

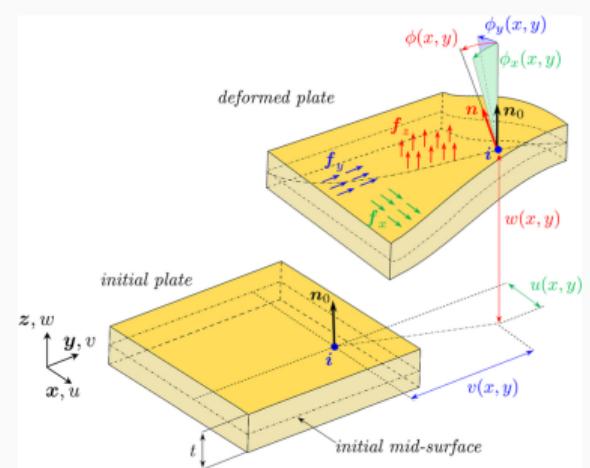
Dynamic analysis of Kirchhoff-Love plates

Classical structural elements

ME473 Dynamic finite element analysis of structures

Stefano Burzio

2025



Where do we stand?

Week	Module	Lecture topic	Mini-projects
1	Linear elastodynamics	Strong and weak forms	
2		Galerkin method	Groups formation
3		FEM global	Project 1 statement
4		FEM local	
5		FEM local	Project 1 submission
6	Classical structural elements	Bars and trusses	Project 2 statement
7		Beams	
8		Frames and grids	
9		Kirchhoff-Love plates	Project 2 submission
10		Kirchhoff-Love plates	Project 3 statement

Summary

- Recap weeks 1-9
- AMC thin plate bending elements
- Example: modal analysis of a simply supported thin plate
- CR thin plate bending elements
- Example: modal analysis of a simply supported thin plate

Recommended readings

- (L) Logan, A first course in the finite element method, 6th ed. (chap. 12)
- (P) Petyt, Introduction to finite element vibration analysis (chap. 6)
- (O) Ochsner, PDE for classical structural members (chap. 7)

Recap weeks 1-5: vibration of solids

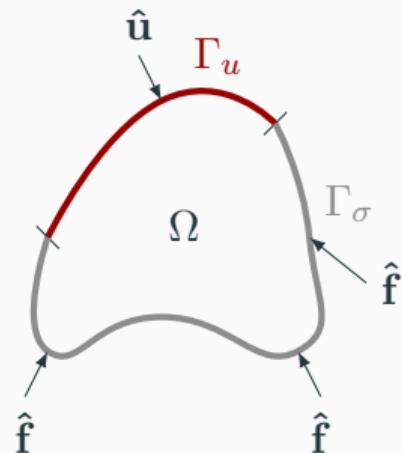
Statement of the linear elastodynamics problem

■ Object:

A solid $\Omega \subset \mathbb{R}^3$ with known material properties: \mathbf{C} and ρ .

■ Main features:

- Acting loads on the body: \mathbf{f} .
- Boundary $\Gamma = \Gamma_u \cup \Gamma_\sigma$ (the surface enclosing the solid).
- Boundary conditions: prescribed displacements $\hat{\mathbf{u}}$ on Γ_u and/or loads $\hat{\mathbf{f}}$ on Γ_σ .
- Initial displacement \mathbf{u}_0 and velocity \mathbf{v}_0 at $t = 0$.



Strong and semi-discrete weak forms of elastodynamics

Strong form

PDE:

$$\nabla^T \mathbf{C} \nabla \mathbf{u} + \mathbf{f} = \rho \ddot{\mathbf{u}}$$

BC on Γ_u :

$$\mathbf{u} = \hat{\mathbf{u}}$$

BC on Γ_σ :

$$\mathbf{N}^T \mathbf{C} \nabla \mathbf{u} = \hat{\mathbf{f}}$$

IC at $t = 0$:

$$\mathbf{u} = \mathbf{u}_0, \dot{\mathbf{u}} = \mathbf{v}_0$$

Semi-discrete weak form

ODE:

$$\delta \mathbf{q}^T [\mathbf{M} \ddot{\mathbf{q}}(t) + \mathbf{K} \mathbf{q}(t) - \mathbf{r}(t)] = 0$$

Displacement approximation:

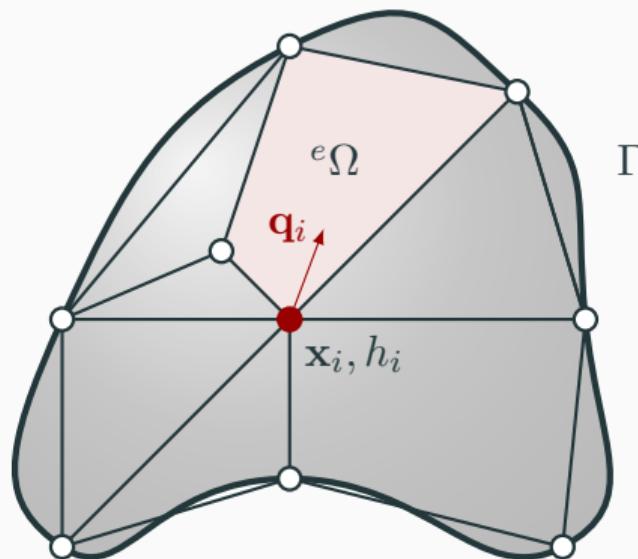
$$\mathbf{u}^h(\mathbf{x}, t) = \mathbf{H}(\mathbf{x}) \mathbf{q}(t) = \sum_{i=1}^p h_i(\mathbf{x}) \mathbf{q}_i(t)$$

IC at $t = 0$:

$$\mathbf{q}(0) = \mathbf{q}_0$$

$$\dot{\mathbf{q}}(0) = \mathbf{p}_0$$

Displacements approximation in finite element method



- **Stiffness matrix:**

$$\mathbf{K} = \int_{\Omega} \mathbf{B}^T \mathbf{C} \mathbf{B} d\Omega$$

where $\mathbf{B} = \nabla \mathbf{H}$.

- **Mass matrix:**

$$\mathbf{M} = \int_{\Omega} \rho \mathbf{H}^T \mathbf{H} d\Omega.$$

- **Applied forces vector:**

$$\mathbf{r}(t) = \int_{\Gamma_{\sigma}} \mathbf{H}^T \hat{\mathbf{f}} d\Gamma + \int_{\Omega} \mathbf{H}^T \mathbf{f} d\Omega.$$

Recap weeks 6-8: vibration of 1d structures

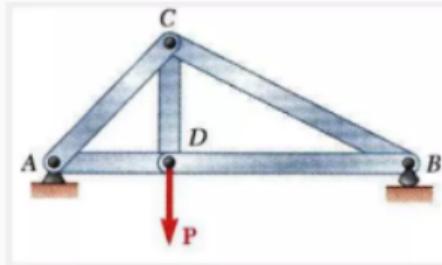
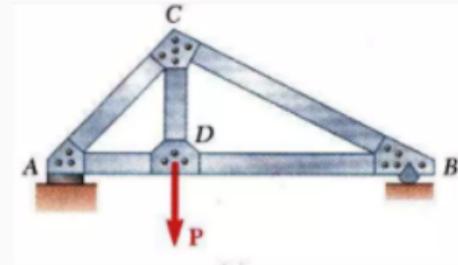
Trusses vs frames

Truss

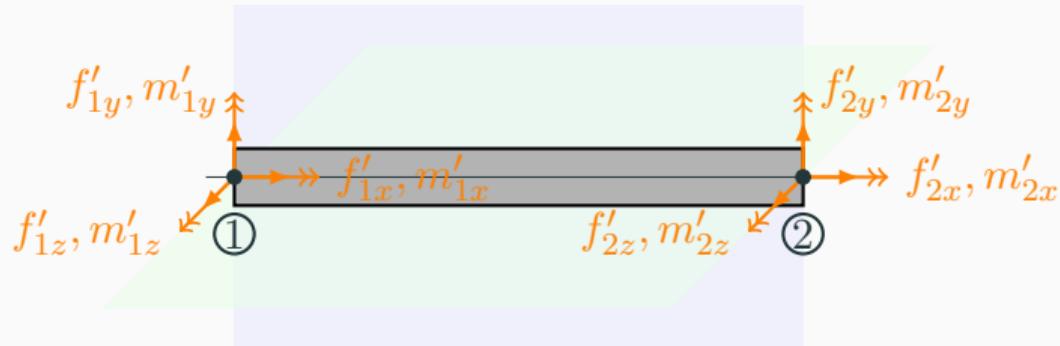
- Structure composed of oriented bar (rod) elements, connected by frictionless pins, carrying **axial forces**.

Frame

- Structure composed of oriented beam elements, connected by welding, carrying **transversal, axial forces and torsion**.



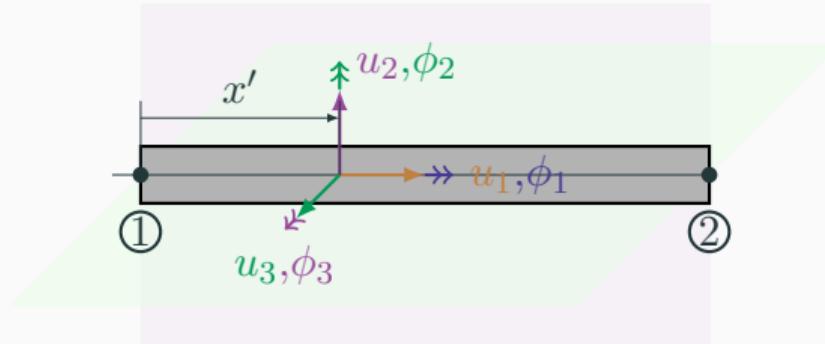
Three-dimensional beam structure



Three-dimensional beams are uniaxial (slender) element that can support:

- axial loads f'_{ix} ,
- torsional loads m'_{ix} ,
- bending in the $x' - y'$ plane: f'_{iy} and m'_{iz} ,
- bending in the $x' - z'$ plane: f'_{iz} and m'_{iy} .

Differential equations governing the dynamics



Bars

$$EA\partial_{x'x'}^2 u_1(x', t) = \rho A \ddot{u}_1(x', t)$$

Shafts

$$GJ\partial_{x'x'}^2 \phi_1(x', t) = \rho J \ddot{\phi}_1(x', t)$$

Planar beams

$$\partial_{x'x'}^2 (EI_z \partial_{x'x'}^2 u_2(x', t)) + \rho A \ddot{u}_2(x', t) = 0$$

Planar beams

$$\partial_{x'x'}^2 (EI_y \partial_{x'x'}^2 u_3(x', t)) + \rho A \ddot{u}_3(x', t) = 0$$

I_y and I_z are the cross-sectional moments of inertia with respect to the axes y and z .

Displacements discretization

Total of six nodal displacements at each unconstrained joint:

- three translation components q'_{ix} , q'_{iy} and q'_{iz} along the x , y , z axes, and
- three rotational components about these axes ϕ'_{ix} , ϕ'_{iy} and ϕ'_{iz} .

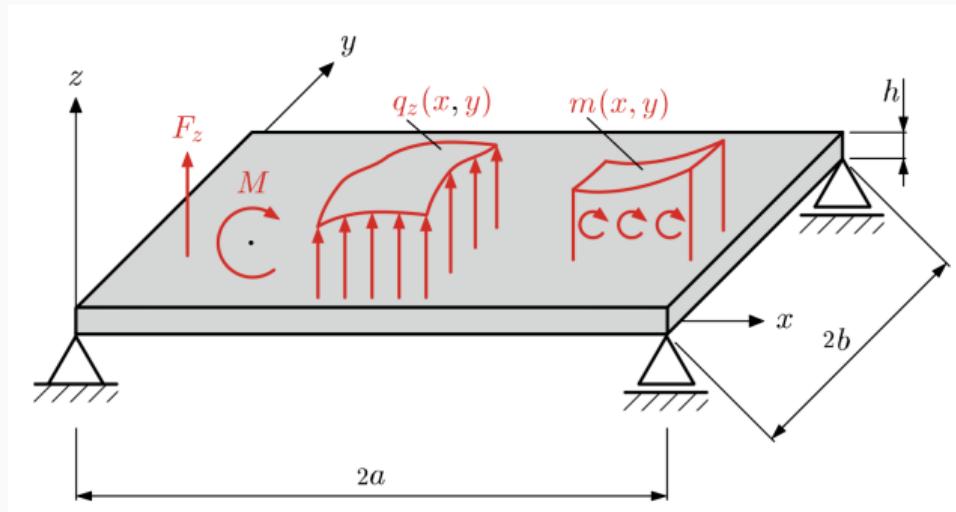
$$u^h(x', t) = \mathbf{H}(x') \mathbf{q}_{loc}(t)$$

$$\mathbf{q}_{loc}(t) = \begin{bmatrix} q'_{1x}(t) \\ q'_{1y}(t) \\ q'_{1z}(t) \\ \phi'_{1x}(t) \\ \phi'_{1y}(t) \\ \phi'_{1z}(t) \\ q'_{2x}(t) \\ q'_{2y}(t) \\ q'_{2z}(t) \\ \phi'_{2x}(t) \\ \phi'_{2y}(t) \\ \phi'_{2z}(t) \end{bmatrix} \quad \begin{aligned} h_1(x') &= 1 - x'/\ell & h_7(x') &= x'/\ell \\ h_2(x') &= 2(x'/\ell)^3 - 3(x'/\ell)^2 + 1 & h_8(x') &= 3(x'/\ell)^2 - 2(x'/\ell)^3 \\ h_3(x') &= 2(x'/\ell)^3 - 3(x'/\ell)^2 + 1 & h_9(x') &= 3(x'/\ell)^2 - 2(x'/\ell)^3 \\ h_4(x') &= 1 - x'/\ell & h_{10}(x') &= x'/\ell \\ h_5(x') &= x'(1 - x'/\ell)^2 & h_{11}(x') &= x'(x'/\ell)(x'/\ell - 1) \\ h_6(x') &= x'(1 - x'/\ell)^2 & h_{12}(x') &= x'(x'/\ell)(x'/\ell - 1) \end{aligned}$$

Recap week 9: vibration of 2d structures

Plate structure

- Plate structures are geometrically similar to structures of the 2D plane stress problem, but it usually carries only **transversal loads** that lead to bending deformation of the plate.
- For example: floors of a building, aerospace and ships structures, etc...

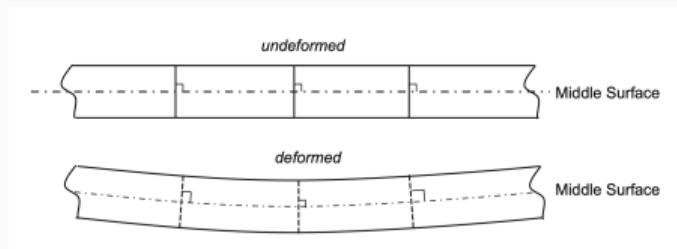


(Credit: (O))

Kirchhoff assumption

Rectilinearity and orthogonality of the cross-sectional normals:

Bernoulli's hypothesis is valid, i.e. a cross-sectional plane stays plane and perpendicular to the middle surface in the deformed state.



Shear strains ε_{13} and ε_{23} due to the distributed shear forces q_x and q_y are neglected.

(Credit: (N))

Strong form for Kirchhoff-Love plate bending

Let $\Omega = [-a, a] \times [-b, b]$. Find the transverse displacement $u_3 \in C^4(\Omega \times [0, T])$ such that

$$\frac{h^3}{12} \nabla_k^T C \nabla_k u_3 + \rho h \ddot{u}_3 = f_3 \quad \text{on } \Omega \times]0, T[\quad (1)$$

boundary conditions (simply supported):

$$u_3 = 0 \quad \text{in } \partial\Omega \times]0, T[$$

$$\mathbf{M} = 0 \quad \text{in } \partial\Omega \times]0, T[$$

initial conditions:

$$u_3(\cdot, 0) = u_0 \quad \text{in } \Omega$$

$$\dot{u}_3(\cdot, 0) = v_0 \quad \text{in } \Omega$$

In case of isotropic material equation (1) reduces to

$$D \left(\frac{\partial^4 u_3}{\partial x_1^4} + 2 \frac{\partial^4 u_3}{\partial x_1^2 \partial x_2^2} + \frac{\partial^4 u_3}{\partial x_2^4} \right) + \rho h \ddot{u}_3 = f_3$$

where $D = Eh^3/(12(1 - \nu^2))$.

Weak form for Kirchhoff-Love plate bending

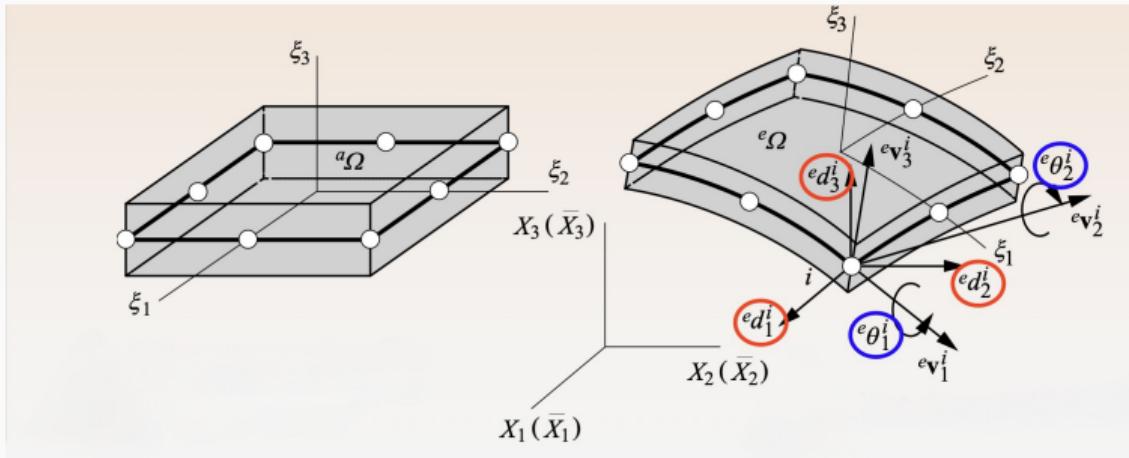
The weak form consists of finding the transverse displacement $u_3 \in \mathcal{U}$ such that the following equation is satisfied for every $\delta u_3 \in \mathcal{V}$:

$$\frac{h^3}{12} \int_{\Omega} \nabla_k u_3 \mathbf{C} \nabla_k \delta u_3 d\Omega + \int_{\Omega} \rho h \ddot{u}_3 \delta u_3 d\Omega = \int_{\Omega} f_3 \delta u_3 d\Omega$$

$$\mathcal{U} = \{u_3(\cdot, t) \in H^2(\Omega) \mid u_3 = 0 \text{ in } \partial\Omega \times]0, T[\}$$

$$\mathcal{V} = \{\delta u_3 \in H^2(\Omega) \mid \delta u_3 = 0 \text{ in } \partial\Omega\}$$

Shell element



Shell elements:

- have 5 DOFs per node, no rotation ${}^e\theta_3^i$.
- lead to huge computational time savings since allow modeling with fewer mesh elements.
- less prone to negative Jacobian errors which might occur when using extremely thin 3d solid elements.

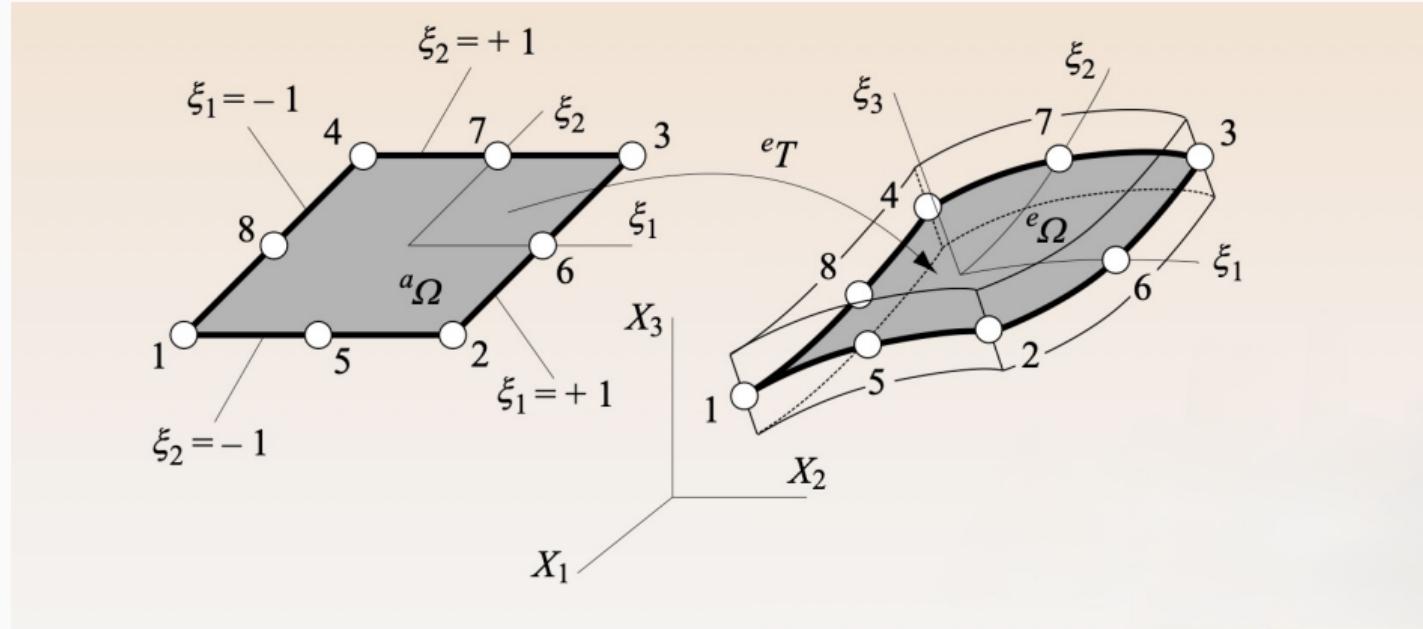
Shape functions matrix

$$\mathbf{u}^h(\boldsymbol{\xi}) = \sum_{i=1}^{e_p} {}^a h_i(\xi_1, \xi_2) \left[{}^e \mathbf{d}^i + \frac{1}{2} \xi_3 {}^e t_3^i \left(-{}^e \theta_1^i {}^e \mathbf{v}_2^i + {}^e \theta_2^i {}^e \mathbf{v}_1^i \right) \right]$$

$$= \sum_{i=1}^{e_p} {}^a \mathbf{H}_i(\boldsymbol{\xi}) {}^e \mathbf{q}^i(t)$$

$$= \underbrace{\sum_{i=1}^{e_p} \begin{bmatrix} {}^a h_i & 0 & 0 \\ 0 & {}^a h_i & 0 \\ 0 & 0 & {}^a h_i \end{bmatrix}}_{{}^a \mathbf{H}_i} \underbrace{\begin{bmatrix} -\frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{21}^i & \frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{11}^i \\ -\frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i v_{22}^i & \frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{12}^i \\ -\frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{23}^i & \frac{1}{2} \xi_3 {}^e t_3^i {}^a h_i {}^e v_{13}^i \end{bmatrix}}_{{}^e \mathbf{q}^i} \underbrace{\begin{bmatrix} {}^e d_1^i \\ {}^e d_2^i \\ {}^e d_3^i \\ {}^e \theta_1^i \\ {}^e \theta_2^i \end{bmatrix}}_{{}^e \mathbf{q}^i}$$

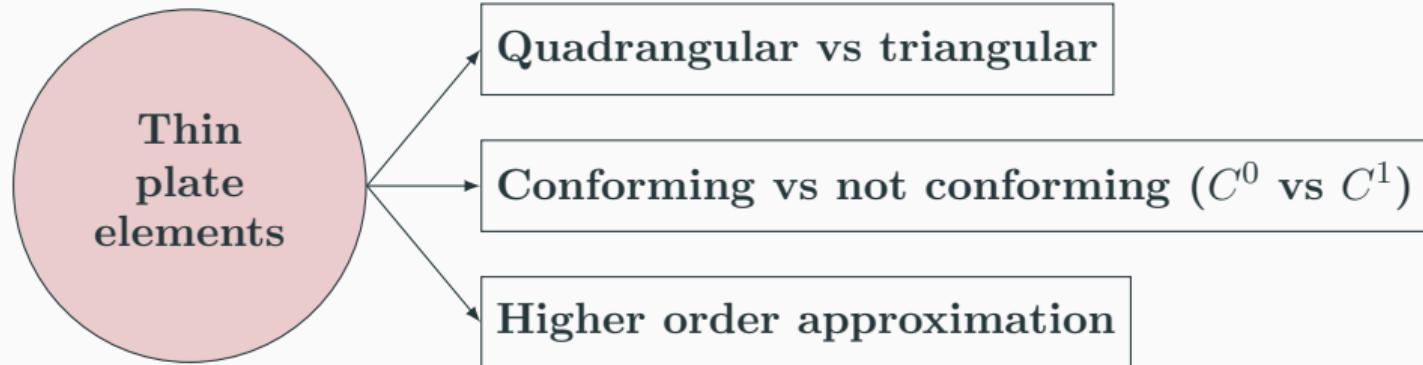
Example: 8 nodes quadrangular shell element



Thin plate bending elements

Overview of thin plate bending elements

Numerous finite elements for plate bending have been developed: **more than 88 distinct types** can be identified.



- **Adini-Melosh-Clough element (AMC):** 12 dofs quadrangular, not conforming, thin plate.
- **Crouzeix–Raviart (CR):** 16 dofs quadrangular, conforming, thin plate.

Finite element approximation of Kirchhoff-Love plate

- Weak form equation

$$\frac{h^3}{12} \int_{\Omega} \nabla_k u_3 \mathbf{C} \nabla_k \delta u_3 \, d\Omega + \int_{\Omega} \rho h \ddot{u}_3 \delta u_3 \, d\Omega = \int_{\Omega} f_3 \delta u_3 \, d\Omega$$

- Semi-discrete weak form

$$\mathbf{M} \ddot{\mathbf{q}}(t) + \mathbf{K} \mathbf{q}(t) = \mathbf{r}(t)$$

Finite element approximation using polynomial shape functions:

$${}^e u_3^h(x_1, x_2, t) = \sum_{i=1}^n {}^e \mathbf{h}_i(x_1, x_2) {}^e \mathbf{q}^i(t) = {}^e \mathbf{H}(\mathbf{x}) {}^e \mathbf{q}(t)$$

Selection of the displacement function

To ensure convergence it is necessary to consider:

Completeness criterion:

highest order of derivatives in the weak form is 2.

Complete polynomials of at least degree 2:

$$\begin{aligned} {}^e u_3^h = & a_1 + a_2 x + a_3 y + \\ & + a_4 x^2 + a_5 x y + a_6 y^2 + \\ & + \text{higher order terms} \end{aligned}$$

Continuity criterion:

${}^e u_3^h$, $\partial_{x_1} {}^e u_3^h$, $\partial_{x_2} {}^e u_3^h$ are continuous between elements.

Each node i has 3 DOFs:

- ${}^e d^i$ vertical displacement,
- ${}^e \theta_1^i, {}^e \theta_2^i$ rotations.

AMC plate bending elements

Selection of the displacement function

Displacement approximation for rectangular elements with four nodes and thus 12 dofs: complete cubic polynomial, augmented with two (*geometrically invariant*) quartic terms

$$\begin{aligned} {}^e u_3^h(x_1, x_2, t) = & \color{red}{a_1} + a_2 x_1 + a_3 x_2 + a_4 x_1^2 + a_5 x_1 x_2 + a_6 x_2^2 + \\ & + a_7 x_1^3 + a_8 x_1^2 x_2 + a_9 x_1 x_2^2 + a_{10} x_2^3 + \color{orange}{a_{11}} x_1^3 x_2 + a_{12} x_1 x_2^3 \end{aligned}$$

- ✓ Displacement approximation solves the unloaded strong form equation.
 - ✓ Continuity in displacement along the interfaces of the elements.
 - ✗ Slopes continuity along the interfaces are not ensured (*not conforming*).

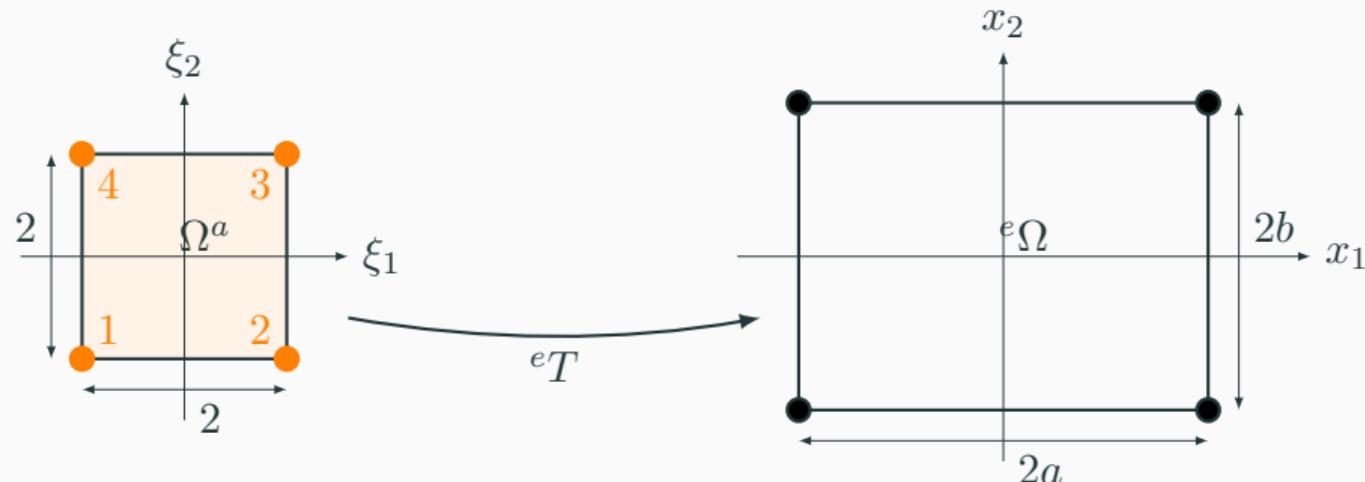
Coordinate transform

The coordinate transformation:

$$^eT : \Omega^a \rightarrow {}^e\Omega$$

$$\boldsymbol{\xi} = \{\xi_1, \xi_2\}^T \mapsto \mathbf{x}(\boldsymbol{\xi}) = \{x_1(\boldsymbol{\xi}), x_2(\boldsymbol{\xi})\}^T = \{a\xi_1, b\xi_2\}^T$$

maps any point $\boldsymbol{\xi}$ in $\Omega^a = [-1, 1] \times [-1, 1]$ to its corresponding point of coordinate $\mathbf{x}(\boldsymbol{\xi})$ in ${}^e\Omega = [-a, a] \times [-b, b]$:



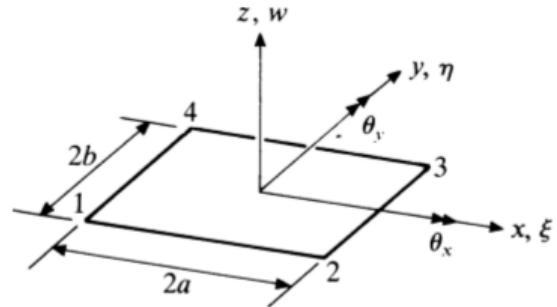
Approximate displacement in local coordinates

$${}^e u_3^h(\xi, t) = \sum_{i=1}^4 {}^a \mathbf{h}_i(\xi) {}^e \mathbf{q}^i(t) = {}^a \mathbf{H}(\xi) {}^e \mathbf{q}(t) = \begin{bmatrix} {}^a \mathbf{h}_1(\xi) & {}^a \mathbf{h}_2(\xi) & {}^a \mathbf{h}_3(\xi) & {}^a \mathbf{h}_4(\xi) \end{bmatrix} \begin{bmatrix} {}^e \mathbf{q}^1(t) \\ {}^e \mathbf{q}^2(t) \\ {}^e \mathbf{q}^3(t) \\ {}^e \mathbf{q}^4(t) \end{bmatrix}$$

where

■ ${}^e \mathbf{q}^i(t) = \begin{bmatrix} {}^e d^i(t) \\ {}^e \theta_1^i(t) \\ {}^e \theta_2^i(t) \end{bmatrix} = \begin{bmatrix} {}^e u_3^h(\xi^i, t) \\ \partial_{\xi_2} {}^e u_3^h(\xi^i, t)/b \\ -\partial_{\xi_1} {}^e u_3^h(\xi^i, t)/a \end{bmatrix}$

■ ξ^i are the local coordinates of node i .



Dofs in local coordinates

- Assumed form of the displacement function:

$$\begin{bmatrix} {}^e u_3^h \\ \partial_{\xi_2} {}^e u_3^h \\ \partial_{\xi_1} {}^e u_3^h \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \xi_1 & \xi_2 & \xi_1^2 & \xi_1 \xi_2 & \xi_2^2 & \xi_1^3 & \xi_1^2 \xi_2 & \xi_1 \xi_2^2 & \xi_2^3 & \xi_1^3 \xi_2 & \xi_1 \xi_2^3 \\ 0 & 0 & 1 & 0 & \xi_1 & 2\xi_2 & 0 & \xi_1^2 & 2\xi_1 \xi_2 & 3\xi_2^2 & \xi_1^3 & 3\xi_1 \xi_2^2 \\ 0 & 1 & 0 & 2\xi_1 & \xi_2 & 0 & 3\xi_1^2 & 2\xi_1 \xi_2 & \xi_2^2 & 0 & 3\xi_1^2 \xi_2 & \xi_2^3 \end{bmatrix}}_{\mathbf{P}(\xi)} \underbrace{\begin{bmatrix} \alpha_1(t) \\ \vdots \\ \alpha_{12}(t) \end{bmatrix}}_{\boldsymbol{\alpha}(t)}$$

- Then the DOFs in local coordinates are:

$${}^e \mathbf{q}^i(t) = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/b & 0 \\ 0 & 0 & -1/a \end{bmatrix}}_{\bar{\mathbf{P}}(\xi^i)} \mathbf{P}(\xi^i) \boldsymbol{\alpha}(t)$$

Shape functions matrix for the AMC element

- Since

$${}^e\mathbf{q}(t) = \begin{bmatrix} {}^e\mathbf{q}^1(t) \\ {}^e\mathbf{q}^2(t) \\ {}^e\mathbf{q}^3(t) \\ {}^e\mathbf{q}^4(t) \end{bmatrix} = \underbrace{\begin{bmatrix} \bar{\mathbf{P}}(\xi^1) \\ \bar{\mathbf{P}}(\xi^2) \\ \bar{\mathbf{P}}(\xi^3) \\ \bar{\mathbf{P}}(\xi^4) \end{bmatrix}}_{\mathbf{A}} \boldsymbol{\alpha}(t) \quad \Rightarrow \quad \boldsymbol{\alpha}(t) = \mathbf{A}^{-1} {}^e\mathbf{q}(t)$$

- Then the shape functions matrix is ${}^a\mathbf{H} = [{}^a\mathbf{h}_1 \quad {}^a\mathbf{h}_2 \quad {}^a\mathbf{h}_3 \quad {}^a\mathbf{h}_4] = \mathbf{P}_1 \mathbf{M}^{-1}$ where

$${}^a\mathbf{h}_i(\xi) = \begin{bmatrix} (1 + \xi_1^i \xi_1)(1 + \xi_2^i \xi_2)(2 + \xi_1^i \xi_1 + \xi_2^i \xi_2 - \xi_1^2 - \xi_2^2)/8 \\ b(1 + \xi_1^i \xi_1)(\xi_2^i + \xi_2)(\xi_2^2 - 1)/8 \\ -a(\xi_1^i + \xi_1)(\xi_1^2 - 1)(1 + \xi_2^i \xi_2)/8 \end{bmatrix}^T$$

and $\xi^i = \{\xi_1^i, \xi_2^i\}^T$ are the local coordinates of node i .

Deformation, stiffness, mass matrices and loads vector

- ${}^a\mathbf{B} = \nabla_k {}^a\mathbf{H}$ is a (3×12) matrix:

$${}^a\mathbf{B} = \begin{bmatrix} \frac{1}{a^2} \partial_{\xi_1}^2 \\ \frac{1}{b^2} \partial_{\xi_2}^2 \\ \frac{2}{ab} \partial_{\xi_1 \xi_2}^2 \end{bmatrix} \begin{bmatrix} {}^a\mathbf{h}_1 & {}^a\mathbf{h}_2 & {}^a\mathbf{h}_3 & {}^a\mathbf{h}_4 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \frac{1}{a^2} \partial_{\xi_1}^2 \\ \frac{1}{b^2} \partial_{\xi_2}^2 \\ \frac{2}{ab} \partial_{\xi_1 \xi_2}^2 \end{bmatrix} {}^a\mathbf{h}_1 & \dots & \begin{bmatrix} \frac{1}{a^2} \partial_{\xi_1}^2 \\ \frac{1}{b^2} \partial_{\xi_2}^2 \\ \frac{2}{ab} \partial_{\xi_1 \xi_2}^2 \end{bmatrix} {}^a\mathbf{h}_4 \end{bmatrix}$$

- ${}^e\mathbf{K}$ and ${}^e\mathbf{M}$ are (12×12) matrices and ${}^e\mathbf{r}$ is a (12×1) vector:

$${}^e\mathbf{K} = \frac{h^3}{12} \int_{\Omega} {}^e\mathbf{B}^T \mathbf{C} {}^e\mathbf{B} d\Omega = \frac{h^3 ab}{12} \int_{-1}^1 \int_{-1}^1 {}^a\mathbf{B}^T \mathbf{C} {}^a\mathbf{B} d\xi_1 d\xi_2,$$

$${}^e\mathbf{M} = \int_{\Omega} \rho h {}^e\mathbf{H}^T {}^e\mathbf{H} d\Omega = \rho h ab \int_{-1}^1 \int_{-1}^1 {}^a\mathbf{H}^T {}^a\mathbf{H} d\xi_1 d\xi_2,$$

$$\mathbf{r}(t) = \int_{\Omega} \mathbf{H}^T f_3(t) d\Omega = ab f_3(t) \int_{-1}^1 \int_{-1}^1 {}^a\mathbf{H}^T d\xi_1 d\xi_2.$$

Post processing

- The approximated stresses at any point (x_1, x_2, x_3) of the element e are given in term of the nodal displacements:

$${}^e\boldsymbol{\sigma}^h = \mathbf{C}^e \boldsymbol{\varepsilon}^h = -x_3 \mathbf{C} \nabla_k {}^e u_3^h = -x_3 \mathbf{C}^e \mathbf{B}^e \mathbf{q}(t)$$

- The approximated bending moments M_{11}^h and M_{22}^h and twisting moment M_{12}^h per unit length are given by:

$$\mathbf{M} = \begin{bmatrix} M_{11}^h \\ M_{22}^h \\ M_{12}^h \end{bmatrix} = \int_{-\frac{h}{2}}^{\frac{h}{2}} x_3 \begin{bmatrix} \sigma_{11}^h \\ \sigma_{22}^h \\ \sigma_{12}^h \end{bmatrix} dx_3 = -\frac{h^3}{12} \mathbf{C}^e \mathbf{B}^e \mathbf{q}(t)$$

Example: isotropic square plate in free vibrations

Example: isotropic square plate in free vibrations

Use the ACM element to estimate the five lowest frequencies of a square plate ($\ell \times \ell$) which is simply supported on all four edges.

Compare the results with the analytical solution

$$\omega_{m,n} = \pi^2 \frac{m^2 + n^2}{\ell^2} \sqrt{\frac{D}{\rho h}} \text{ rad/s,}$$

where ℓ is the length of each side and (m, n) are the number of half-waves in the x - and y -directions and D is flexural rigidity of the plate:

$$D = \frac{Eh^3}{12(1 - \nu^2)}.$$

Boundary conditions

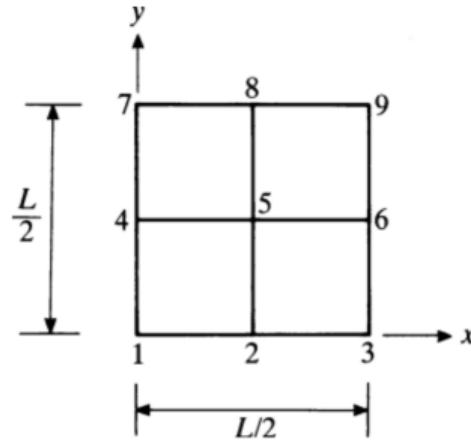


Figure 1: One-quarter of the plate represented by four rectangular elements.

(Credit: (P))

Frequencies estimate for square plate with ACM element

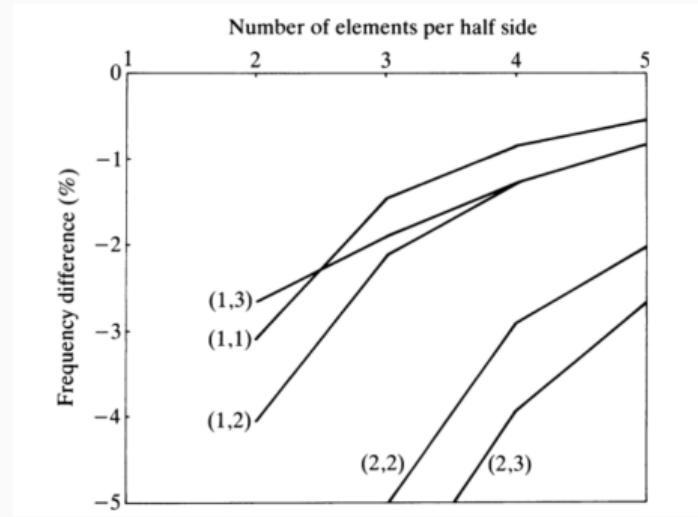


Figure 2: Relative errors for simply supported (S) square plate.

(Credit: (P))

Example: isotropic square plate in free vibrations

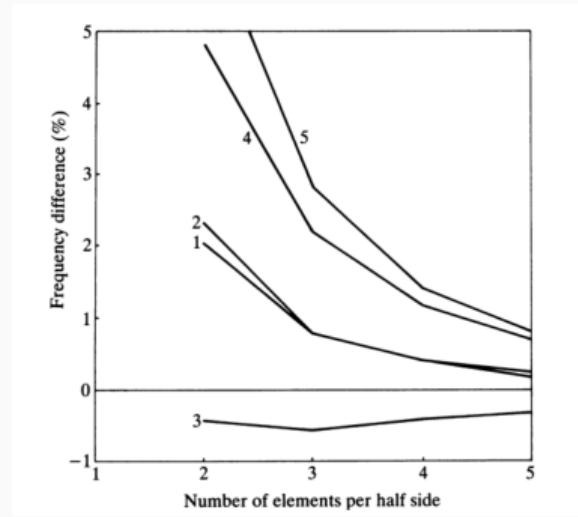


Figure 3: Relative errors for simply supported (S)/free (F) square plate.

Dynamic analysis of Kirchhoff-Love plates

Modal patterns

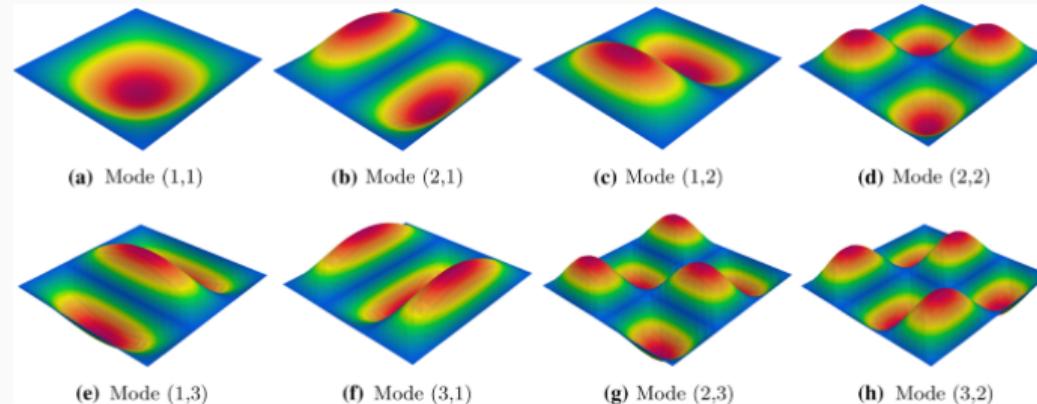


Figure 4: Vibration mode shape for a simply supported (S) square plate.

(Credit: Pagani, Azzara, Carrera - Geometrically nonlinear analysis and vibration of in-plane-loaded variable angle tow composite plates and shells)

Modal patterns

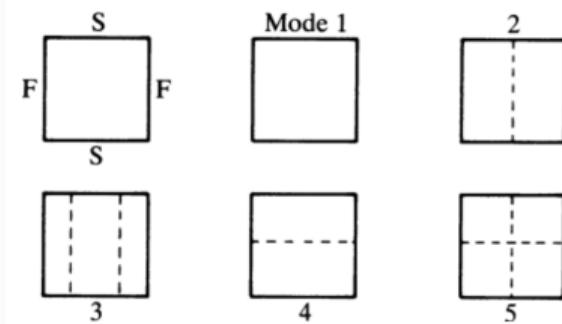


Figure 5: Mode shapes of a simply supported (S)/free (F) square plate.

(Credit: (P))

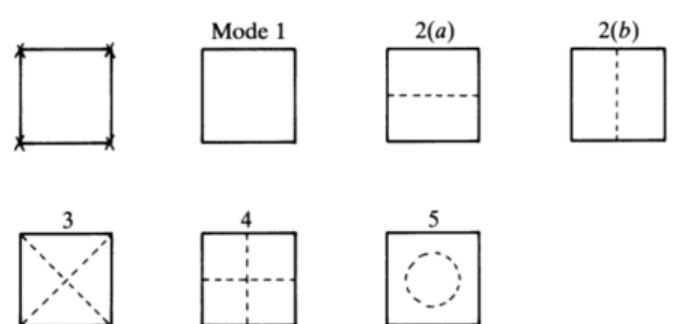


Figure 6: Mode shapes of a corner supported square plate.

Frequencies estimate for square plate with AMC element

First six natural frequencies of a square plate of side $\ell = 0.3048$ m and thickness $h = 3.2766$ mm which is point supported at its four corners.

$$E = 73.084 \cdot 10^9 \text{ N/m}^2, \nu = 0.3, \rho = 2821 \text{ kg/m}^3.$$

Mode	FEM [6.9]		Analytical		Experimental
	(2 × 2)	(4 × 4)	[6.7]	[6.8]	[6.7]
1	62.15	62.09	61.4	61.11	62
2(a), (b)	141.0	138.5	136	134.6	134
3	169.7	169.7	170	166.3	169
4	343.7	340.0	333	331.9	330
5	397.4	396.0	385	383.1	383

Figure 7: Comparison of predicted and analytical frequencies of a corner supported square plate

CR thin plate bending elements

Selection of the displacement function

		1			Constant		
		x_1	x_2			Linear	
		x_1^2	$x_1 x_2$	x_2^2			Quadratic
x_1^3		$x_1^2 x_2$	$x_1 x_2^2$	x_2^3		Cubic	
$x_1^3 x_2$		$x_1^2 x_2^2$	$x_1 x_2^3$			Quartic	
		$x_1^3 x_2^2$	$x_1^2 x_2^3$			Quintic	
		$x_1^3 x_2^3$				Sextic	

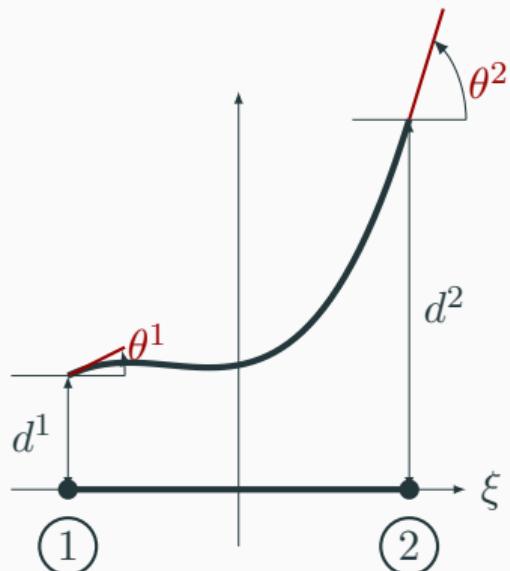
Displacement approximation for rectangular elements with four nodes and 16 dofs (4 dofs per node): complete cubic polynomial, augmented with three quartic, two quintic and one sextic terms:

$$\begin{aligned}
{}^e u_3^h(x_1, x_2, t) = & \color{red}{a_1 + a_2 x_1 + a_3 x_2 + a_4 x_1^2 + a_5 x_1 x_2 + a_6 x_2^2 +} \\
& \color{red}{+ a_7 x_1^3 + a_8 x_1^2 x_2 + a_9 x_1 x_2^2 + a_{10} x_2^3 +} \\
& \color{orange}{+ a_{11} x_1^3 x_2 + a_{12} x_1 x_2^3 + a_{13} x_1^2 y^2 + a_{14} x_1^3 y^2 + a_{15} x_1^2 y^3 + a_{16} x_1^3 y^3}
\end{aligned}$$

Recall: transversal bending for Euler-Bernoulli beam

Approximated transversal displacement u_2^h as a function of the nodal DOFs:

$${}^e u_2^h(\xi, t) = \mathbf{H}(\xi) \mathbf{q}(t) = [h_1(\xi), h_2(\xi), h_3(\xi), h_4(\xi)] \begin{bmatrix} d^1(t) \\ \theta^1(t) \\ d^2(t) \\ \theta^2(t) \end{bmatrix}$$



C^1 Hermite shape functions on $[-1, 1]$:

$$h_1(\xi) = (\xi^3 - 3\xi + 2)/4$$

$$h_3(\xi) = (-\xi^3 + 3\xi + 2)/4$$

$$h_2(\xi) = (\xi^3 - \xi^2 - \xi + 1)/4$$

$$h_4(\xi) = (\xi^3 + \xi^2 - \xi - 1)/4$$

Shape functions matrix: a first try

- Let ξ^i be the coordinate of the node i . Then the Hermite shape functions matrix is $\mathbf{H}(\xi) = [f_1 \ g_1 \ f_2 \ g_2]$ where

$$f_i(\xi) = (-\xi^i \xi^3 + 3\xi^i \xi + 2)/4 \quad g_i(\xi) = (\xi^3 + \xi^i \xi^2 - \xi - \xi^i)/4.$$

- The shape functions matrix for the plate bending element is a product of Hermite functions:

$${}^a\mathbf{H} = \begin{bmatrix} {}^a\mathbf{h}_1 & {}^a\mathbf{h}_2 & {}^a\mathbf{h}_3 & {}^a\mathbf{h}_4 \end{bmatrix}$$

where

$${}^a\mathbf{h}_i(\xi) = \begin{bmatrix} f_i(\xi_1) f_i(\xi_2) \\ b f_i(\xi_1) g_i(\xi_2) \\ -a g_i(\xi_1) f_i(\xi_2) \end{bmatrix}^T.$$

Zero-twist constraint

- The approximate displacement in local coordinate is defined as:

$${}^e u_3^h(\boldsymbol{\xi}, t) = \sum_{i=1}^4 {}^a \mathbf{h}_i(\xi_1, \xi_2) {}^e \mathbf{q}^i(t) = {}^a \mathbf{H}(\boldsymbol{\xi}) {}^e \mathbf{q}(t)$$

✗ The twist

$$\frac{\partial^2}{\partial \xi_1 \partial \xi_2} {}^e u_3^h(\boldsymbol{\xi}, t)$$

is zero at the four nodal points. Thus the plate will tend to a zero twist condition as an increasing number of elements are used.

Solution: introduce

$$\theta_{12}^i = \frac{\partial^2}{\partial \xi_1 \partial \xi_2} {}^e u_3^h(\boldsymbol{\xi}^i, t)$$

as an extra degree of freedom.

Shape functions matrix for the CR element

The approximate displacement in local coordinate is defined as:

$${}^e u_3^h(\boldsymbol{\xi}, t) = \sum_{i=1}^4 {}^a \mathbf{h}_i(\boldsymbol{\xi}) {}^e \mathbf{q}^i(t) = {}^a \mathbf{H}(\boldsymbol{\xi}) {}^e \mathbf{q}(t)$$

- 4 dofs per node:
$${}^e \mathbf{q}^i(t) = \begin{bmatrix} {}^e d^i(t) \\ {}^e \theta_1^i(t) \\ {}^e \theta_2^i(t) \\ {}^e \theta_{12}^i(t) \end{bmatrix} = \begin{bmatrix} {}^e u_3^h(\boldsymbol{\xi}^i, t) \\ \partial_{\xi_2} {}^e u_3^h(\boldsymbol{\xi}^i, t)/b \\ -\partial_{\xi_1} {}^e u_3^h(\boldsymbol{\xi}^i, t)/a \\ \partial_{\xi_1 \xi_2}^2 {}^e u_3^h(\boldsymbol{\xi}^i, t)/(ab) \end{bmatrix}$$
- The shape function matrix is
$${}^a \mathbf{H} = \begin{bmatrix} {}^a \mathbf{h}_1 & {}^a \mathbf{h}_2 & {}^a \mathbf{h}_3 & {}^a \mathbf{h}_4 \end{bmatrix}$$
 where

$${}^a \mathbf{h}_i(\boldsymbol{\xi}) = \begin{bmatrix} f_i(\xi_1) f_i(\xi_2) \\ b f_i(\xi_1) g_i(\xi_2) \\ -a g_i(\xi_1) f_i(\xi_2) \\ a b g_i(\xi_1) g_i(\xi_2) \end{bmatrix}^T$$

Boundary conditions

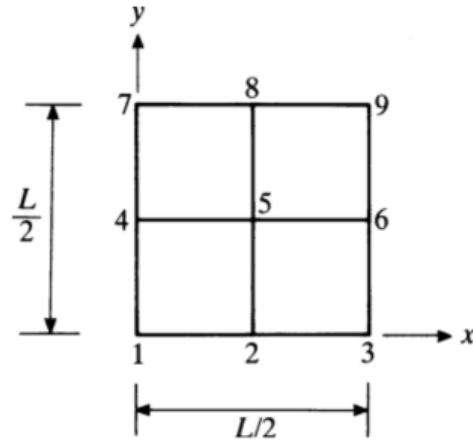


Figure 8: One-quarter of the plate represented by four rectangular elements.

(Credit: (P))

■ Simple support:

- sides 1-3: $u_3 = \theta_2 = 0$ at nodes 1, 2, and 3,
- sides 1-7: $u_3 = \theta_1 = 0$ at nodes 1, 4, and 7.

■ Symmetric modes:

- with respect to side 3-9: $\theta_2 = \theta_{12} = 0$ at nodes 3, 6, and 9,
- with respect to side 7-9: $\theta_1 = \theta_{12} = 0$ at nodes 7, 8, and 9.

■ Antisymmetric modes:

- with respect to side 3-9: $u_3 = \theta_1 = 0$ at nodes 3, 6, and 9.
- with respect to side 7-9: $u_3 = \theta_2 = 0$ at nodes 7, 8, and 9.

Example: isotropic square plate in free vibrations

Frequencies estimate for square plate with CR element

The CR element is used to estimate the first lowest frequencies of a square plate ($\ell \times \ell$) which is simply supported on all four edges.

Mode	FEM grids ($\frac{1}{4}$ plate)			
	2×2	3×3	4×4	5×5
(1, 1)	0.02	0.01	0.0	0.0
(1, 2), (2, 1)	0.26	0.05	0.02	0.01
(2, 2)	0.22	0.04	0.01	0.01
(1, 3), (3, 1)	1.51	0.32	0.11	0.04
(2, 3), (3, 2)	0.99	0.21	0.07	0.03

Figure 9: Relative errors for simply supported (S) square plate.

Frequencies estimate for square plate with CR element

First six natural frequencies of a square plate of side $\ell = 0.3048$ m and thickness $h = 3.2766$ mm which is point supported at its four corners.

$$E = 73.084 \cdot 10^9 \text{ N/m}^2, \nu = 0.3, \rho = 2821 \text{ kg/m}^3.$$

Mode	FEM [6.9] (CR)		Analytical		Experimental
	(2 \times 2)	(4 \times 4)	[6.7]	[6.8]	[6.7]
1	62.03	61.79	61.4	62.11	62
2(a), (b)	138.9	134.9	136	134.6	134
3	169.7	169.6	170	166.3	169
4	338.9	335.1	333	331.9	330
5	391.5	387.5	385	383.1	383

Figure 10: Comparison of predicted and analytical frequencies of a corner supported square plate

Comparison: AMC vs CR plate bending element

CR element (Conforming)

- 4 degrees of freedom per node: u_3 , θ_1 , θ_2 , and θ_{12} .
- Displacement u_3 and rotations θ_1, θ_2 are continuous across element boundaries.
- Fully conforming to the C^1 continuity required by Kirchhoff plate theory.
- Higher computational cost and complexity.

AMC element (Nonconforming)

- 3 degrees of freedom per node: u_3 , θ_1 , θ_2 .
- Only displacement u_3 is continuous across elements; rotations may have jumps.
- Nonconforming element: does not fully satisfy C^1 continuity.
- Simpler and computationally cheaper; suitable for practical applications.

Why would you use AMC element if it's nonconforming?

- Computationally cheaper than full C^1 elements (fewer dofs).
- It still converges (theoretical results for nonconforming FEMs show convergence under certain conditions).
- Suitable when small slope discontinuities are acceptable (e.g., dynamic problems, large meshes).
- Tends to underestimate the natural frequencies, making it a useful benchmark for detecting overstiffness in numerical model.