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Problem set 9

Problem 1

Use the Rayleigh minimization principle to determine the natural frequencies of a free-free shaft in
torsion, assuming the structure is discretized using a single linear finite element. The strong form
is given by
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where the shaft parameters are:

• length ℓ,

• polar moment of inertia Ip,

• shear modulus G,

• mass density ρ.

The unknown φ represent the torsional vibration: angular displacement (twist angle) at position
x ∈ [0, ℓ] and time t ∈ [0, T ]. At x = 0 and x = ℓ there are no external applied moments, this
translates into natural boundary conditions:
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φ(ℓ, t) = 0 ∀t ∈]0, T [.

Problem 2

Develop a MATLAB script to compute the first two natural frequencies and the corresponding mode
shapes associated with the longitudinal vibrations of a uniform free-free bar, using the subspace
iteration method. The structure is characterized by the following physical parameters:

• length: ℓ = 0.5 m,

• cross-sectional area: A = 410−4 m2,

• Young’s modulus: E = 210 GPa,

• mass density: ρ = 7850 kg/m3.

The bar is modeled using a single quadratic finite element with three equally spaced nodes. The
structure stiffness and lumped mass1 matrices are given by:

K =
EA

3ℓ

 7 −8 1
−8 16 −8
1 −8 7

 and M =
ρAℓ

6
diag(1, 4, 1).

1) Formulate the generalized eigenvalue problem for the system, and define the stiffness and mass
matrices explicitly.

1The use of a lumped mass matrix is often justified by its ability to simplify computations, improve numerical
stability in explicit time integration schemes, and avoid non-physical oscillations associated with consistent mass
formulations in low-order elements.
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2) Since the system exhibits a rigid-body mode with zero frequency, a spectral shift is applied
to ensure convergence. The modified eigenvalue problem is:

(K+ σM)p = (λ+ σ)Mp

where the shift parameter is chosen (to simplify the computation) as:

σ = 2
E

ρℓ2
.

Define the shifted stiffness matrix as Kσ = K + σM, yielding the equivalent eigenvalue
problem:

Kσp = λσMp, with λσ = λ+ σ.

3) Implement three iterations of the subspace iteration algorithm to approximate the two low-
est eigenpairs (λi,pi). For simplicity use the function eig to solve the reduced Rayleigh’s
minimization problem. Use the following initial guess:

P(0) =
1√
ρAℓ

1 0
0 1
0 0

 .

4) Compare the numerical approximation with the exact (shifted) eigenvalues and corresponding
eigenvectors (defined up to a multiplicative constant):

λσ,1 = 2
E

ρℓ2
and λσ,2 = 14

E

ρℓ2
,

p1 =

−1
−1
−1

 and p2 =
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0
1


and evaluate the accuracy by computing:

• The relative error between approximated and exact eigenvalues.

• The error in the M-norm between approximated and exact eigenvectors.
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