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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6

Classical structural
elements

Bars and trusses Project 2 statement
7 Beams
8 Frames and grids
9 Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement
11 Reissner-Mindlin plates

12 Free and forced
vibrations

Analysis of free vibrations



Summary

Recap week 11

Modal properties of conservative systems

Example: Rayleigh’s quotient for axial vibrations of a free-free bar

Numerical modal extraction algorithms for conservative systems

Recommended readings

(N) Neto et al., Engineering Computation of Structures (chap. 2.5)

(P) Petyt, Introduction to finite element vibration analysis (chap. 11)

(G) Gmür, Dynamique des structures (§4.1 and §4.2)
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Plates theories

Thin plates

Planarity and orthogonality of the
cross-sectional planes.

Displacement:

u =
[
−z∂xu3 −z∂yu3 u3

]T

Thick plates

Planarity of the cross-sectional
planes.

Displacement:

u =
[
zϕ2 −zϕ1 u3

]T
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Strong form for Reissner-Mindlin plate bending

Let Ω = [−a, a]× [−b, b] be a rectangular plate. Find the transverse displacement
u3 ∈ C2(Ω× [0, T ]) and the rotations ϕ1, ϕ2 ∈ C2(Ω× [0, T ]) such that

∇T
mC∇ru+ f = Iü on Ω×]0, T [

boundary conditions (simply supported):

u3 = 0 in ∂Ω×]0, T [
ϕ2 = 0 in ∂Ω1×]0, T [
ϕ1 = 0 in ∂Ω2×]0, T [

initial conditions:

u(·, 0) = u0 in Ω

u̇(·, 0) = v0 in Ω

x

y

Ω

∂Ω1

∂Ω2

∂Ω1

∂Ω2
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Definitions

Reissner-Mindlin differential operators:

∇r =

[
∇b

∇s

]
=


0 0 ∂x
0 −∂y 0
0 −∂x ∂y
∂x 0 1
∂y −1 0

 , and ∇m =

[
∇b

∇s

]
=


0 0 ∂x
0 −∂y 0
0 −∂x ∂y
∂x 0 −1
∂y 1 0

 .

Constitutive matrix: C =

[
Cb 0
0 Cs

]

Cb =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 and Cs =
Ekh

2(1 + ν)

[
1 0
0 1

]
.

Mass moment of inertia matrix: I =

ρh 0 0
0 ρh3/12 0
0 0 ρh3/12


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Generalized displacements approximation

Since the rotations ϕ1 and ϕ2 are defined independently of the transversal
displacement u3, the discretization procedure uses 2D bilinear finite elements.

euh(x, t) = eH(x)eq(t) =

4∑
i=1

ehi(x)
eqi(t)

eH(x) is a 3× 12 matrix of shape functions (I is the 3× 3 identity matrix.):

eH =
[
h1I h2I h3I h4I

]
=

eh1 0 0 eh4 0 0
0 eh1 0 . . . 0 eh4 0
0 0 eh1 0 0 eh4


eqi(t) =

edi(t)
eθi1(t)
eθi2(t)

 and euh =

eu3
eϕ1
eϕ2

 are the generalized displacements of node

i and inside the element e respectively.

Recap week 11 Eigenvalue problems of vibrations and stability 7 / 40



Elementary matrices and loads vector

Elementary stiffness matrix (12× 12):

eK =

∫
eΩ

eBT
b Cb

eBb dΩ︸ ︷︷ ︸
eKb

+

∫
eΩ

eBT
s Cs

eBs dΩ︸ ︷︷ ︸
eKs

Elementary mass matrix (12× 12):

eM =

∫
eΩ

eHT I eH dΩ.

Elementary applied forces vector (12× 1):

er(t) =

∫
eΩ

eHT f dΩ.
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Addendum: modal shapes for SSSS thick plates (span/thickness = 0.1)

(a) Mode shape 1: ωh
11 = 9.672 Hz (b) Mode shape 2: ωh

12 = 23.643 Hz

(c) Mode shape 3: ωh
21 = 23.643 Hz (d) Mode shape 4: ωh

22 = 36.114 Hz
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Addendum: modal shapes for SSSS thin plates (span/thickness = 0.01)

(a) Mode shape 1: ωh
11 = 1.001 Hz (b) Mode shape 2: ωh

12 = 2.573 Hz

(c) Mode shape 3: ωh
21 = 2.573 Hz (d) Mode shape 4: ωh

22 = 4.103 Hz
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Analysis of free vibrations



Free vibrations of non-rotating conservative systems

The discretization of linear three-dimensional elastodynamics, as well as the
analysis of vibrations in beams and plates via FEM, all lead to a system of ODE:

Mq̈(t) +Kq(t) = r(t),

xi

qi
Γ

Γu

qk1

qk2

qk3

Free vibration: no external forcing is applied, i.e.
r(t) = 0.

Generalized nodal displacements:

q(t) = [q1(t), . . . ,qn(t)]T .

Boundary conditions: qk = q̂k for all k such
that xk ∈ Γu.

Initial conditions: q(0) = u0 and q̇(0) = v0
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Harmonic response

The solution for a free undamped discrete vibration problem

Mq̈(t) +Kq(t) = 0

is sinusoidal, described via an harmonic function:

q(t) = αp cos(ωt+ φ)

p: mode shape (modal vector)

ω: natural frequency

φ: phase

α: scaling factor

Solutions are defined up to a scalar factor: α.

Three scalars unknowns α, ω, φ and one vector unknown p.
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Generalized eigenvalue problem

Substituting the proposed ansatz into the equation of motion yields a generalized
eigenvalue problem:

α(K− ω2M)p cos(ωt− φ) = 0

(K− ω2M)p = 0

Solving the eigenvalue problem:

Eigenvalue: λj = ω2
j are the roots of the characteristic polynomial:

det(K− ω2M) = 0.

Eigenvector: pj are the solution of the equation

(K− λjM)pj = 0.
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General solution via modal superposition

Once the set of eigenvalue-eigenvector pairs (ω2
j ,pj) have been determined,

the linearity of the system allows the general solution to be expressed as a
superposition of modal contributions:

q(t) =

n∑
j=1

αj pj cos(ωjt+ φj)

The constants αj and φj are determined from the initial conditions: q(0) = u0

and q̇(0) = v0 leading to the system:

n∑
j=1

αjpj cos(φj) = u0

n∑
j=1

αjωjpj sin(φj) = −v0
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Fundamental properties of generalized
eigenvalue problem



Spectral property

If both K and M are symmetric and strictly positive definite, then all
eigenvalues λj of the generalized eigenvalue problem

Kpj = λjMpj

are real and positive.

Let ωj =
√
λj , then

0 < ω1 ≤ ω2 ≤ ω3 ≤ · · · ≤ ωn.
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Rigid body modes

In the semi-discrete weak form obtained via finite element discretization:

The mass matrix M is symmetric and strictly positive definite.

The stiffness matrix K is symmetric and positive semi-definite:

Kp = 0 for certain nonzero vectors p.

Consequently, the eigenvalues ω2
j of the generalized eigenvalue problem are all real

and non-negative:
0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωn.

Rigid body modes: zero eigenvalues (i.e., ωj = 0) correspond to rigid body
motions, where the system undergoes displacement without internal deformation.
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Spectral offset technique

To ensure that the stiffness matrix is strictly positive definite, a spectral shift
strategy is employed. Given σ > 0, define the modified stiffness matrix as:

Kσ = K+ σM

Consider the offset eigenvalue problem: (Kσ − λσM)p = 0

Substituting the definition of Kσ:

(K+ σM− λσM)p = (K+ (σ − λσ)M)p = 0

Comparing with (K− λM)p = 0, we identify: λσ = λ+ σ > 0.

Eigenvalues are shifted by σ, but the eigenvectors remain the same.

Empirical rule: σ ≈ 1

100

tr(K)

tr(M)
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Orthogonality of mode shapes

Let pi and pj two eigenvectors corresponding to two distinct eigenvalues λi and λj ,
then

pT
i Mpj = 0 and pT

i Kpj = 0 (i ̸= j).

Consequence: two different harmonic responses:

qi(t) = αipi cos(ωit+ φi) and qj(t) = αjpj cos(ωjt+ φj)

are M- and K-orthogonal:

qT
i Mqj = 0 and qT

i Kqj = 0.

The virtual work of inertial and elastic forces of a given mode, along the
displacement given by a different mode, is zero.
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Normalization of mode shapes

Let pi and pj two eigenvectors corresponding to the eigenvalues λi and λj , then

pT
i Mpj = µiδij and pT

i Kpj = κiδij

where

µi = modal mass of mode i,

κi = modal stiffness of mode i,

δij = Kronecker delta.

Usual normalization: (orthonormalization):

µi = 1 ⇒ λi =
κi
µi

= ω2
i .
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Orthonormalization of mode shapes

Let pi and pj two eigenvectors corresponding to the eigenvalues λi and λj , then

pT
i Mpj = δij and pT

i Kpj = ω2
i δij

where δij represent Kronecker symbol.

Consequences: if we organize the modal vectors pi in a so-called modal matrix P:

P =
[
p1 p2 . . . pn

]
then

PTMP = I and PTKP = Λ

where I is the identity matrix of order n and Λ the spectral matrix:

Λ = diag(λ1, . . . , λn) = diag(ω2
1, . . . , ω

2
n).
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Example: longitudinal vibrations of
free-free bar



Longitudinal vibrations of free-free bar

Consider a free-free bar discretized by one bilinear element.

x

ℓ

E,A, ρ

x1 x3x2

ℓ length

A cross-sectional area

E Young’s modulus

ρ material density

Objectives:

1 compute the approximate natural frequencies and corresponding mode shapes,

2 verify the presence of a rigid body mode,

3 check the orthonormality of the mode shapes.
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MATLAB example - longitudinal vibrations of free-free bar

Go to Matlab Drive
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Eigenproblem solution methods



Transformation to standard form by inversion

Generalized
eigenvalue problem

(K− λM)p = 0

Standard eigenvalue problem

(A− λI)p = 0

A = M−1K dynamic stiffness matrix

Standard eigenvalue problem

(A− θI)p = 0

A = K−1M dynamic flexibility matrix
θ = 1/λ

de
tM
̸=
0

detK
̸=
0

The matrices M−1K and K−1M are not symmetric.
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Transformation to standard form by decomposition

To reduce to a standard eigenvalue problem:

Let L be the Cholesky factor of M: M = LLT .

Since M is symmetric positive-definite, L is a real lower triangular matrix with
positive diagonal entries.

Define the change of variables v = LTp. Substituting into the original
problem and multiplying by L−1 yields:

(K− ω2LLT )p = 0 ⇒ (L−1KL−T − ω2I)v = 0.

Result: standard eigenvalue problem for symmetric and positive definite
matrix A = L−1KL−T :

(A− λI)v = 0.
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Transformation to standard form by decomposition

Cholesky decomposition can be applied to K as well, since K is symmetric
positive-definite:

K = LLT .

Result: standard eigenvalue problem for symmetric and positive definite
matrix A = L−1ML−T , eigenvalues θ = 1/λ and eigenvectors v = LTp:

(A− θI)v = 0.
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Small and large scale problems

Small-scale problems

system matrices are of modest size
n ≤ 250 or 250 ≤ n ≤ 2500 and
small bandwidth matrices.

An explicit reduction to standard
eigenvalue form is typically
employed.

Large-scale problems

n ≥ 2500.

The most effective algorithms are
subspace iteration, simulation
iteration, Lanczos’ method,
Arnoldi method and Davidson
method.
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Numerical modal extraction algorithms

1. Rayleigh’s quotient



Definition and first properties

Let w ba a vector

R(w) =
wTKw

wTMw

Properties

1 Homogeneity. Let α a non-zero constant, then

R(αw) =
(αw)TK(αw)

(αw)TM(αw)
=

α2wTKw

α2wTMw
= R(w)

2 Rayleigh quotient of an eigenvector:

R(w = pi) =
pT
i Kpi

pT
i Mpi

= ω2
i
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Stationarity of Rayleigh’s quotient

First variation of Rayleigh’s quotient:

δR(w) =
2(δwTKw)(wTMw)− 2(wTKw)(δwTMw)

(wTMw)2

=
2 δwT

wTMw

(
Kw − wTKw

wTMw
Mw

)

=
2 δwT

wTMw
(K−R(w)M)w

If w = pi then
(K−R(w)M)w = (K− λiM)pi = 0

Stationary Rayleigh’s quotient in the vicinity of an modal shape !
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Rayleigh principle

Modal expansion:

w = z1p1 + z2p2 + · · ·+ zipi + · · ·+ znpn = Pz

where

P = [p1,p2, . . . ,pi, . . . ,pn] modal matrix

z = [z1, z2, . . . , zi, . . . , zn]
T coefficient vector [0, 1]

Then

R(w = Pz) =
zTPTKPz

zTPTMPz
=

zTΛz

zT z
=

∑n
i=1 λiz

2
i∑n

i=1 z
2
i

If, without loss of generality, we impose wTMw = 1, then zT z =
∑n

i=1 z
2
i = 1 and

R(w = Pz) =

n∑
i=1

λiz
2
i
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Rayleigh principle (continued)

R(w) =

n∑
i=1

λiz
2
i = λj − λj +

n∑
i=1

λiz
2
i = λj − λj

(
n∑

i=1

z2i

)
+

n∑
i=1

λiz
2
i

= λj +

n∑
i=1

(λi − λj)z
2
i

With eigenvalues ordered as λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · ≤ λn, we have: λi − λj ≥ 0.

For j = 1:

R(w) = λ1 +

n∑
i=1

(λi − λ1)z
2
i ≥ λ1

For j = n:

R(w) = λn +

n∑
i=1

(λi − λn)z
2
i ≤ λn
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Rayleigh quotient bounding theorem

Courant-Fischer formulas:

R(w) ≥ λ1 = min
w
R(w) R(w) ≤ λn = max

w
R(w)

Bounding theorem:

λ1 ≤ R(w) ≤ λn
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Modal frequencies and shapes search via Rayleigh quotient minimization

(1) Find λ1 by minimization:
λ1 = min

w
R(w)

(2) Find p1 by solving (K− λ1M)p1 = 0.

(3) Find λ2 by minimization:

λ2 = min
w

[R(w); wTMp1 = 0]

(4) Find p2 by solving (K− λ2M)p2 = 0.

...

(j) Find λj by minimization:

λj = min
w

[R(w); wTMpi = 0, i = 1, 2, . . . , j − 1]

(j+1) Find pj by solving (K− λjM)pj = 0.
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Example: Rayleigh’s quotient for
longitudinal vibrations of a free-free bar



MATLAB example - longitudinal vibrations of free-free bar

Go to Matlab Drive
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Numerical modal extraction algorithms

2. Subspace iteration



Inverse iteration algorithm

Goal: compute the eigenvector associated with the smallest eigenvalue of the
generalized eigenproblem Kp = λMp

Inputs:

K, M: stiffness and mass matrices

p(0): initial guess vector (non-zero)

σ: spectral shift (optional)

ε: convergence tolerance

Algorithm:

1 If K is singular, use shift: set Kσ = K+ σM

2 For k = 1, 2, . . . until convergence:
• Solve Kσ p

(k) = M p(k−1)

• Normalize: p(k) ← p(k)/∥p(k)∥
• Check convergence: ∥p(k) − p(k−1)∥ < ε

Output: approximated eigenvector p(k)
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Subspace iteration method

Goal: compute the first m≪ n eigenpairs (pi, λi) of the generalized eigenproblem.

Inputs:

K, M: stiffness and mass matrices

P(0) ∈ Rn×q: initial guess (matrix with q > m linearly independent vectors)

σ: spectral shift (optional)

ε: convergence tolerance

Output:

Approximated eigenvectors: P(k) = [p
(k)
1 , . . . ,p

(k)
q ]

Approximated eigenvalues: Λ(k) = diag(λ
(k)
1 , . . . , λ

(k)
q )

Algorithm:

1 If K is singular, use shift: set Kσ = K+ σM
2 For k = 1, 2, . . . until convergence:

• Do steps 1, 2a, 2b and 2c
• Check convergence
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Subspace iteration steps

1 Step 1: Simultaneous inverse iteration on q > m vectors: fund the (n× q)

matrix P(k) such that
KP(k) = MP(k−1)

2 Step 2a: Compute projected stiffness and mass matrices:

K(k) = (P(k))TKP(k), M(k) = (P(k))TMP(k)

3 Step 2b: Solve (q × q) generalized eigenvalue problem: Find the modal
matrix and the spectral matrix such that

K(k)Z(k) = M(k)Z(k)Λ(k)

4 Step 2c: Orthogonalization:

P(k) = P(k)Z(k)
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Subspace algorithm - step 1

Suppose that the Step 1 is replace by a simultaneous inverse iteration on m
eigenvectors:

P(k) = (K−1M)P(k−1) = · · · = (K−1M)kP0

Define the subspace S(k) of rank q, spanned by the vectors {p(k)
i }.

P(k) = [p
(k)
1 , . . . ,p

(k)
q ] forms a non-orthogonal basis of S(k).

% All columns of P(k) tend toward p1

% Collinearity if no orthogonalization is applied !

Orthogonalization of vectors p
(k)
i at each iteration

Use, for instance, Gram-Schmidt method (Note: this step is computationally
expensive)
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Subspace algorithm - step 2a

Orthogonalization by minimization of the Rayleigh quotient:

R(w(k)) =
(w(k))TKw(k)

(w(k))TMw(k)

Let w(k) = P(k)z(k)

Projected Rayleigh’s quotient:

R(w(k)) =
(z(k))TK(k)z(k)

(z(k))TM(k)z(k)

where
K(k) = (P(k))TKP(k), M(k) = (P(k))TMP(k)
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Subspace algorithm - step 2b

Minimization of the Projected Rayleigh’s quotient (generalized eigenvalue
problem of dimension q × q)

Stationary condition:

δR(w(k)) = 0 ⇒ K(k)z(k) = λ(k)M(k)z(k)

Solve via transformation method (e.g., Jacobi method):

K(k)Z(k) = M(k)Z(k)Λ(k)

Ritz vectors and values:

Z(k) = [z
(k)
1 , . . . , z(k)q ], and Λ(k) = diag(λ

(k)
1 , . . . , λ(k)

q )
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Subspace algorithm - step 2c

Update the modal matrix:
P(k) = P(k)Z(k)

Orthogonality check:
(P(k))TMP(k) = I
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