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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6
Classical structural
elements

Bars and trusses Project 2 statement
7 Beams
8 Frames and grids
9 Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement
11 Reissner-Mindlin plates



Summary

Recap week 10

Reissner-Mindlin plate theory

Thick plate bending elements

Example: modal analysis of a simply supported thick plate

Recommended readings

(N) Neto et al., Engineering Computation of Structures (chap. 6)

(P) Petyt, Introduction to finite element vibration analysis (chap. 6)

(O) Ochsner, PDE for classical structural members (chap. 7)
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Finite element approximation of Kirchhoff-Love plate

Strong form
h3

12
∇T

kC∇ku3 + ρhü3 = f3 on Ω×]0, T [

Weak form equation

h3

12

∫
Ω
∇ku3C∇kδu3 dΩ+

∫
Ω
ρh ü3 δu3 dΩ =

∫
Ω
f3 δu3 dΩ

Semi-discrete weak form

Mq̈(t) +Kq(t) = r(t)

Adini-Melosh-Clough element (AMC): 12 dofs quadrangular, not
conforming, thin plate.

Crouzeix–Raviart (CR): 16 dofs quadrangular, conforming, thin plate.
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Comparison: AMC vs CR plate bending element

CR element (Conforming)

4 degrees of freedom per node: u3, θ1, θ2, and θ12.

Displacement u3 and rotations θ1, θ2 are continuous across element boundaries.

Fully conforming to the C1 continuity required by Kirchhoff plate theory.

Higher computational cost and complexity.

AMC element (Nonconforming)

3 degrees of freedom per node: u3, θ1, θ2.

Only displacement u3 is continuous across elements; rotations may have jumps.

Nonconforming element: does not fully satisfy C1 continuity.

Simpler and computationally cheaper; suitable for practical applications.

Recap week 10 Dynamic analysis of Reissner-Mindlin plates 5 / 41



Selection of the displacement function

Displacement approximation for AMC element

euh3(x1, x2, t) = a1 + a2x1 + a3x2 + a4x
2
1 + a5x1x2 + a6x

2
2+

+ a7x
3
1 + a8x

2
1x2 + a9x1x

2
2 + a10x

3
2 + a11x

3
1x2 + a12x1x

3
2

Displacement approximation for CR element

euh3(x1, x2, t) = a1 + a2x1 + a3x2 + a4x
2
1 + a5x1x2 + a6x

2
2+

+ a7x
3
1 + a8x

2
1x2 + a9x1x

2
2 + a10x

3
2+

+ a11x
3
1x2 + a12x1x

3
2 + a13x

2y2 + a14x
3y2 + a15x

2y3 + a16x
3y3
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Approximate displacement and shape functions for the AMC element

The approximate displacement in local coordinate is defined as:

euh
3 (ξ, t) =

4∑
i=1

ahi(ξ)
eqi(t) = aH(ξ)eq(t)

3 dofs per node: eqi(t) =


edi(t)
eθi1(t)
eθi2(t)

 =


euh3(ξ

i, t)

∂ξ2
euh3(ξ

i, t)/b

−∂ξ1
euh3(ξ

i, t)/a


The shape function matrix is aH =

[
ah1

ah2
ah3

ah4

]
where

ahi(ξ) =

(1 + ξi1ξ1)(1 + ξi2ξ2)(2 + ξi1ξ1 + ξi2ξ2 − ξ21 − ξ22)/8
b(1 + ξi1ξ1)(ξ

i
2 + ξ2)(ξ

2
2 − 1)/8

−a(ξi1 + ξ1)(ξ
2
1 − 1)(1 + ξi2ξ2)/8

T
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Approximate displacement and shape functions for the CR element

The approximate displacement in local coordinate is defined as:

euh
3 (ξ, t) =

4∑
i=1

ahi(ξ)
eqi(t) = aH(ξ)eq(t)

4 dofs per node: eqi(t) =


edi(t)
eθi1(t)
eθi2(t)
eθi12(t)

 =


euh

3 (ξ
i, t)

∂ξ2
euh

3 (ξ
i, t)/b

−∂ξ1
euh

3 (ξ
i, t)/a

∂2
ξ1ξ2

euh
3 (ξ

i, t)/(ab)


The shape function matrix is aH =

[
ah1

ah2
ah3

ah4

]
where

ahi(ξ) =


fi(ξ1)fi(ξ2)
bfi(ξ1)gi(ξ2)
−agi(ξ1)fi(ξ2)
abgi(ξ1)gi(ξ2)


T

Hermite functions: fi(ξ) = (−ξiξ3 +3ξiξ+2)/4, gi(ξ) = (ξ3 + ξiξ2 − ξ− ξi)/4.
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Reissner-Mindlin plate theory



Limitations of classical plate theory

The validity of the classical (Kirchhoff-Love) plate theory depends on a number of
factors:

1 the curvatures are small,

2 the in-plane plate dimensions are large compared to the thickness,

3 membrane strains are neglected.

Thin
plate

a ≲ 0.1h
b ≲ 0.1h

Thick
plate

a ≈ h
b ≈ h

3d
solid
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Shear deformable plates

Thick plate are structures in which shear deformation and rotary inertia effects
are important: transverse shear becomes an integral part of the formulation.
The material is isotropic, homogenous and linear-elastic according to Hooke’s
law for a plane stress state where σ33 = 0,
Plates carries only transversal loads and in-plane moments that lead to
bending deformation of the plate.
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Reissner-Mindlin assumption

Rectilinearity of the cross-sectional normals: Timoshenko’s hypothesis is
valid, i.e. a cross-sectional plane stays planar and but not necessarily perpendicular
to the middle surface in the deformed state.

Shear strains ε13 and ε23, due to the distributed shear forces qx and qy, are
constant through the thickness of the plate.

(Credit: (N))
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Higher-order deformation theories

Reissner-Mindlin theory is a First-Order Shear
Deformation Theory.

More advanced model: Third-Order Plate
Theory.

• Displacements varying as cubic functions through the
thickness.

• In-plane strains that are cubic in z.
• Shear strains that are quadratic in z.

In TSDT normal cross-sectional planes to the
mid-surface can rotate and deform.
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Kinematics assumptions

ϕ2 ≈ sin(ϕ2) =
u1
z

=⇒ u1 = zϕ2

ϕ1 ≈ sin(ϕ1) = −u2
z

=⇒ u2 = −zϕ1

Independent variables:

Transverse displacement u3

Rotation w.r.t. Ox axis ϕ1

Rotation w.r.t. Oy axis ϕ2

Deformation is exaggerated in the
figures for better illustration.
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Strain-displacement relations

Using engineering definitions of strain: εii = ∂iui and γij = ∂iuj + ∂jui we obtain:

in-plane or bending strains:ε11ε22
γ12


︸ ︷︷ ︸

εb

= z

0 0 ∂x
0 −∂y 0
0 −∂x ∂y


︸ ︷︷ ︸

∇b

u3ϕ1

ϕ2


︸ ︷︷ ︸

u

,

transverse shear strains:[
γ13
γ23

]
︸ ︷︷ ︸

εs

=

[
∂x 0 1
∂y −1 0

]
︸ ︷︷ ︸

∇s

u3ϕ1

ϕ2


︸ ︷︷ ︸

u

.

Note that ε33 = 0 due to the inextensibility of transverse fibers assumption.
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Reduction to Kirchhoff-Love plate theory

The transverse shear are exactly equal
to the additional rotations of the
normal to the reference surface after
deformation:

γ13 =
∂u3
∂x

+ ϕ2

γ23 =
∂u3
∂y

− ϕ1

If the transverse shear strains are negligible, γ13 = 0 and γ23 = 0, then, as in the
Kirchhoff-Love theory:

∂u3
∂x

= −ϕ2 and
∂u3
∂y

= ϕ1
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Constitutive equation for isotropic material

The constitutive equation for isotropic material is σ = Cε where

bending stresses: σ11σ22
σ12


︸ ︷︷ ︸

σb

=
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2


︸ ︷︷ ︸

Cb

ε11ε22
γ12


︸ ︷︷ ︸

εb

,

transverse shear stresses:[
σ13
σ23

]
︸ ︷︷ ︸

σs

= G

[
1 0
0 1

]
︸ ︷︷ ︸

Cs

[
γ13
γ23

]
︸ ︷︷ ︸

εs

.

Recall that, for isotropic materials, the shear modulus G is related to Young’s
modulus E and Poisson’s ratio ν by: G = E

2(1+ν) .
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External forces and moments

Consider a plate cell of dimensions dx1 × dx2 × h that is submitted to external
forces, here denoted by f3, and area distributed moments m1 and m2 (not shown).

Normal and shear stresses distributions through the
thickness of the plate element:

linear distributed normal stresses σ11 and σ22,

linear distributed shear stresses σ12 and σ21,

parabolic distributed transverse shear stresses σ13
and σ23.
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Normal and shear stresses distributions

Transverse shear strains ε13 and ε23 are constant through the plate thickness
(independent of z).

Transverse shear stresses σ13 and σ23 also have a constant distribution
through the plate thickness.

Transverse shear correction coefficient k: accounts for the discrepancy in
transverse shear stress between plate theory and 3D elasticity. It ensures the
strain energy from shear stresses in plate theory matches that from 3D
elasticity: [

σ13
σ23

]
︸ ︷︷ ︸

σs

= kG

[
1 0
0 1

]
︸ ︷︷ ︸

Cs

[
γ13
γ23

]
︸ ︷︷ ︸

εs

.

For homogeneous isotropic rectangular plates : k = 5/6.
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Moments and shear forces

Moments and shear forces acting along the edge of the
plate:

bending moments M11 and M22,

twisting moment M12,

shear forces N13 and N23.

M =

M11

M22

M12

 =

∫ h
2

−h
2

x3 σb dx3 = Cb∇bu

∫ h
2

−h
2

x23 dx3 =
h3

12
Cb︸ ︷︷ ︸

Cb

∇bu

N =

[
N13

N23

]
=

∫ h
2

−h
2

σs dx3 = hCs︸︷︷︸
Cs

∇su
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Moments and shear forces

In matrix form: [
M
N

]
=

[
Cb 0

0 Cs

]
︸ ︷︷ ︸

C

[
∇b

∇s

]
︸ ︷︷ ︸
∇r

u,

Here

∇r =

[
∇b

∇s

]
=


0 0 ∂x
0 −∂y 0
0 −∂x ∂y
∂x 0 1
∂y −1 0

 ,

Cb =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 and Cs =
Ekh

2(1 + ν)

[
1 0
0 1

]
.
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Dynamic equilibrium equation

Equilibrium condition for the vertical forces:

∂N13

∂x1
+

∂N23

∂x2
+ f3 = ρhü3

Equilibrium of moments:

∂M11

∂x1
+

∂M12

∂x2
+m2 −N13 = ρ

h3

12
ϕ̈2

∂M22

∂x2
+

∂M12

∂x1
−m1 −N23 = −ρ

h3

12
ϕ̈1
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Dynamic equilibrium equation

In matrix form: 0 0 0 ∂x ∂y
0 −∂y −∂x 0 1
∂x 0 ∂y −1 0


︸ ︷︷ ︸

∇T
m

[
M
N

]
+

 f3
m1

m2


︸ ︷︷ ︸

f

=

ρh 0 0
0 ρh3/12 0
0 0 ρh3/12


︸ ︷︷ ︸

I

ü

I mass moment of inertia matrix:
• ρh translational inertia (in the transverse x3-direction),
• ρh3/12: rotational inertia (about the in-plane x1- and x2-axes).

f applied forces and moments.

Linear elastic stress-strain relation and the constitutive relation:[
M
N

]
= C∇ru
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Strong form for Reissner-Mindlin plate bending

Let Ω = [−a, a]× [−b, b] be a rectangular plate. Find the transverse displacement
u3 ∈ C2(Ω× [0, T ]) and the rotations ϕ1, ϕ2 ∈ C2(Ω× [0, T ]) such that

∇T
mC∇ru+ f = Iü on Ω×]0, T [

boundary conditions (simply supported):

u3 = 0 in ∂Ω×]0, T [

ϕ2 = 0 in ∂Ω1×]0, T [

ϕ1 = 0 in ∂Ω2×]0, T [

initial conditions:

u(·, 0) = u0 in Ω

u̇(·, 0) = v0 in Ω

x

y

Ω

∂Ω1

∂Ω2

∂Ω1

∂Ω2
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Strong form for Reissner-Mindlin plate bending

Expanding the strong form, the three dynamic equations results in the following
system of partial differential equations: Ds

(
∂2
xx + ∂2

yy

)
−Ds∂y Ds∂x

Ds∂y Db

(
1−ν
2 ∂2

xx + ∂2
yy

)
−Ds −1+ν

2 Db∂
2
xy

−Ds∂x −1+ν
2 Db∂

2
xy Db

(
∂2
xx +

1−ν
2 ∂2

yy

)
−Ds


 u3

ϕ1

ϕ2

+

+

 f3
m1

m2

 =

 ρh ü3
ρh3/12 ϕ̈1

ρh3/12 ϕ̈2


where Ds = khG, and Db =

Eh3

12(1−ν2)
.
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Weak form for Reissner-Mindlin plate bending

The weak form consists of finding the transverse displacement u3 ∈ U and the
rotations ϕ1, ϕ2 ∈ U such that the following equation is satisfied for every δu ∈ V:∫

Ω
(∇rδu)

T C∇ru dΩ+

∫
Ω
δuT I ü dΩ =

∫
Ω
δuT f dΩ

U =
{
u(·, t) ∈ H1(Ω) | u3(·, t) = 0 in ∂Ω, ϕ1(·, t) = 0 in ∂Ω2, ϕ2(·, t) = 0 in ∂Ω1

}
V =

{
δu ∈ H1(Ω) | δu3 = 0 in ∂Ω, δϕ1 = 0 in ∂Ω2, δϕ2 = 0 in ∂Ω1

}
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Thick plate bending elements



Overview of thick plate bending elements

Numerous finite elements for plate bending have been developed: more than 88
distinct types can be identified.

Thick
plate

elements

Quadrangular vs triangular

Conforming vs not conforming (C0 vs C1)

Higher order approximation

Hughes-Taylor-Kanoknukulcha element (HTK): 12 dofs quadrangular,
not conforming, thick plate.
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Generalized displacements approximation

Since the rotations ϕ1 and ϕ2 are defined independently of the transversal
displacement u3, the discretization procedure uses 2D bilinear finite elements.

eu3(x, y, t) =

4∑
i=1

ehi(x, y)
edi(t)

eϕ1(x, y, t) =

4∑
i=1

ehi(x, y)
eθi1(t)

eϕ2(x, y, t) =

4∑
i=1

ehi(x, y)
eθi2(t)
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Generalized displacements approximation

euh(x, t) = eH(x)eq(t) =

4∑
i=1

ehi(x)
eqi(t)

eH(x) is a 3× 12 matrix of shape functions:

eH =
[
h1I h2I h3I h4I

]
=

eh1 0 0 eh4 0 0
0 eh1 0 . . . 0 eh4 0
0 0 eh1 0 0 eh4


I is the 3× 3 identity matrix.

eqi(t) =

edi(t)
eθi1(t)
eθi2(t)

 is the vector of generalized displacements of node i.
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Elementary stiffness matrix

eK =

∫
eΩ

eBTCeB dΩ

Elementary deformation matrix (5× 12):

eB = ∇r
eH =

[
∇r

eh1 . . . ∇r
eh4

]
=

[
∇b

eh1 . . . ∇b
eh4

∇s
eh1 . . . ∇s

eh4

]
=

[
∇b

eH
∇s

eH

]

Bending strain-displacement matrix: eBb = ∇b
eH.

Shear strain-displacement matrix: eBs = ∇s
eH.

Constitutive matrix (5× 5):

C =

[
Cb 0

0 Cs

]
.
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Elementary deformation matrix

Bending strain-displacement matrix:

eBb = ∇b
eH =

 0 0 ∂x
eh1 . . . 0 0 ∂x

eh4
0 −∂y

eh1 0 . . . 0 −∂y
eh4 0

0 −∂x
eh1 ∂y

eh1 . . . 0 −∂x
eh4 ∂y

ah4

 .

Shear strain-displacement matrix:

eBs = ∇s
eH =

[
∂x

eh1 0 eh1 . . . ∂x
eh4 0 ah4

∂y
eh1 −eh1 0 . . . ∂y

eh4 −eh4 0

]
.
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Elementary stiffness matrix

The elementary stiffness matrix is split in two:

eK =

∫
eΩ

[
eBb
eBs

]T [
Cb 0

0 Cs

] [
eBb
eBs

]
dΩ

=

∫
eΩ

eBT
b Cb

eBb dΩ︸ ︷︷ ︸
eKb

+

∫
eΩ

eBT
s Cs

eBs dΩ︸ ︷︷ ︸
eKs

bending stiffness matrix:

eKb =

∫
eΩ

eBT
b Cb

eBb dΩ,

shear stiffness matrix:
eKs =

∫
eΩ

eBT
s Cs

eBs dΩ.
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Selective integration to avoid shear locking

Reissner-Mindlin theory has demonstrated to suffer from shear locking: as the
thickness of the plate is reduced, the element becomes over-stiff and the
computed displacements are much smaller than the analytical solution.

The simplest remedy to this numerical behavior is to perform reduced
integration of the shear component (selective integration).

For instance, if bilinear elements are used, then: 2× 2 Gauss integration
(exact) for eKb and single point quadrature (reduced) for eKs.
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Elementary matrix and loads vector

Elementary mass matrix (12× 12):

eM =

∫
eΩ

eHT I eH dΩ.

Elementary applied forces vector (12× 1):

er(t) =

∫
eΩ

eHT f dΩ.
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Post processing: stress recovery

Once the nodal generalized displacements eqi is computed out stresses can be
recovered from constitutive equations as:

σh
b = Cbε

h
b = zCb∇b

eHeq = zCb
eBb

eq,

σh
s = Csε

h
s = zCs∇s

eHeq = zCs
eBs

eq.

Since the bending stresses are linear through the plate thickness in the
following they will be computed at the top layer of the plate z = h/2.

On the contrary, shear stresses are constant through the thickness, thus they
are independent on z.
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Example: modal analysis of a simply
supported thick plate



Example: Simply supported square isotropic plate

Discretization with 4 bilinear quadrilateral 2d elements (4 nodes each).

1Ω

2Ω

3Ω

4Ω

x

y

a a

a

a

x1

x2

x3

x4

x5

x6

x7

x8

x9

2a = 1 length

2a = 1 height

h = 0.1 thickness

E = 10920 Young’s modulus

ν = 0.3 Poisson’s ratio

ρ = 1 material density

k = 5/6 shear correction coefficient

The values for ρ and E is only a practical
convenience to obtain non-dimensional flexural
rigidity of the plate:

D =
Eh3

12(1− ν2)
= 1.
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Objectives

1 Approximate the first natural frequency of a (1× 1× 0.1) plate, which is
simply supported on all four edges. Use 4 bilinear quadrilateral 2d elements.

2 Compare the results with the analytical solution (as a function of h):

ωexact
1,1 (h) = 20π2h

√
70

4π2h2 + 7
rad/s.

Notice that this formula is only valid for the previous choice of the plate
geometry and materials.
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Modal patterns

Figure 1: Modes of vibration for a SSSS plate with h/a = 0.1, using 20× 20 bilinear
elements.

(Credit: Ferreira, Fantuzzi - MATLAB Codes for Finite Element Analysis)
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Step 1: Initialization and mesh generation

1 Initialize variables
• Plate dimensions: length X, length Y, and h.
• Material properties: E, nu, rho, and kappa.
• Bending and shear stiffness matrices: C bending and C shear.
• Inertia matrix: Inertia matrix.

2 Mesh generation
• Define number of elements in x and y directions: number elements X and
number elements Y.

• Compute total number of elements number elements, nodes number nodes, and
DOFs number dofs.

• Generate structured rectangular mesh and build connectivity matrix:
createRectangularMesh().
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Step 2: Shape functions and element matrices

3 Bilinear shape functions
• Define ha(ξ1, ξ2): ha(1),..., ha(4).

4 Transformations
• For each finite element e compute:

▶ element transformation: x(ξ), y(ξ): transf{e}.
▶ jacobian matrix jacobian mat{e}, its inverse jacobian inv{e} and determinant

jacobian det{e}.

5 Element matrices
• For each finite element e compute:

▶ bending and shear strain-displacement matrices: Be bending{e} and Be shear{e}.
▶ compute stiffness matrix: K elem{e} = K elem bending + K elem shear.
▶ Compute mass matrix M elem{e}.
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Step 3: Assembly of global matrices and boundary conditions

6 Assembly
• Initialize global matrices: stiffness and mass: stiffness and mass.
• For each element:

▶ Map local to global DOFs.
▶ Add contributions of local matrices to global matrices.

7 Boundary conditions
• Identify:

▶ Corner nodes ⇒ All DOFs fixed.
▶ Edge nodes ⇒ 2 DOFs fixed (displacement + one rotation).

• Build list of constrained DOFs: constrained local dofs.
• Derive list of free DOFs: free dofs.

8 Solve the eigenvalue problem
• Reduce system matrices: stiffness freeDofs and mass freeDofs.
• Solve generalized eigenproblem and compute the fundamental frequency:

ωapprox
1,1 =

√
min(λ).
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MATLAB example - simply supported plate

Go to Matlab Drive
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https://drive.mathworks.com/sharing/6a9792ef-d0a7-4aca-a1d0-8b1862b0ac3b
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