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Problem set 8 - solutions

Problem 1

The plate is discretized using a structured mesh of 2×2 bilinear quadrilateral elements, resulting in
a total of 9 nodes. Each node xi (i = 1, . . . , 9) is associated with three degrees of freedom (DOFs):
the transverse displacement di, and the rotations θi1 and θi2 about the x- and y-axes, respectively.
The total number of DOFs in the discretized system is therefore 27. We shall identify the set of
free DOFs corresponding to three distinct boundary conditions.

1. Clamped on all four edges The transverse displacement and both rotations are fully re-
strained on all edges. Mathematically, the constraints are expressed as:

d = 0, θ1 = 0, θ2 = 0 on all boundary nodes.

The nodes located on the boundary of the plate are:

x1,x2,x3,x4,x6,x7,x8,x9,

amounting to 8 nodes. Each contributes 3 constrained DOFs, yielding a total of 24 constrained
DOFs. The only unconstrained (free) degrees of freedom are those associated with the interior node
x5:

d5, θ51, θ52.

2. Simply supported on horizontal edges and free on vertical edges For a simply sup-
ported edge in Reissner–Mindlin theory, the transverse displacement and the rotation normal to
the edge are constrained. For horizontal edges, this yields:

d = 0, θ2 = 0.

The affected nodes on the bottom and top horizontal edges are:

x1,x4,x7 (bottom edge), x3,x6,x9 (top edge).

Each of these 6 nodes has 2 constrained DOFs (d and θ2), resulting in 12 constrained DOFs. The
constrained DOFs are:

d1, θ12, d4, θ42, d7, θ72,

d3, θ32, d6, θ62, d9, θ92.

The remaining 15 DOFs are unconstrained and therefore free.
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3. Corner nodes simply supported Assuming the simplest interpretation consistent with the
application, each corner node is constrained in transverse displacement only: d = 0. The corner
nodes are:

x1,x3,x7,x9.

Each of these nodes has 1 constrained DOFs, giving a total of 4 constrained DOFs. The constrained
DOFs are:

d1, d3, d7, d9,

The remaining 23 DOFs, associated with the edge midpoints, rotations at the corners and the
interior node, are free.

Comparison of fundamental frequencies The first fundamental frequency of a vibrating plate
depends strongly on the stiffness of the system, which is determined by the type and extent of the
applied boundary conditions. A stiffer system resists deformation more effectively and thus exhibits
higher natural frequencies. Conversely, a system with greater flexibility (i.e., fewer constraints) will
have lower frequencies.
The first configuration imposes the most restrictive boundary conditions as all three local degrees of
freedom (transverse displacement and both rotations) are fully constrained along every edge. This
yields the maximum structural stiffness and therefore the highest natural frequencies.
The second and the third case are fairly similar in terms of the is the first fundamental frequency.
In the third case, their location at the corners provides localized stiffness. Compared to case 2, this
configuration may offer slightly smaller resistance to deformation, especially far from the corners.
Based on the relative flexibility of each configuration, we expect the following qualitative ordering
of the first fundamental frequencies:

ω
(corners simply supported)
1 < ω

(free + simply supported)
1 < ω

(fully clamped)
1 .

Problem 2

Since the plate is discretized using a single bilinear plate element, the global and element mass and
stiffness matrices are identical; hence, no assembly procedure is required. Furthermore, because the
reference, element, and archetypal domains coincide, i.e., Ω = eΩ = aΩ, the local coordinates ξ1, ξ2
and the global coordinates x, y can be used interchangeably, i.e., ∂x = ∂ξ1 and ∂y = ∂ξ2 .
Under these conditions, the consistent mass matrix takes the form

M =

∫
Ω

aHT I aH dΩ

=

∫ 1

−1

∫ 1

−1


ah2

1I
ah1

ah2I
ah1

ah3I
ah1

ah4I
ah2

2I
ah2

ah3I
ah2

ah4I
ah2

3I
ah3

ah4I
sym. ah2

4I

 dξ2dξ1

Analogously, the global stiffness matrix is given by K = Kb +Ks, where the bending contribution
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is expressed as

Kb =

∫
Ω

BT
b CbBb dΩ

=
h3

12

∫ 1

−1

∫ 1

−1


(∇b

ah1)
TCb∇b

ah1 (∇b
ah1)

TCb∇b
ah2 (∇b

ah1)
TCb∇b

ah3 (∇b
ah1)

TCb∇b
ah4

(∇b
ah2)

TCb∇b
ah2 (∇b

ah2)
TCb∇b

ah3 (∇b
ah2)

TCb∇b
ah4

(∇b
ah3)

TCb∇b
ah3 (∇b

ah3)
TCb∇b

ah4

sym. (∇b
ah4)

TCb∇b
ah4

 dξ2dξ1

where ∇b denotes the bending strain-displacement operator. The shear contribution is similarly
given by

Ks =

∫
Ω

BT
s CsBs dΩ

where Cs replaces Cb, and ∇s replaces ∇b, reflecting the different nature of the strain measures in
the shear formulation.
The boundary conditions enforce zero transverse displacements and rotations at all nodes except
x1, which remains free. As a result, the free degrees of freedom correspond to the first three rows
and columns of the global matrices. The reduced mass matrix is then

Mred =

∫ 1

−1

∫ 1

−1

ah2
1I dξ2dξ1

=

∫ 1

−1

∫ 1

−1

ah2
1 dξ2dξ1

ρh 0 0
0 ρh3/12 0
0 0 ρh3/12


=

4

9

ρh 0 0
0 ρh3/12 0
0 0 ρh3/12


The corresponding reduced stiffness matrix is decomposed as Kred = Kred

b +Kred
s , with

Kred
b =

h3

12

∫ 1

−1

∫ 1

−1

(∇b
ah1)

TCb∇b
ah1 dξ2dξ1

Substituting the expressions for Cb and ∇b, this becomes

Kred
b =

Eh3

12(1− ν2)

∫ 1

−1

∫ 1

−1

 0 0 0
0 −∂y

ah1 −∂x
ah1

∂x
ah1 0 ∂y

ah1

1 ν 0
ν 1 0
0 0 1−ν

2

0 0 ∂x
ah1

0 −∂y
ah1 0

0 −∂x
ah1 ∂y

ah1

 dξ2dξ1

Which simplify and evaluates to

Kred
b = D

∫ 1

−1

∫ 1

−1

0 0 0

0 (∂yh1)
2 + 1−ν

2
(∂xh1)

2 −1+ν
2
∂xh1∂yh1

0 −1+ν
2
∂xh1∂yh1 (∂xh1)

2 + 1−ν
2
(∂yh1)

2

 dξ2dξ1

= D

0 0 0
0 1/3 + (1− ν)/6 −(1 + ν)/8
0 −(1 + ν)/8 1/3 + (1− ν)/6


3



Recall that the flexural rigidity of the plate is D = Eh3

12(1−ν2)
. For the shear contribution, we have

Kred
s = h

∫ 1

−1

∫ 1

−1

(∇s
ah1)

TCs∇s
ah1 dξ2dξ1

Substituting the expressions for Cs and ∇s, this becomes

Kred
s = Gkh

∫ 1

−1

∫ 1

−1

∂xah1 ∂y
ah1

0 −ah1
ah1 0

[
1 0
0 1

] [
∂x

ah1 0 ah1

∂y
ah1 −ah1 0

]
dξ2dξ1

= Gkh

∫ 1

−1

∫ 1

−1

(∂xh1)
2 + (∂yh1)

2 −h1∂yh1 h1∂xh1

−h1∂yh1 h2
1 0

h1∂xh1 0 h2
1

 dξ2dξ1

= Gkh

 2/3 1/3 −1/3
1/3 4/9 0
−1/3 0 4/9


Recall that, for isotropic materials, the shear modulus G is related to Young’s modulus E and
Poisson’s ratio ν by: G = E

2(1+ν)
.

Problem 3

The MATLAB code performs the computation of the fundamental natural frequency of a simply
supported isotropic square plate with in-plane dimensions 1 × 1, where the plate thickness varies
according to the values specified in the vector h values.
Plate geometry

length_X = 1; %length_X = 2a

length_Y = 1; %length_Y = 2b

h_values = [0.01 0.02 0.05 0.075 0.1 0.125 0.15 0.5 1];

Material properties

E = 10920;

nu = 0.3;

rho = 1;

kappa = 5/6;

Material Mesh
Generate structured rectangular mesh of bilinear elements by using the function createRectangularMesh.

number_elements_X = 8;

number_elements_Y = 8;

number_elements = number_elements_X * number_elements_Y;

number_nodes = (number_elements_X + 1) * (number_elements_Y + 1);
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number_of_nodes_per_element = 4;

number_of_dofs_per_node = 3;

number_dofs_per_element = number_of_nodes_per_element*number_of_dofs_per_node;

number_dofs = number_nodes*number_of_dofs_per_node;

[nodes, connectivity] = createRectangularMesh(number_elements_X,number_elements_Y,

length_X, length_Y);

Boundary conditions
Apply simply supported boundary conditions on all edges using the function getConstrainedDOFs SSSS

constrained_dofs = getConstrainedDOFs_SSSS(number_elements_X, number_elements_Y)

Computation of the fundamental natural frequency for varying plate thickness values
The next step involves the computation of the global stiffness matrix and global consistent mass
matrix using helper functions (formStiffnessThickPlate and formMassThickPlate). These ma-
trices represent the elastic and inertial properties of the system, respectively, and are assembled in
the global coordinate system based on the element-level contributions. Then we apply the boundary
conditions and compute the fundamental frequency of the plates.

approx_fundamental_freq = zeros(1, length(h_values));

for i = 1:length(h_values)

h = h_values(i);

% Bending constitutive matrix

C_bending = h^3 * E / (12 * (1 - nu^2)) * [1 nu 0; nu 1 0; 0 0 (1 - nu) / 2];

% Shear constitutive matrix

C_shear = kappa * h * E / (2 * (1 + nu)) * eye(2);

% Inertia matrix

Inertia_matrix = rho * [h, 0, 0; 0, h^3 / 12, 0; 0, 0, h^3 / 12];

% Assemble global stiffness and mass matrices

stiffness = formStiffnessThickPlate(number_dofs, connectivity, nodes,

C_bending, C_shear);

mass = formMassThickPlate(number_dofs, connectivity, nodes, Inertia_matrix);

% Apply boundary conditions

stiffness_freeDofs = stiffness(free_dofs, free_dofs);

mass_freeDofs = mass(free_dofs, free_dofs);

% Compute smallest eigenvalue (fundamental frequency)

eigenvalues = vpa(eig(inv(mass_freeDofs)*stiffness_freeDofs),4);

approx_fundamental_freq(i) = vpa(sqrt(min(eigenvalues)),4)

end
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Exact fundamental frequency
The exact fundamental frequency is computed using closed-form formula for simply supported
square plate.

exact_fundamental_freq = zeros(1, length(h_values));

for i = 1:length(h_values)

h = h_values(i);

exact_fundamental_freq(i) = computeExactFrequency(length_X, length_Y, h, nu, E,

rho, kappa, 1, 1)

end

Comparative analysis of the fundamental frequencies
This section of the code visualizes and compares the numerical and exact solutions of the funda-
mental frequency for a square plate with varying thickness, and then quantifies the error between
them.

figure;

plot(h_values, exact_fundamental_freq, ’b-o’, ’LineWidth’, 2, ’MarkerSize’, 6);

hold on;

plot(h_values, approx_fundamental_freq, ’r--s’, ’LineWidth’, 2, ’MarkerSize’, 6);

hold off;

xlabel(’$h$ (plate thickness)’, ’Interpreter’, ’latex’, ’FontSize’, 14)

ylabel(’Fundamental frequency’, ’Interpreter’, ’latex’, ’FontSize’, 14)

title(’Exact vs. Approximate Fundamental Frequency vs. $h$’, ’Interpreter’,

’latex’, ’FontSize’, 16)

legend({’Exact’, ’Approximate’}, ’Interpreter’, ’latex’, ’Location’, ’best’,

’FontSize’, 12)

grid on

axis tight

set(gca, ’FontSize’, 12)

% Compute relative error as a percentage

relative_error = 100 * (approx_fundamental_freq - exact_fundamental_freq)
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./ exact_fundamental_freq;

% Create the plot

figure;

plot(h_values, relative_error, ’-o’, ...

’LineWidth’, 2, ...

’MarkerSize’, 8, ...

’Color’, [1.0, 0.5, 0]); % orange color in RGB

xlabel(’Plate thickness $h$ [m]’, ’Interpreter’, ’latex’, ’FontSize’, 12);

ylabel(’Relative error [\%]’, ’Interpreter’, ’latex’, ’FontSize’, 12);

title(’Relative Error of Fundamental Frequency vs. Thickness’, ’FontSize’, 14);

grid on;

set(gca, ’FontSize’, 12);

The discrepancy between the exact and approximate fundamental frequencies, especially for very
thin or very thick plates, is due to the limitations of the plate theory and finite element modeling
assumptions used in the analysis.

1. Thin plates (e.g., h = 0.01, 0.02, 0.05, 0.075): positive relative error, bigger then 1% (approx-
imate frequency slightly larger than exact).

• In thin plate theory (Kirchhoff-Love), shear deformation is negligible.

• However, the numerical model (based on Mindlin theory) still includes shear effects.

• This leads to a small overestimation of first natural frequency.

2. Moderately thick plates (e.g., h = 0.1, 0.125, 0.15) : small relative error and good agreement
between exact and approximate frequencies.

• The Reissner-Mindlin plate theory, which accounts for transverse shear deformation, is
most accurate in this regime.

• Both bending and shear effects are significant and correctly captured.

• The approximation provided by the numerical method (with appropriate bending and
shear stiffness) aligns closely with the exact analytical solution.

3. Thick plates and 3d solid (h = 0.5 and 0.1): large negative relative error (approximate
frequency much smaller than exact).
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• For thick plates, 3D stress states and warping effects become important.

• The plate theory becomes insufficient as it neglects higher-order effects and out-of-plane
warping (higher order deformation theory is needed).

• The numerical model underestimates stiffness due to simplifications, leading to an un-
derestimates first frequency.
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