫
Ω
(∇δuh)TC∇uh dΩ+

∫
Ω
ρ(δuh)T üh dΩ =

∫
Γσ

(δuh)T f̂ dΓ +

∫
Ω
(δuh)T f dΩ

Find uh ∈ Uh such that for all δq ∈ Rn we have∫
Ω
(∇Hδq)TC∇Hq(t) dΩ+

∫
Ω
ρ(Hδq)THq̈(t) dΩ =

∫
Γσ

(Hδq)T f̂ dΓ+

∫
Ω
(Hδq)T f dΩ

Rearranging the terms we obtain the following expression:

δqT
[( ∫

Ω

(∇H)TC∇H dΩ︸ ︷︷ ︸
K

)
q(t)+

(∫
Ω

ρHTH dΩ︸ ︷︷ ︸
M

)
q̈(t)−

(∫
Γσ

HT f̂ dΓ +

∫
Ω

HT f dΩ︸ ︷︷ ︸
r(t)

)]
= 0
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Definitions

Stiffness matrix (n× n):

K =

∫
Ω
BTCB dΩ

where B is the (6× n) deformation matrix defined by B = ∇H.

Mass matrix (n× n):

M =

∫
Ω
ρHTH dΩ.

Applied forces vector (n× 1):

r(t) =

∫
Γσ

HT f̂ dΓ +

∫
Ω
HT f dΩ.
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Semi-discrete weak form of elastodynamics

Given Ω, Γ, C, ρ, f , û, f̂ , u0, v0, and a matrix of shape functions H, find the
vector q ∈ C2([0, T ],Rn) such that for every vector δq ∈ Rn we have

δqT
[
Mq̈(t) +Kq(t)− r(t)

]
= 0

coupled with initial conditions

δqT
(
q(0)− q0

)
= 0,

δqT
(
q̇(0)− p0

)
= 0.
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Treatment of initial conditions (at t = 0)

Recall that∫
Ω
ρ(δuh)Tu

∣∣
t=0

dΩ =

∫
Ω
ρ(δuh)Tu0 dΩ

∫
Ω
ρ(δuh)T u̇

∣∣
t=0

dΩ =

∫
Ω
ρ(δuh)Tv0 dΩ

Substituting uh(x, t) = H(x)q(t) and δuh(x) = H(x)δq gives

δqT
(∫

Ω
ρHTH dΩ︸ ︷︷ ︸

M

)
q(0) = δqT

( ∫
Ω ρHTu0 dΩ

)

q(0) = M−1
(∫

Ω
ρHTu0 dΩ

)
︸ ︷︷ ︸

q0

δqT
(∫

Ω
ρHTH dΩ︸ ︷︷ ︸

M

)
q̇(0) = δqT

( ∫
Ω ρHTv0 dΩ

)

q̇(0) = M−1
(∫

Ω
ρHTv0 dΩ

)
︸ ︷︷ ︸

p0
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Treatment of boundary conditions

Boundary conditons on Γu:

uh = û and δuh = 0

Consequently, when defining shape functions, it is necessary to impose that

H(x)q(t) = û(x, t) and H(x)δq = 0 ∀x ∈ Γu∀t ∈]0, T [.

Boundary conditon on Γσ:

NTC∇uh = f̂

Does not affect the choice of shape functions since this condition has already
been used in the derivation of the weak form.
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Example: longitudinal vibration of a bar



Example - Galerkin approximation of longitudinal vibrations of a bar

x

ℓ

E,A, ρ

A cross-sectional area

E Young’s modulus (isotropic)

ρ material density

ℓ length

u1 axial displacement

x axial coordinate

Objective: find a Galerkin approximation of the axial displacement u1 using
appropriate functional spaces.
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Galerkin approximation of longitudinal vibrations of a bar

Substituting

uh1(x, t) = H(x)q1(t) =

n∑
i=1

hi(x)qi(t) and δuh1(x) = H(x)δq1 =

n∑
i=1

hi(x)δqi

in the integral equation∫ ℓ

0
EA∂xu

h
1 ∂x(δu

h
1) dx+

∫ ℓ

0
ρAüh1δu

h
1 dx = 0,

allow us to write
Kq1(t) +Mq̈1(t) = 0

where

kij =

∫ ℓ

0
EAh′i(x)h

′
j(x) dx, mij =

∫ ℓ

0
ρAhi(x)hj(x) dx.
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Initial and boundary conditions

Initial conditions:

uh1(x, 0) = u0(x) and u̇h1(x, 0) = v0(x)

Thus q1(0) = q0 = M−1
∫
Ω ρHTu0dΩ and q̇1(0) = p0 = M−1

∫
Ω ρHTv0dΩ.

Boundary conditions:

uh1(0, t) = 0 and δuh1(0, t) = 0

Therefore H(0) = 0.
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One-term Galerkin approximation

Let n = 1 then

uh1(x, t) = H(x)q1(t) = h1(x)q1(t)

δuh1(x) = H(x)δq1 = h1(x)δq1

where we choose
h1(x) =

x

ℓ
.

Notice that h1 ∈ H1(]0, ℓ[) and h1(0) = 0.

The semi-discrete weak form is: find the function q1(t) such that:

k11q1(t) +m11q̈1(t) = 0

k11 =

∫ ℓ

0
EA

(1
ℓ

)2
dx =

EA

ℓ
, m11 =

∫ ℓ

0
ρA

(x
ℓ

)2
dx =

ρAℓ

3
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Second order differential equation

The linear homogeneous second order ODE with constant coefficients governing
the free vibration of single degree of freedom conservative system:

k11q1(t) +m11q̈1(t) = 0

q1(0) = q0

q̇1(0) = p0

admits an unique solution given by

q1(t) = p cos(ω1t− φ)

where ω1 =
√

k11/m11, p =
√
q20 + (p0/ω1)2 and tan(φ) = p0/q0ω1.
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Displacement approximation

u1(x, t) = h1(x)q1(t) =
px

ℓ
cos(ω1t− φ)

x
ℓ q0

(a) t = 0

x
ℓ p

(b) t = (φ+ 2kπ)/ω1

x
ℓ

(c) t = (φ+ π/2 + kπ)/ω1

x
ℓ p

(d) t = (φ+ (2k + 1)π)/ω1
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Fundamental frequency comparison

Approximated fundamental frequency: (obtained via one-term Galerkin)

ω1 =

√
k11
m11

=
√
3

√
E

ρl2

Exact fundamental frequency:

ωe
1 =

π

2

√
E

ρℓ2

Relative error:

relative error =
|ω1 − ωe

1|
ωe
1

= 10.3%
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One-term quadratic Galerkin approximation

Let n = 1 and

uh1(x, t) = H(x)q1(t) = h1(x)q1(t)

δuh1(x) = H(x)δq1 = h1(x)δq1

where the shape function is choosen as

h1(x) =
2x

ℓ

(
1− x

2ℓ

)
.

Notice h1 ∈ H1(]0, ℓ[) and h1(0) = 0.

ℓ

1

x

sin
(
πx
2ℓ

)
2x
ℓ

(
1− x

2ℓ

) x
ℓ
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One-term quadratic Galerkin approximation

The stiffness and mass ’matrices’ are

k11 =

∫ ℓ

0

4EA

ℓ2

(
1− x

ℓ

)2
dx =

4EA

3ℓ

m11 =

∫ ℓ

0

4ρAx2

ℓ2

(
1− x

2ℓ

)2
dx =

8ρAℓ

15

Approximated fundamental frequency: (obtained via one-term quadratic
Galerkin)

ω1 =

√
k11
m11

=

√
5

2

√
E

ρℓ2

Relative error:

relative error =
|ω1 − ωe

1|
ωe
1

= 0.7%
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n-terms Galerkin approximation

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b


Advantages and drawbacks of Galerkin method

In a nutshell: Galerkin method transforms the partial differential equations
(PDE), expressed in their weak formulation, into a system of ordinary differential
equations (ODE).

Advantages:

! Converges quickly with appropriate
shape functions.

! Provides a systematic and
structured approach for
approximating solutions.

! The same set of functions is used to
express real and virtual variables.

Drawbacks:

% Accuracy heavily dependent on
choice of basis functions.

% No physical interpretation of the
unknown variable q(t).

% The formulation of initial and
boundary conditions in the
discretized form is cumbersome.
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