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Problem set 9 - solutions

Problem 1

The corresponding integral formulation of the governing equation is given by∫ ℓ
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where δφ denotes the virtual rotation. Applying integration by parts to the left-hand side yields
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By imposing natural boundary conditions that eliminate the boundary term, the expression simpli-
fies to ∫ ℓ
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This yields the weak form of the problem: find φ ∈ U such that∫ ℓ
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with the function spaces defined as

U = {φ(·, t) ∈ H1(]0, ℓ[) ∀t ∈]0, T [},
V = {δφ ∈ H1(]0, ℓ[)}.

The entries kij and mij of the elemental stiffness and mass matrices K and M, respectively, are
given by:
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mij =
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where h1(x) = 1 − x/ℓ and h2(x) = x/ℓ are the standard linear shape functions defined over the
interval [0, ℓ]. For a two-node finite element of length ℓ, these integrals lead to the following matrices:
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The corresponding Rayleigh quotient is expressed as
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where w = [w1, w2]
T denotes the vector of nodal values, either of the rotation field φ or the virtual

rotation δφ. To reduce the number of variables, we normalize by setting w1 = 1, which is admissible
since the Rayleigh quotient is homogeneous. This leads to the reduced form:
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An approximation of the natural frequencies can be obtained by identifying the stationary points
of R(w2). Solving
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yields two critical points: w2 = 1 and w2 = −1, corresponding to the Rayleigh quotient values:
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The vanishing of the first computed frequency is consistent with the presence of a rigid-body rotation
mode in a free-free torsional shaft. This result confirms that the formulation correctly captures the
underlying physical behavior, including the absence of restoring torque for uniform rotation. The
second frequency provides an estimate of the first non-zero torsional natural frequency:
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to be compared with the exact value for a free-free shaft:
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The relative error between the approximate and exact values is given by

Relative error =

∣∣∣∣∣
√
12− π

π

∣∣∣∣∣ ≈ 0.102,

which corresponds to approximately 10.2%. This level of accuracy is typical for low-order finite
element approximations and validates the adopted formulation and shape functions.

Problem 2

1. Formulation of the eigenvalue problem. We consider the longitudinal vibrations of a
uniform free-free bar. The bar is discretized using a single quadratic finite element with three
equally spaced nodes. Its dynamic behavior is described by the generalized eigenvalue problem:

Kp = λMp,

where λ = ω2 are the squared natural frequencies and p are the corresponding mode shapes. The
stiffness and lumped mass matrices are defined as:

K =
EA

3ℓ

 7 −8 1
−8 16 −8
1 −8 7

 , M =
ρAℓ

6
· diag(1, 4, 1).
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% Parameters (symbolic for generality, assign numerical values as needed)

clear

syms E A rho l real

% Exact eigenvalues

Lambda_exact = [2*E / (rho * l^2); 14*E / (rho * l^2)];

% Exact eigenvectors (modes)

p1 = [-1; -1; -1];

p2 = [-1; 0; 1];

P_exact = [p1, p2];

% Stiffness matrix K

K = (E*A)/(3*l) * [ 7 -8 1;

-8 16 -8;

1 -8 7 ];

% Lumped mass matrix M

M = (rho*A*l)/6 * diag([1, 4, 1]);

2. Spectral shift for rigid-body mode. To improve convergence, we apply a spectral shift to
eliminate the rigid-body mode:

Kσ = K+ σM, with σ =
2E

ρℓ2
.

% Spectral shift

sigma = 2*E / (rho*l^2);

% Shifted stiffness matrix K_sigma

K_sigma = K + sigma * M;

The symbolic matrices are evaluated numerically for specific material and geometric properties.

% Numerical values

E_val = 210e9;

A_val = 4e-4;

rho_val = 7850;

l_val = 0.5;

% Numerical evaluation

K_num = double(subs(K_sigma, {E, A, rho, l}, {E_val, A_val, rho_val, l_val}));

M_num = double(subs(M, {E, A, rho, l}, {E_val, A_val, rho_val, l_val}));

Lambda_exact_num = double(subs(Lambda_exact, {E, A, rho, l}, {E_val, A_val,

rho_val, l_val}));

P_exact_num = double(subs(P_exact, {E, A, rho, l}, {E_val, A_val, rho_val, l_val}));
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3. Subspace iteration algorithm. The subspace iteration algorithm computes a subspace
spanned by approximate eigenvectors. We perform three iterations of the subspace iteration algo-
rithm starting from an initial guess P0. Each iteration involves:

1. Solving KσP = MP

2. Projecting the problem onto the subspace: Kproj and Mproj.

3. Solving the reduced eigenproblem: Λσ and Z,

4. Reconstructing Ritz vectors: P.

Results are stored in cells P, Lambda, etc. The vectors are sorted to maintain order, and normal-
ization is applied in the mass norm.

% Initial guess matrix

P0 = (1/sqrt(rho*A*l)) * [1 0; 0 1; 0 0];

P0_num = double(subs(P0, {E, A, rho, l}, {E_val, A_val, rho_val, l_val}));

% Definiton of matrices needed in the subspace iteration

P = cell(1, 3); % Store the approximated modal matrices

Pbar = cell(1, 3); % Store the approximated non-orthogonal matrices

Lambda_sigma = cell(1, 3); % Store the approximated offset spectral matrices

Lambda = cell(1, 3); % Store the approximated spectral matrices

Z = cell(1, 3); % Store the approximated projected modal matrices

K_proj = cell(1, 3); % Store the projected stiffness matrices

M_proj = cell(1, 3); % Store the projected mass matrices

% Start subspace iteration

for i = 1:3

if i == 1

Pbar{i} = K_num \ (M_num * P0_num);

else

Pbar{i} = K_num \ (M_num * P{i-1});

end

% Rayleigh matrices

K_proj{i} = transpose(Pbar{i}) * K_num * Pbar{i};

M_proj{i} = transpose(Pbar{i}) * M_num * Pbar{i};

% Solve reduced eigenvalue problem

[Z{i}, Lambda_sigma{i}] = eig(K_proj{i}, M_proj{i});

% Update P (Ritz vectors)

P{i} = Pbar{i} * Z{i};

% Normalize mode shapes

P{i} = P{i} / sqrt(transpose(P{i}) * M_num * P{i}); % M_num-norm normalization
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% Undo the spectral shift and consider only the real part

Lambda{i} = real(diag(Lambda_sigma{i}) - double(subs(sigma, {E, rho, l},

{E_val, rho_val, l_val})));

Lambda_sigma{i} = real(diag(Lambda_sigma{i}));

% Sort eigenvalues and apply permutation to eigenvectors

[Lambda{i}, idx] = sort(Lambda{i});

Lambda_sigma{i} = sort(Lambda_sigma{i});

P{i} = real(P{i}(:, idx));

end

4) Comparison with exact solutions. Exact eigenvalues and eigenvectors (up to scale) are
known. We compare:

• The eigenvalue approximation using relative error,

• The eigenvector approximation using the error in the M-norm.

• The Ritz values converge to the exact ones and the approximate modes align with the ana-
lytical solutions.

%Initialize error arrays

rel_error_lambda = cell(1,3);

modal_error = cell(1,2);

% Loop over each iteration

for j = 1:3

% --- Relative error in eigenvalues ---

rel_error_lambda{j} = abs(Lambda_sigma{j} - Lambda_exact_num)

./ abs(Lambda_exact_num);

% Loop over modes

for m = 1:2

% --- Modal error in M-norm ---

p_diff = P{j}(:,m) - P_exact_num(:,m);

modal_error{j}(m) = sqrt(p_diff’ * M_num * p_diff);

end

end

for j = 1:3

fprintf(’\n======================================================\n’);

fprintf(’\n--- Iteration %d ---\n’, j);

fprintf(’Relative Error in Eigenvalues:\n’);

disp(rel_error_lambda{j});

fprintf(’Modal Error (M-norm):\n’);

disp(modal_error{j});

end
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The first eigenmode corresponds to a rigid-body motion, which has a zero natural frequency. The
associated mode shape is a constant vector (e.g., [1; 1; 1] or [−1;−1;−1]), and it spans a one-
dimensional eigenspace. Since eigenvectors are only defined up to a multiplicative constant—including
sign—the subspace iteration algorithm may converge to either the positive or the negative of the
exact mode shape.
When computing the modal error using the M-norm (i.e., comparing the approximated and exact
vectors directly), this ambiguity can result in misleading error values. Even though the vectors
represent the same physical mode, their difference can have a nonzero norm if the signs differ.
Specifically, the error between a normalized vector and its negative is twice the norm of the vector.
As a result, the modal error for the zero-frequency mode may appear to oscillate across iterations or
fail to decrease monotonically, even though the convergence is mathematically correct. This behav-
ior is not a flaw of the numerical method but a consequence of normalization and sign ambiguity.
To mitigate this, one can minimize the error with respect to sign or explicitly align the direction of
the approximated eigenvector with the reference one.
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