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Dynamic analysis of Reissner-Mindlin plates

Classical structural elements

ME473 Dynamic finite element analysis of structures

Stefano Burzio
deformed plate

2025

initial plate

LI Ninitial mid-surface



Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodynamics FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission
6 Bars and trusses Project 2 statement
7 Classical structural | Beams
8 elements Frames and grids
9 Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement
11 Reissner-Mindlin plates




Summary
m Recap week 10
m Reissner-Mindlin plate theory
m Thick plate bending elements
m Example: modal analysis of a simply supported thick plate

Recommended readings

(N) Neto et al., Engineering Computation of Structures (chap. 6)
(P) Petyt, Introduction to finite element vibration analysis (chap. 6)
(O) Ochsner, PDE for classical structural members (chap. 7)
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Finite element approximation of Kirchhoff-Love plate

m Strong form
h3
12
m Weak form equation

VECVus + phiiz = f3 on 0x]0, T

3
12 Jq Q Q

m Semi-discrete weak form
Mii(t) + Ka(t) = r(t)

m Adini-Melosh-Clough element (AMC): 12 dofs quadrangular, not
conforming, thin plate.

m Crouzeix—Raviart (CR): 16 dofs quadrangular, conforming, thin plate.
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Comparison: AMC vs CR plate bending element

CR element (Conforming)

m 4 degrees of freedom per node: ug, 01, 02, and 612.

m Displacement u3 and rotations 61, #2 are continuous across element boundaries.

m Fully conforming to the C! continuity required by Kirchhoff plate theory.

m Higher computational cost and complexity.

AMC element (Nonconforming)

3 degrees of freedom per node: ug, 01, 5.

Nonconforming element: does not fully satisfy C'' continuity.

Simpler and computationally cheaper; suitable for practical applications.
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Selection of the displacement function

Displacement approximation for AMC element
ug(z1,x2,t) = a1 + asr1 + azxe + asx] + asr1T2 + asry+
+ (/7.,1';]; + u»rf.z'z + (14,.1'1,1'3 + (/1().1'13 +
Displacement approximation for CR element

h 2 2
“ug(z1,T2,t) = a1 + azx1 + azr2 + a4y + a5T1T2 + AT+
3 2 2 3
+ ayxy + agxrix2 + agri1Ts + alpry+

+
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Approximate displacement and shape functions for the AMC element

The approximate displacement in local coordinate is defined as:

4

“up(é.t) =y “hi(€)°q’(t) = “H(£) q(t)

3=il

edi(t) e h(gz )
m 3 dofs per node: °q‘(t) = e@i(t) = | O, ul(¢, )/b
“O5(1) — 0, “uf(&',1)/a

m The shape function matrix is “H = [“hl “hy  %hgs “h4] where

(14 €l6)(1 + €56) (2 + €161 + €460 — €8 — £3)/8] "
“hi(§) = b(L +&161)(85 + €2)(63 — 1)/8
—a(&] + &) (6 — (1 +&562)/8
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Approximate displacement and shape functions for the CR element

The approximate displacement in local coordinate is defined as:

4
“wf(§,1) =) “hi(€)°q’(t) = “H(£)°q(t)
i=1
edz(t) eu (&-z )
. e | B0 | _ | decubie )b
4 dofs per node: °q'(t) = e%(t) = _861 W (€ 1)/
“015(t) 9,¢, uk (&',1)/ (ab)
m The shape function matrix is “H = [ahl “hy  %hs “h4] where
bf;((fg))fi((ag)) !
ay, _ i(S1)9i(G2
hi(€) = —agi(§1) fi(&2)
abg;i(£1)gi(&2)

Hermite functions: f;(&) = (—£%¢3 +3¢€ +2)/4, g;(&) = (3 +£4¢2 — € — €Y /4.
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Reissner-Mindlin plate theory



Limitations of classical plate theory

The validity of the classical (Kirchhoff-Love) plate theory depends on a number of
factors:

@ the curvatures are small,

® the in-plane plate dimensions are large compared to the thickness,

® membrane strains are neglected.

Thin a<0.1h Thick a~h 3d
plate b<0.1h plate b= h solid
@ -

2
2%
. R : .
' 2 B, .
2
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Shear deformable plates

m Thick plate are structures in which shear deformation and rotary inertia effects
are important: transverse shear becomes an integral part of the formulation.

m The material is isotropic, homogenous and linear-elastic according to Hooke’s
law for a plane stress state where o33 = 0,

m Plates carries only transversal loads and in-plane moments that lead to
bending deformation of the plate.

Yy

o / q:(z,y) m(z,y) /'l
M «l
C ClGE
77777

T

2h
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Reissner-Mindlin assumption

Rectilinearity of the cross-sectional normals: Timoshenko’s hypothesis is
valid, i.e. a cross-sectional plane stays planar and but not necessarily perpendicular
to the middle surface in the deformed state.

undeformed

_S B _rL I # B |n - g Middle Surface

deformed

o \- Middle Surface

Shear strains €13 and €23, due to the distributed shear forces g, and g, are
constant through the thickness of the plate.

(Credit: (N))
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Higher-order deformation theories

(@)
Undeformed

u m Reissner-Mindlin theory is a First-Order Shear

W Deformation Theory.
®) m More advanced model: Third-Order Plate
Theory.
® Displacements varying as cubic functions through the
© thickness.

® In-plane strains that are cubic in z.

@ ® Shear strains that are quadratic in z.

m In TSDT normal cross-sectional planes to the
mid-surface can rotate and deform.
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Kinematics assumptions

Reissner-Mindlin plate theory

Independent variables:
m Transverse displacement us
m Rotation w.r.t. Oz axis ¢

m Rotation w.r.t. Oy axis ¢o

¢1 = sin(qSl) = — = Deformation is exaggerated in the
Z  figures for better illustration.
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Strain-displacement relations

Using engineering definitions of strain: e;; = d;u; and 7;; = O;u; + Oju; we obtain:

m in-plane or bending strains:

€11 0 0 83; us
E9| =% 0 *81/ 0 ¢1 9
Y12 0 _835 8y ¢2

—— —_————
€b Vb u

m transverse shear strains:

73| |0 0 1 Zg
o3| |0y -1 0 !
—— ~—— ¢2

€s Vs S——

u

Note that £33 = 0 due to the inextensibility of transverse fibers assumption.
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Reduction to Kirchhoff-Love plate theory

The transverse shear are exactly equal
to the additional rotations of the
normal to the reference surface after
deformation:

8U3
M= - + @2
_ Ous
Y23 = By

If the transverse shear strains are negligible, v13 = 0 and 723 = 0, then, as in the
Kirchhoff-Love theory:

dus

—¢2  and By b1

Ous _
or
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Constitutive equation for isotropic material

The constitutive equation for isotropic material is @ = C& where

m bending stresses:

o 1 v O €
11 E 11
0922 | = T 32 v 1 0 €221,
1-v 1—v
012 0 0 5] [ne2
—— ~ N——
oy Cy €p

m transverse shear stresses:

013 10 713}
=G .
[023] [0 1] [723
—— N N
O Cs €s
Recall that, for isotropic materials, the shear modulus G is related to Young’s
modulus £ and Poisson’s ratio v by: G = ﬁ
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External forces and moments

Consider a plate cell of dimensions dxy X drs X h that is submitted to external
forces, here denoted by f3, and area distributed moments m; and msa (not shown).

Normal and shear stresses distributions through the

/L thickness of the plate element:
o m linear distributed normal stresses o117 and o099,

m linear distributed shear stresses o12 and o091,

oy +doy,

T vdons m parabolic distributed transverse shear stresses 13
ot and o93.

o, +do,*

o, +do,

o), +do,
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Normal and shear stresses distributions

m Transverse shear strains €13 and €93 are constant through the plate thickness
(independent of z).

m Transverse shear stresses o3 and 093 also have a constant distribution
through the plate thickness.

m Transverse shear correction coefficient k: accounts for the discrepancy in
transverse shear stress between plate theory and 3D elasticity. It ensures the
strain energy from shear stresses in plate theory matches that from 3D

elasticity:
013 1 0] |73
= kG .
[023} [0 J {723]
S~
Os Cs €s

For homogeneous isotropic rectangular plates : k£ =5/6.
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Moments and shear forces

Moments and shear forces acting along the edge of the
plate:

m bending moments My, and Mo,

m twisting moment M,

m shear forces Ni3 and Nogs.

My g h B3
M = MQQ = / T3 Oy dajg - Cbeu/ .Z'g dl‘3 - be Vbu
_h _h 12
Mo 2 2 e and
Cy
N = [Nl?’] :/2 oy dry = hC, Vsu
Nos| — J-4 ~~
Cs

Reissner-Mindlin plate theory
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Moments and shear forces

In matrix form:

Here
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Dynamic equilibrium equation

m Equilibrium condition for the vertical forces:

ON13  ONog .
= ph
. + Fr + f3 = phiig
m Equilibrium of moments:
OMy1  OMis h3 ..
— Nya = p—
R I 0y + mo 13 P12¢2
OMsy  OMis P o
_ — Noz = —po
8932 o axl 1 = 012(151
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Dynamic equilibrium equation

In matrix form:

I3 ph 0 0

0 0 0 3 9] g
0 -8, -0, 0 1 [N]+ mi| = |0 ph3/12 0 |a
9, 0 9§, -1 0 mso 0 0  ph3/12
N——
vr f I

m I mass moment of inertia matrix:

® ph translational inertia (in the transverse xs-direction),
® ph?/12: rotational inertia (about the in-plane z1- and z;-axes).

m f applied forces and moments.
m Linear elastic stress-strain relation and the constitutive relation:
[M

N} =CV,u
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Strong form for Reissner-Mindlin plate bending

Let Q = [—a,a] x [—b,b] be a rectangular plate. Find the transverse displacement
ug € C?(Q x [0,7T]) and the rotations ¢1, ¢ € C%(Q x [0,T]) such that

VICV,u+f=Tia  onQx]0,T]

m boundary conditions (simply supported):

uz =0 in 002x]0, T o
¢s =0 in 991 x]0, T 2\
¢1 =0 in 8QQX]O,T[

m initial conditions:

u(-,0) =ug in Q

u(-,0) =vy in
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Strong form for Reissner-Mindlin plate bending

Expanding the strong form, the three dynamic equations results in the following
system of partial differential equations:

D; (93, + 05, —D,, D9, u3
D;0, Dy (15202, + 02,) — D, — 32 Dyo2, o | +
—Ds0, _#Dbagy Dy (a%z + I_Tya;y) — Ds P2
/3 phiis
+ | ma | = | ph?/12¢1
m2 Ph3/12 ®2

where D = khG, and Dy, = #’fﬂ)
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Weak form for Reissner-Mindlin plate bending

The weak form consists of finding the transverse displacement ug € U and the
rotations ¢1, ¢2 € U such that the following equation is satisfied for every du € V:

/ (V,.6u)T CV,udQ + / dul T dQ = / oul'f dQ
Q Q Q

U={u(-,t) € H(Q) | uz(-,t) = 01in 0Q, ¢1(-,t) =0 in 00, ¢2(-,t) =0 in I }
V= {due H(Q) | Sus =0in 99, é¢1 =0 in 00, 5o =0 in I }
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Thick plate bending elements




Overview of thick plate bending elements

Numerous finite elements for plate bending have been developed: more than 88
distinct types can be identified.

Quadrangular vs triangular

Thick

plate Conforming vs not conforming (C° vs C1)
elements

Higher order approximation

m Hughes-Taylor-Kanoknukulcha element (HTK): 12 dofs quadrangular,
not conforming, thick plate.
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Generalized displacements approximation

Since the rotations ¢; and ¢9 are defined independently of the transversal
displacement ug, the discretization procedure uses 2D bilinear finite elements.

4
6“3(:1:7 Y, t) = Z 6hi(x7 y)edi (t)
=il
4 .
€¢1 ('Tv Y, t) = Z ehi(xa y)eei (t)
i=1
4 .
e¢2($7 Y, t) = Z ehi(mv y)egé(t)

N
Il
N
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Generalized displacements approximation

4
“u(x,1) = “H(x)°q(t) = Y “hi(x)°q’ (1)
i=1

m “H(x) is a 3 x 12 matrix of shape functions:

hy 0 0 hy 0 0
‘H=[hI hI hglihgd]=]|0 °y 0 ... 0 C°hy O
0 0 °m 0 0 °hs
I is the 3 x 3 identity matrix.
edi(t)
m °qi(t) = |°0i(t)| is the vector of generalized displacements of node i.
(1)
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Elementary stiffness matrix

‘K = / ‘BTC’BdQ
eQ
m Elementary deformation matrix (5 x 12):

eB:vreH:[vrehl:”.:vreh4]:[Vbhl...vbh4]:[va}

Vi€hi ... Vihy VH

m Bending strain-displacement matrix: *B; = V;“H.
m Shear strain-displacement matrix: B, = V H.
m Constitutive matrix (5 x 5):
_ C, 0
C = — -
< 2
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Elementary deformation matrix

m Bending strain-displacement matrix:

0 0  &fhi...i0 0 8, h
‘By=VyH= |0 —8,h1 0 '...i0 —0,hy 0
0 —8,°h1 9yhy ... 10 —0,°hy 0, hy

m Shear strain-displacement matrix:

s ooerr | Ofh1 0 Chyi...i0:°hy 0 Ohy
BS o VS lil= 8yeh1 —€h; 0 l l 8y€h4 —€hy 0
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Elementary stiffness matrix

The elementary stiffness matrix is split in two:
T
‘B C, 0 By
‘K = b — Q
ﬁQ [ eBS :| 0 CS:| l: eBS :| !

= / ‘Bl C,°By, d + / ‘BI'C,°B, dQ

EKb eKS
m bending stiffness matrix:
‘K, = / ‘Bl C,°B, d,
eQ

m shear stiffness matrix:

K, = / ‘BT'C,*B, dQ.
e
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Selective integration to avoid shear locking

« »
{ -/ \_ i
M\ o
[ S S
Expected shape
’ ~
—F A — A=

M\ N M

Shear locking

m Reissner-Mindlin theory has demonstrated to suffer from shear locking: as the
thickness of the plate is reduced, the element becomes over-stiff and the
computed displacements are much smaller than the analytical solution.

m The simplest remedy to this numerical behavior is to perform reduced
integration of the shear component (selective integration).

m For instance, if bilinear elements are used, then: 2 x 2 Gauss integration
(exact) for °Kj and single point quadrature (reduced) for K.
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Elementary matrix and loads vector

m Elementary mass matrix (12 x 12):
61\/1:/ ‘H” 1°H dQ.
Q)
m Elementary applied forces vector (12 x 1):

°r(t) = / “HTf dQ.
eQ
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Post processing: stress recovery

Once the nodal generalized displacements ¢q’ is computed out stresses can be
recovered from constitutive equations as:

a'gl = Cbé‘g = szVbeHeq = ZCbeBbeq,

a'g = Css;‘ =2C,V,*Hq = 2C,°B;“q.

m Since the bending stresses are linear through the plate thickness in the
following they will be computed at the top layer of the plate z = h/2.

m On the contrary, shear stresses are constant through the thickness, thus they
are independent on z.
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Example: modal analysis of a simply
supported thick plate




Example: Simply supported square isotropic plate

Discretization with 4 bilinear quadrilateral 2d elements (4 nodes each).

Y m 2a = 1 length
T a a m 2a = 1 height
m h = 0.1 thickness
m £ = 10920 Young’s modulus
m v = (.3 Poisson’s ratio
m p = 1 material density
m k& = 5/6 shear correction coefficient

The values for p and F is only a practical
convenience to obtain non-dimensional flexural
rigidity of the plate:

Eh3

X1 X4 X7 D = —
12(1 — v2)
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Objectives

©® Approximate the first natural frequency of a (1 x 1 x 0.1) plate, which is
simply supported on all four edges. Use 4 bilinear quadrilateral 2d elements.

® Compare the results with the analytical solution (as a function of h):

, [ 70
OJilaCt(h) = 2077'2h m rad/s.

Notice that this formula is only valid for the previous choice of the plate
geometry and materials.
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Modal patterns

w(2) = 145.1034.

) %

0 02 04 06 08 1

=145.1034 w{4) = 222.6577

1 0 02 04 06 08 1

Figure 1: Modes of vibration for a SSSS plate with h/a = 0.1, using 20 x 20 bilinear
elements.

(Credit: Ferreira, Fantuzzi - MATLAB Codes for Finite Element Analysis)
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Step 1: Initialization and mesh generation

@ Initialize variables
¢ Plate dimensions: length X, length Y, and h.
® Material properties: E, nu, rho, and kappa.
® Bending and shear stiffness matrices: C_bending and C_shear.
® Inertia matrix: Inertia matrix.

® Mesh generation
® Define number of elements in x and y directions: number_elements_X and
number_elements_Y.
® Compute total number of elements number_elements, nodes number nodes, and
DOF's number_dofs.
® Generate structured rectangular mesh and build connectivity matrix:
createRectangularMesh().
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Step 2: Shape functions and element matrices

® Bilinear shape functions
e Define h, (&1, &): ha(1),..., ha(4).

® Transformations
® For each finite element e compute:

> element transformation: z(§),y(§): transf{e}.
»> jacobian matrix jacobian mat{e}, its inverse jacobian inv{e} and determinant
jacobian_det{e}.

® Element matrices
® For each finite element e compute:

» bending and shear strain-displacement matrices: Be_bending{e} and Be_shear{e}.
» compute stiffness matrix: K_elem{e} = K_elem bending + K_elem_shear.
» Compute mass matrix M_elem{e}.
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Step 3: Assembly of global matrices and boundary conditions

® Assembly
® [Initialize global matrices: stiffness and mass: stiffness and mass.
® For each element:
> Map local to global DOFs.
» Add contributions of local matrices to global matrices.

@ Boundary conditions
® [dentify:
» Corner nodes = All DOFs fixed.
» Edge nodes = 2 DOFs fixed (displacement + one rotation).
® Build list of constrained DOF's: constrained_local_dofs.
® Derive list of free DOFs: free_dofs.

® Solve the eigenvalue problem
® Reduce system matrices: stiffness_freeDofs and mass_freeDofs.

® Solve generalized eigenproblem and compute the fundamental frequency:
Wi = y/min(A).
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MATLAB example - simply supported plate

» Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b
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