Eigenvalue problems of vibrations and stability

Analysis of free and forced vibrations
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Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission
6 Bars and trusses Project 2 statement
7 Beams
8 Classical structural | Frames and grids
9 elements Kirchhoft-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement
11 Reissner-Mindlin plates
12 Free and forced Analysis of free vibrations

vibrations




Summary
m Recap week 11
m Modal properties of conservative systems
m Example: Rayleigh’s quotient for axial vibrations of a free-free bar

m Numerical modal extraction algorithms for conservative systems

Recommended readings

(N) Neto et al., Engineering Computation of Structures (chap. 2.5)
(P) Petyt, Introduction to finite element vibration analysis (chap. 11)
(G) Gmiir, Dynamique des structures (§4.1 and §4.2)
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Plates theories

Thin plates

undeformed

- S _________ h ........ ]lw ......... |~ __________ g Middle Surface

Middle Surface

m Planarity and orthogonality of the
cross-sectional planes.

m Displacement:

u=[—z8zU3 —z0,u3 U3:|T
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Thick plates

undeformed

- g _________ rL ......... ]L .......... |~ __________ S Midde Surface

deformed

o _ Middle Surface

m Planarity of the cross-sectional

planes.

m Displacement:

u=[z¢3 —z¢1 u3]T
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Strong form for Reissner-Mindlin plate bending

Let Q = [—a,a] x [—b,b] be a rectangular plate. Find the transverse displacement
ug € C?(Q x [0,7T]) and the rotations ¢1, ¢ € C%(Q x [0,T]) such that

VICV,u+f=Ti  onQx]0,T]

m boundary conditions (simply supported):

uz =0 in 0020, T - 89819
$o=0 in 001 x]0, T 2 2
¢p1 =0 in 009 x]0,T[ Q .
m initial conditions:
o
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Definitions

m Reissner-Mindlin differential operators:

0 0 0O 0 0 0,
0 -9, 0O 0 -9, O
vV, = {gb} =0 -8, 9,|, and V= [gb} =lo -a, 9,
i 0, 0 1 g 9, 0 —1
9 -1 0 gy 1 0
T .m_|C O
m Constitutive matrix: C = 7 CJ
1 v O
Eh? Ekh [1 0
C = Jo01 _ 2\ 1 S == .
b 12(1 — VQ) v 91/ and C 2(1 n 1/) I:O 1:|
00 3=
ph 0 0
m Mass moment of inertia matrix: I= | 0 ph®/12 0

0 0  ph3/12
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Generalized displacements approximation

Since the rotations ¢; and ¢o are defined independently of the transversal

displacement ug, the discretization procedure uses 2D bilinear finite elements.
4

“u(x,1) = “H(x)°q(t) = ) “hi(x)°d’(t)
i=1

m “H(x) is a 3 x 12 matrix of shape functions (I is the 3 x 3 identity matrix.):

°hy 0 0 ¢hy 0 0
‘H=[mI hol hsl i hI]=|0 ©hy 0 ... 0 ©“hy 0
0 0 °h 0 0 ©hy
edi(t) eu3
m °qi(t) = 6011: ()| and “u* = [°¢; | are the generalized displacements of node
“05(t) “¢2

1 and inside the element e respectively.
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Elementary matrices and loads vector

m Elementary stiffness matrix (12 x 12):

‘K = / ‘Bl C,*By, dQ + / ‘BI'C,°B, d
eQ) eQ)
eKb eigs

m Elementary mass matrix (12 x 12):
eM:/ ‘H" 1°H dQ.
eQ
m Elementary applied forces vector (12 x 1):
°r(t) = / “HTf d.
J9)
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Addendum: modal shapes for SSSS thick plates (span/thickness = 0.1)

(c) Mode shape 3: wh = 23.643 Hz (d) Mode shape 4: wh, = 36.114 Hz
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Addendum: modal shapes for SSSS thin plates (span/thickness = 0.01)

(c) Mode shape 3: wh = 2.573 Hz (d) Mode shape 4: wh, = 4.103 Hz
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Analysis of free vibrations




Free vibrations of non-rotating conservative systems

The discretization of linear three-dimensional elastodynamics, as well as the
analysis of vibrations in beams and plates via FEM, all lead to a system of ODE:

Mq(t) + Kq(t) = r(t),

Free vibration: no external forcing is applied, i.e.
r(t) =0.

m Generalized nodal displacements:

q(t) = [ql (t)a ooc¢ 7qn(t)]T'

m Boundary conditions: q* = ¢* for all k such
that x;, € I'y,.

m Initial conditions: q(0) = up and q(0) = vy
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Harmonic response

The solution for a free undamped discrete vibration problem
Mii(t) + Kq(t) = 0
is sinusoidal, described via an harmonic function:
q(t) = ap cos(wt + ¢)

m p: mode shape (modal vector) m p: phase

m w: natural frequency m «: scaling factor

m Solutions are defined up to a scalar factor: a.

m Three scalars unknowns «, w, ¢ and one vector unknown p.
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Generalized eigenvalue problem

Substituting the proposed ansatz into the equation of motion yields a generalized
eigenvalue problem:

(K — w?M)p cos(wt — p) =0
(K —w’M)p =0

Solving the eigenvalue problem:
m Eigenvalue: \; = wJQ- are the roots of the characteristic polynomial:
det(K — w?M) = 0.

m Eigenvector: p; are the solution of the equation

(K — A\;M)p; = 0.
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General solution via modal superposition

m Once the set of eigenvalue-eigenvector pairs (w]z, p;) have been determined,
the linearity of the system allows the general solution to be expressed as a
superposition of modal contributions:

n
q(t) = Z a; p; cos(w;t + ¢;)
j=1

m The constants a; and ¢; are determined from the initial conditions: q(0) = up
and q(0) = vo leading to the system:

n
Z a;p; cos(pj) = ug
j=1

n
Zajwjpj sin(p;) = —vo
j=1
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Fundamental properties of generalized
eigenvalue problem




Spectral property

m If both K and M are symmetric and strictly positive definite, then all
eigenvalues \; of the generalized eigenvalue problem

Kp; = A\;Mp;

are real and positive.

m Let w; = /A, then
O<w SwySwz < <wp.
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Rigid body modes

In the semi-discrete weak form obtained via finite element discretization:
m The mass matrix M is symmetric and strictly positive definite.

m The stiffness matrix K is symmetric and positive semi-definite:
Kp =0 for certain nonzero vectors p.

Consequently, the eigenvalues w]2- of the generalized eigenvalue problem are all real
and non-negative:
0w fw < <wy.

Rigid body modes: zero eigenvalues (i.e., w; = 0) correspond to rigid body
motions, where the system undergoes displacement without internal deformation.
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Spectral offset technique

To ensure that the stiffness matrix is strictly positive definite, a spectral shift
strategy is employed. Given o > 0, define the modified stiffness matrix as:

K,=K+cM

m Consider the offset eigenvalue problem: (K, — A,M)p =0
m Substituting the definition of K,:

(K4+oM - AM)p=(K+ (6 =) M)p=0

m Comparing with (K — AM)p = 0, we identify: A\, = A+ 0 > 0.
Eigenvalues are shifted by o, but the eigenvectors remain the same.

~ L tr(K)
7 100 tr(M)

Empirical rule:
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Orthogonality of mode shapes

Let p; and p; two eigenvectors corresponding to two distinct eigenvalues \; and A,
then

p;fFij =0 and p;fFKpj =0 (1 # 7).
Consequence: two different harmonic responses:
q;(t) = aipicos(wit +¢;)  and  q;(t) = a;p; cos(w;t + ¢;)
are M- and K-orthogonal:
qiTqu =0 and qiTqu = 0.

The virtual work of inertial and elastic forces of a given mode, along the
displacement given by a different mode, is zero.
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Normalization of mode shapes

Let p; and p; two eigenvectors corresponding to the eigenvalues A\; and A;, then
p; Mp; = pidi;  and  p;Kp; = kb

where
m ; = modal mass of mode i,
m x; = modal stiffness of mode i,
m J;; = Kronecker delta.

Usual normalization: (orthonormalization):

Wi = 1 = A= — = wj -
Hi
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Orthonormalization of mode shapes

Let p; and p; two eigenvectors corresponding to the eigenvalues A\; and A;, then
p; Mp, = §;; and p; Kp; = w?d;;
where ¢;; represent Kronecker symbol.
Consequences: if we organize the modal vectors p; in a so-called modal matrix P:
P:[P1}p2}---ipn]

then
PTMP =1 and PTKP = A

where I is the identity matrix of order n and A the spectral matrix:

A = diag(\, ..., \,) = diag(w?, ..., w?).

n
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Example: longitudinal vibrations of
free-free bar




Longitudinal vibrations of free-free bar

Consider a free-free bar discretized by one bilinear element.

) m / length

m A cross-sectional area

x
0o Zo T3 m F Young’s modulus

"

m p material density

Objectives:
@® compute the approximate natural frequencies and corresponding mode shapes,
® verify the presence of a rigid body mode,
® check the orthonormality of the mode shapes.
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MATLAB example - longitudinal vibrations of free-free bar

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b

Eigenproblem solution methods




Transformation to standard form by inversion

Standard eigenvalue problem

(A—A)p=0

. A = M 'K dynamic stiffness matrix
Generalized
eigenvalue problem
(K-=AXM)p=0 Standard eigenvalue problem
(A—6DHp=0
A = K~'M dynamic flexibility matrix
0=1/\

The matrices M—'K and K~'M are not symmetric.
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Transformation to standard form by decomposition

To reduce to a standard eigenvalue problem:
m Let L be the Cholesky factor of M: M = LL”.

Since M is symmetric positive-definite, L is a real lower triangular matrix with
positive diagonal entries.

m Define the change of variables v = LTp. Substituting into the original
problem and multiplying by L~ yields:

K-w’LLNp=0 = (L'KLT-uw)v=0.
m Result: standard eigenvalue problem for symmetric and positive definite

matrix A = LKL 7T:
(A - XI)v=0.

Eigenproblem solution methods Eigenvalue problems of vibrations and stability

24 / 40



Transformation to standard form by decomposition

m Cholesky decomposition can be applied to K as well, since K is symmetric

positive-definite:
K = LL”.

m Result: standard eigenvalue problem for symmetric and positive definite
matrix A = LML~ eigenvalues # = 1/\ and eigenvectors v = L7 p:

(A —6I)v =0.

Eigenproblem solution methods Eigenvalue problems of vibrations and stability
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Small and large scale problems

Small-scale problems

m system matrices are of modest size
n < 250 or 250 < n < 2500 and
small bandwidth matrices.

m An explicit reduction to standard
eigenvalue form is typically
employed.

Eigenproblem solution methods

Large-scale problems
m n > 2500.

m The most effective algorithms are
subspace iteration, simulation
iteration, Lanczos’ method,
Arnoldi method and Davidson
method.
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Numerical modal extraction algorithms

1. Rayleigh’s quotient




Definition and first properties

Let w ba a vector .
w Kw
R(w) = STMw
w' Mw
Properties
@® Homogeneity. Let a a non-zero constant, then
(aw)TK(aw) o?wl Kw

R(aw) = (ow)TM(aw) ~ aZwTMw R(w)

® Rayleigh quotient of an eigenvector:

T
b; Kp; . ‘%2

p; Mp;

Numerical modal extraction algorithms ,[5pt] 1. Rayleigh’s quotient Eigenvalue problems of vibrations and stability

27 / 40



Stationarity of Rayleigh’s quotient

First variation of Rayleigh’s quotient:

2(0wTKw)(wIMw) — 2(w/Kw)(dw! Mw)

o) = (WI'Mw)?
26wl wlKw
- wiMw (KW - wMw MW)
20wl

If w = p; then
(K-—R(wM)w = (K- \M)p; =0

Stationary Rayleigh’s quotient in the vicinity of an modal shape !
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Rayleigh principle

Modal expansion:
W =z1p1 + 22P2 + -+ ZiPi + - + znPn = Pz
where
P =[p1,p2,---,Pi,--.,Pn] modal matrix
z=21,22,...,%,..., 2]} coefficient vector [0, 1]
Then
z’PTKPz z'Az Y0 \2?

Rlw =Pz) = ZTPTMPz 27z Son 22

n

If, without loss of generality, we impose w! Mw = 1, then z”z = Do

R(w =Pz) = Z Aiz2
i=1

2 _
12 =1and
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Rayleigh principle (continued)

RO =3 M2 = A A+ 3 A2 = A — A (Z ) 5 A
i=1 i=1 =1

=1

=X+ Y (= N)7
=1

With eigenvalues ordered as Ay < Ag <--- < \; <--- < Ay, we have: \; — A; > 0.
For j =1:

R(w) =M+ (Ai—M)z >\
=1
For j =n:
RW) = An+ 3 (A — M)z < A
i=1
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Rayleigh quotient bounding theorem

m Courant-Fischer formulas:
R(w) > A1 = min R(w) R(w) < X\, = max R(w)
m Bounding theorem:
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Modal frequencies and shapes search via Rayleigh quotient minimization
(1) Find A; by minimization:
AL = min R(w)
(2) Find p; by solving (K — A\yM)p; = 0.
(3) Find A2 by minimization:
Ao = mvin[R(w); wlMp; = 0]

(4) Find p2 by solving (K — AaM)p2 = 0.

(j) Find X\; by minimization:

Aj = min[R(w); w/Mp; =0,i=1,2,...,j — 1]

(j+1) Find p; by solving (K — A\;M)p; = 0.
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Example: Rayleigh’s quotient for
longitudinal vibrations of a free-free bar




MATLAB example - longitudinal vibrations of free-free bar

» Go to Matlab Drive
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Numerical modal extraction algorithms

2. Subspace iteration




Inverse iteration algorithm

Goal: compute the eigenvector associated with the smallest eigenvalue of the
generalized eigenproblem Kp = AMp

Inputs:
m K, M: stiffness and mass matrices m o: spectral shift (optional)
m p(©: initial guess vector (non-zero) m c: convergence tolerance
Algorithm:
@ If K is singular, use shift: set K, = K+ oM
® For k =1,2,... until convergence:

® Solve K, p®) = M p(k—1)
® Normalize: p*) «+ p(k‘)/Hp(k‘)H
® Check convergence: |[p*) —pk=|| < ¢

Output: approximated eigenvector p*)
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Subspace iteration method

Goal: compute the first m < n eigenpairs (p;, A;) of the generalized eigenproblem.

Inputs:
m K, M: stiffness and mass matrices
m P(O) ¢ R"*4: initial guess (matrix with ¢ > m linearly independent vectors)
m o: spectral shift (optional)
m c: convergence tolerance

Output:

m Approximated eigenvectors: P(F) = [pgk), .. ,pgk)]

m Approximated eigenvalues: A*) = diag(/\gk), . )\((lk))
Algorithm:

@ If K is singular, use shift: set K, = K+ ocM

® For £k =1,2,... until convergence:

® Do steps 1, 2a, 2b and 2c
® Check convergence
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Subspace iteration steps

@ Step 1: Simultaneous inverse iteration on ¢ > m vectors: fund the (n x q)
matrix P(*®) such that

KP®*) = MP*+-1)
® Step 2a: Compute projected stiffness and mass matrices:
K® = PEYTKP®E, M® = P®)'MP®)

® Step 2b: Solve (g x q) generalized eigenvalue problem: Find the modal
matrix and the spectral matrix such that

KE zE&) — npk)z (k) A (k)
® Step 2c: Orthogonalization:
P — pk)zk)
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Subspace algorithm - step 1

Suppose that the Step 1 is replace by a simultaneous inverse iteration on m
eigenvectors:

P® = (K'M)P*D = ... = (K"IM)*P,

Define the subspace S®*) of rank ¢, spanned by the vectors {pgk)}.
Pk) = [pgk), . ,pgk)] forms a non-orthogonal basis of S®).

X All columns of P®) tend toward P1
X Collinearity if no orthogonalization is applied !

(k)

m Orthogonalization of vectors p,”’ at each iteration

m Use, for instance, Gram-Schmidt method (Note: this step is computationally
expensive)
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Subspace algorithm - step 2a

m Orthogonalization by minimization of the Rayleigh quotient:

NT K w )
(hyy - (W) Kw™
RO = T w®
(wk))
m Let wik) = P(R)z(F)
m Projected Rayleigh’s quotient:
Rl (z(k))TK(k)z(k)
(W) = N T 2
(z(*))

where

K® = PO)TKP®), MK = (P®)'MP®
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Subspace algorithm - step 2b

m Minimization of the Projected Rayleigh’s quotient (generalized eigenvalue
problem of dimension ¢ x q)

Stationary condition:
SR(wk) =0 = K®) Z () — \F)pg(F) 4 k)
m Solve via transformation method (e.g., Jacobi method):
K®7zE) — k)7 () A (F)
m Ritz vectors and values:

Zk) — [zgk), e zgk)}, and AP = diag()\gk), e )\gk))
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Subspace algorithm - step 2c

m Update the modal matrix:

m Orthogonality check:
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