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Dynamic analysis of Kirchhoff-Love plates

Classical structural elements

ME473 Dynamic finite element analysis of structures

Stefano Burzio
deformed plate

2025

initial plate

‘I ~ “initial mid-surface



Where do we stand?

Week | Module Lecture topic Mini-projects
1 Strong and weak forms
2 Linear Galerkin method Groups formation
3 elastodvnamics FEM global Project 1 statement
1 4 FEM local
5 FEM local Project 1 submission
6 Bars and trusses Project 2 statement
7 Classical structural | Beams
8 elements Frames and grids
9 Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement




Summary
m Recap weeks 1-9
m AMC thin plate bending elements
m Example: modal analysis of a simply supported thin plate
m CR thin plate bending elements

m Example: modal analysis of a simply supported thin plate

Recommended readings

(L) Logan, A first course in the finite element method, 6th ed. (chap. 12)
(P) Petyt, Introduction to finite element vibration analysis (chap. 6)

(O) Ochsner, PDE for classical structural members (chap. 7)



Recap weeks 1-5: vibration of solids



Statement of the linear elastodynamics problem

m Object:

A solid © C R3 with known material properties: C and p. a I
u
m Main features:
® Acting loads on the body: f. r
® Boundary I' =T, UT, (the surface enclosing the solid). ’
® Boundary conditions: prescribed displacements @ on I, f
and/or loads f on T',.
® Initial displacement ug and velocity vy at ¢t = 0. 5 5
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Strong and semi-discrete weak forms of elastodynamics

Strong form

PDE:
VICVu + f = pii

BC on I'y:
u=1

BC on I',:
N”CVu = f

IC at t =0:

u:uo,fl:VO

Recap weeks 1-5: vibration of solids

Semi-discrete weak form

ODE:
57 [Ma(t) + Ka(t) — x(8)] =0

Displacement approximation:
u'(x, 1) = H(x)a(t) = 37, hi(x)q;(t)

IC at t = 0:
q(0) = qo
q(0) = po

Dynamic analysis of Kirchhoff-Love plates
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Displacements approximation in finte element method
m Stiffness matrix:
K= / BTCBdQ
Q

where B = VH.

m Mass matrix:

M = / pHTH dQ.
Q

m Applied forces vector:

r(t) :/ Hder+/HdeQ.
I Q

Recap weeks 1-5: vibration of solids Dynamic analysis of Kirchhoff-Love plates 6 /43



Recap weeks 6-8: vibration of 1d structures




Trusses vs frames

Truss

m Structure composed of oriented bar (rod) elements, connected by frictionless
pins, carrying axial forces.

Frame

m Structure composed of oriented beam elements, connected by welding,
carrying transversal, axial forces and torsion.

P § -  W— i Y]
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Three-dimensional beam structure

*/ / r/ /
./l,l/' ”Il,z/ ,/2_1/- ”12,1/

. £l a0l _ AN

Jox> 1112(1.
fl/,:’"”/]: (D f‘.:‘]“‘/_): \)!@

N ~|

Three-dimensional beams are uniaxial (slender) element that can support:

s /!
m axial loads f;,,

m torsional loads m/_,

m bending in the 2’ — ¢ plane: f;, and mj,,

/

m bending in the ' — 2’ plane: f;, and m;,.
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Differential equations governing the dynamics

u2,02

]
Pg
u3, 93
Bars
Shafts
Planar beams o2,
Planar beams 19)

EAD% jui(2',t) = pAiiy (2, 1)
GJ32 /(;51(36' )—pJ(;Sl(ac’,t)

/(EIZ() sua(z 1) ) + pAiig(z’,t) =0
o (E1,0% yus (2 1)) + )=0

pAiiz (2t

I, and I, are the cross-sectional moments of inertia with respect to the axes y and z.

Recap weeks 6-8: vibration of 1d structures

Dynamic analysis of Kirchhoff-Love plates

9 /43



Displacements discretization

Total of six nodal displacements at each unconstrained joint:

m three translation components ¢;,, ¢;, and ¢;, along t

/

m three rotational components about these axes ¢;,,

uh(gc’, t) = H(2')quoc(t)

[ ¢}, ()]
a1y (1)
i, (t)
3. (t) hi(z') =1—2a'/¢
“”Ez/(‘> ha(z') = 2(z’ /0)® — 3(z'/0)% + 1
Qioc(t) = J”Ef? ha(a') = 2(2’/0)® = 3(z'/0)° +1
b, (1) ha(z')=1-2a'/t
4z, (t) hs(z') = o' (1 — 2’ /0)?
#22(8 ho(a') = &/ (1 — o' /D)
Py (1)
[ 4o

he x, y, z axes, and

/ /
1y and ¢zz

he(z') =3’/

he(z') = 3(z" /) — 2(2" /0)°

ho(z') = 3(z' /€)% — 2(z" /0)°
hig(z') =z’ /¢
hi1(z") = 2’ (2" /€) (2" /2 — 1)
hiz(a') = 2’ (2 /&) (2" /£ — 1)
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Recap week 9: vibration of 2d structures




Plate structure

m Plate structures are geometrically similar to structures of the 2D plane stress
problem, but it usually carries only transversal loads that lead to bending
deformation of the plate.

m For example: floors of a building, aerospace and ships structures, etc...

Z/

m(z,y

Ay

2a

(Credit: (0))
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Kirchhoff assumption

Rectilinearity and orthogonality of the cross-sectional normals:
Bernoulli’s hypothesis is valid, i.e. a cross-sectional plane stays plane and
perpendicular to the middle surface in the deformed state.

undeformed

deformed

A, Middle Surface

Shear strains €13 and €23 due to the distributed shear forces ¢, and ¢, are
neglected.

(Credit: (N))
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Strong form for Kirchhoff-Love plate bending

Let Q = [—a,a] x [~b,b]. Find the transverse displacement ug € C*(Q x [0,T1])
such that

h3
EV%CV}{LL?, + phiis = f3 on QX]O, T[
boundary conditions (simply supported): initial conditions:

us =0 in 8Qx]0,T[
M=0 indQx]0,T]

In case of isotropic material equation (1) reduces to

_l’_

(04U3 8411,3 8411,3

oz} * 2836%81% ox} ) - phiia = fs

where D = Eh3/(12(1 — v?)).
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Weak form for Kirchhoff-Love plate bending

The weak form consists of finding the transverse displacement us € U such that
the following equation is satisfied for every dug € V:

3
h—/ VkU3CVk(SU3dQ+/philg(su;;dQ:/f3(5U3dQ
12 Jq Q Q

U= {us(-,t) € H*(Q) | uz = 0 in 99x]0,T[}
V= {dus € H*(Q) | 6uz =0 in o0}
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Shell element

Shell elements:
m have 5 DOFs per node, no rotation ¢65.
m lead to huge computational time savings since allow modeling with fewer mesh
elements.
m less prone to negative Jacobian errors which might occur when using
extremely thin 3d solid elements.
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Shape functions matrix

1 o o
61,62) | + 36tk (<B1°v] + °05°v)

> Hi() (1)

S

@
Il
e

“h; 0 0
0 % 0
0 0 %h

1 .
— 56815 *hi “vgy
1 .
—563°t5 “hi v

1 . )
— = €5° “h “uiy

1 . .
5535% “h; vy
1. .
553% “h; “vig

1 . )
€%t} *hy ol

Recap week 9: vibration of 2d structures

aHi
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Example: 8 nodes quadrangular shell element
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Thin plate bending elements




Overview of thin plate bending elements

Numerous finite elements for plate bending have been developed: more than 88
distinct types can be identified.

Quadrangular vs triangular

Thin

plate Conforming vs not conforming (C° vs C1)
elements

Higher order approximation

m Adini-Melosh-Clough element (AMC): 12 dofs quadrangular, not
conforming, thin plate.

m Crouzeix—Raviart (CR): 16 dofs quadrangular, conforming, thin plate.
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Finite element approximation of Kirchhoff-Love plate

m Weak form equation

h3
— / Vku;z,C Vk5U3 a2 + / ph ’dg 5U3 dQ) = / f3 (511,3 ds?
12 Jq Q Q

m Semi-discrete weak form

Mq(t) + Kq(t) = r(t)

Finite element approximation using polynomial shape functions:

B(xy, o, t Z hy (71, 22)°q’ (1) = “H(x)°q(t)
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Selection of the displacement function

To ensure convergence it is necessary to consider:

Completeness criterion:
highest order of derivatives in
the weak form is 2.

Complete polynomials of at least

degree 2:
6u§ =a1 + asr + asy+
+ a4x2 + aszry + a6y2+

+ higher order terms

Continuity criterion:
Cult Oy, fult, Oy, ult are con-
tinuous between elements.

Thin plate bending elements

Each node ¢ has 3 DOFs:
m °d’ vertical displacement,

m “0%, 0} rotations.

Dynamic analysis of Kirchhoff-Love plates

20 / 43



AMC plate bending elements




Selection of the displacement function

1 Constant
T To Linear
z2 12 0 Quadratic
z3 230 T173 T3 Cubic
rt 379 z2x2 175 73 | Quartic

Displacement approximation for rectangular elements with four nodes and

thus 12 dofs: complete cubic polynomial, augmented with two (geometrically
invariant) quartic terms

2 2
eué}(ml, z2,t) = a1 + agx1 + a3z + aax] + asr1T2 + agTi+
3 2 2 K 8 3
+ (17;(7f + agxixr2 + agxr1xy + ('1,1(.;(?3 + a 1,:‘f,z‘»_> + a122125
v Displacement approximation solves the unloaded strong form equation.

v Continuity in displacement along the interfaces of the elements.

X Slopes continuity along the interfaces are not ensured (not conforming).
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Coordinate transform

The coordinate transformation:

°T: Q0 - °Q
€= {66} = x(§) = {21(6), 22(6)}" = {a&1,06}"
maps any point £ in Q% = [—1,1] x [—1,1] to its corresponding point of coordinate

x(€) in °Q = [—a, a] x [-b, b]:

Z2

13

2a
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Approximate displacement in local coordinates

eq1<t)
! €2
W€, 6) =) “hi(€)°q’(t) = “H(E)°a(t) = [*hi(€) “ha(§) “hs(§) “hu(€)] 3&3
=1
eq4(t)
where
I D B I ()
= a) = |00 = | 2unbiE
“03(t) —0g, “u3 (€', t) /a

m &' are the local coordinates of node i.
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Dofs in local coordinates

m Assumed form of the displacement function:

" 1 & & & &b & & 86 a8 8 g6 ag ] |0
de,uf| =10 0 1 0 & 26 0 & 206 35 & 366 :
O, “ul 0 1 0 24 & 0 382 266 & 0 3¢ & ans(t)

m Then the DOF's in local coordinates are:

| 10 0 |
‘a'(t)= |0 1/b 0 | P(&)a()
0 0 —1/a

P(¢)
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Shape functions matrix for the AMC element

m Since

°ql(t) P(¢')
e 2 D (2
B N I
‘q’(t) P(¢%)
A

[ahl %hy  “hg ah4]:P1M_l

m Then the shape functions matrix is *H
where
(1+&6)(1+&6)(2+ &6 + &6 — & — €)/8]"
“hi(§) = b(1 + &161)(& + &)(63 — 1)/8
—a(&f + &) — 1)(1 +€56)/8

and &' = {¢&, €37 are the local coordinates of node i.

Dynamic analysis of Kirchhoff-Love plates
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Deformation, stiffness, mass matrices and loads vector

m ‘B=V;’His a (3 x 12) matrix:

1 92 1 92 1 92
aﬁaﬁl aja& 57651
“B= | %%, | [*hy °hy °hy °hy)=| | #% |“h ... | #%, | Wy
2 02 2 92 2 92
%aﬁléz Eaﬁl& Ea&l&

m ‘K and “M are (12 x 12) matrices and °r is a (12 x 1) vector:

3 3 1 1
ex - 2 / ‘BTCBd — -2 / / “BTCB dé s,
0 1J-1

12 12

1 1
°M = / ph¢HT°H dQ = phab / / THTH d¢,dés,
Q —-1J-1

1 1
r(t) = /QHng(t) dQ = abfs(t) /_1 /_IQHngldfg.
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Post processing

m The approximated stresses at any point (x1,x2,x3) of the element e are given
in term of the nodal displacements:

toh = C%" = —x3CV,ful =

23C°Beq(t)

m The approximated bending moments M}, and MZ, and twisting moment M},
per unit length are given by:

MlZl % Ugl h3
M= |M}| = / L3 |0y dxs = —ECeBeq(t)
M, 2 oty

AMC plate bending elements
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Example: isotropic square plate in free
vibrations




Example: isotropic square plate in free vibrations

Use the ACM element to estimate the five lowest frequencies of a square plate
(¢ x ¢) which is simply supported on all four edges.

Compare the results with the analytical solution

2 2
m°4+n D
Wmn = WQT pih rad/s,

where £ is the length of each side and (m,n) are the number of half-waves in the -
and y-directions and D is flexural rigidity of the plate:
Eh3
D=——.
12(1 — v?)
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Boundary conditions

T m Simple support:
7 8 9 ® sides 1-3: uz = 6 = 0 at nodes 1, 2, and 3,
® sides 1-7: us = 0y = 0 at nodes 1, 4, and 7.
% 4 5 6 m Symmetric modes:
® with respect to side 3-9: #; = 0 at nodes 3, 6, and 9,
. ® with respect to side 7-9: #; = 0 at nodes 7, 8, and 9.
! 2 3 m Antisymmetric modes:
L2 ® with respect to side 3-9: uz = #; = 0 at nodes 3, 6,
and 9.
Figure 1: One-quarter of ° Wighgrespect to side 7-9: usz = 03 = 0 at nodes 7, §,
and 9.

the plate represented by
four rectangular elements.
(Credit: (P))
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Frequencies estimate for square plate with ACM element

Frequency difference (%)

|
~

|
w

|
IS

-5

Number of elements per half side
2 3 4 S

(1.3)
[ER))

(1,2
22 2.3)

Figure 2: Relative errors for simply
supported (S) square plate.

(Credit: (P))

Example: isotropic square plate in free vibrations

Frequency difference (%)

o

P————

2 3 4
Number of elements per half side

Figure 3: Relative errors for simply
supported (S)/free (F) square plate.

Dynamic analysis of Kirchhoff-Love plates
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Modal patterns

O

(a) Mode (1.1} (h) Mode (2.1) (e) Mode (1,2) (d) Mode (2,2)
(e) Mode (1,3) (f) Mode (3,1) (g) Mode (2,3 (h) Maode (3,2)

Figure 4: Vibration mode shape for a simply supported (S) square plate.

(Credit: Pagani, Azzara, Carrera - Geometrically nonlinear analysis and vibration of

in-plane-loaded variable angle tow composite plates and shells)
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Modal patterns

S Mode 1 2
F F ;
|
S
L T
1 ' '
[ L - Lol
' | ]
1 ' '
i ! :
3 4 5

Figure 5: Mode shapes of a simply
supported (S)/free (F) square plate.

(Credit: (P))

Example: isotropic square plate in free vibrations

Mode 1 2(a) 2(b)
3 4 5
Ve S ’

Figure 6: Mode shapes of a corner
supported square plate.

Dynamic analysis of Kirchhoff-Love plates
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Frequencies estimate for square plate with AMC element

First six natural frequencies of a square plate of side £ = 0.3048 m and thickness
h = 3.2766 mm which is point supported at its four corners.
E =73.084-10° N/m?, v = 0.3, p = 2821 kg/m®.

FEM [6.9] Analytical Experimental
Mode 2x2) (4x4) [6.7] [6.8] [6.7]
1 62.15 62.09 61.4 61.11 62
2(a), (b) 141.0 138.5 136 134.6 134
3 169.7 169.7 170 166.3 169
4 343.7 340.0 333 331.9 330
5 397.4 396.0 385 383.1 383

Figure 7: Comparison of predicted and analytical frequencies of a corner supported
square plate
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CR thin plate bending elements




Selection of the displacement function

1 Constant
T T Linear
z2 122 x5 Quadratic
Cubic
Quartic
Quintic
Sextic

Displacement approximation for rectangular elements with four nodes and 16
dofs (4 dofs per node): complete cubic polynomial, augmented with three quartic,
two quintic and one sextic terms:

h 2 2
“ug(z1,T2,t) = a1 + azx1 + azr2 + a4y + a5T1T2 + AT+
3 2 2 3
+ ayxy + agxrix2 + agri1Ts + ajpry+
+
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Recall: transversal bending for Euler-Bernoulli beam

Approximated transversal displacement u% as a function of the nodal DOFs:

dl(@

0L (t

0
(€ 6) = BHO)a(t) = 1 (@), ha(e), ha(®), ha(©)) | oty
)

6% (¢
92

C' Hermite shape functions on [-1,1]:
2 hi(€) = (€8 =3¢ +2)/4
- ha(§) = (=€ + 35 +2)/4
d! ha(€) = (€2 — €2 —€+1)/4
o 65 ha(§) = (¢ +£2 §-1)/4
CR thin plate bending elements Dynamic analysis of Kirchhoff-Love plates
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Shape functions matrix: a first try

m Let £ be the coordinate of the node i. Then the Hermite shape functions
matrix is H(E) = [f1 g1 f2 g2] where

fi(€) = (=€°¢* + 3€'€ + 2) /4 gi(€) = (€ + €& —¢-€)/4

m The shape functions matrix for the plate bending element is a product of
Hermite functions:
‘H = [“hl hy  “hg “h4]

where
Tr

fi(&1) fi(&2)
“h;(&) = | bfi(&1)gi(&2)
—agi(&1) fi(&2)
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Zero-twist constraint

m The approximate displacement in local coordinate is defined as:
4 .
“uf(€,0) =Y *hi(61,&)°d () = “H(£)a(?)
i=1

X The twist
T _eubie,n
0608 2
is zero at the four nodal points. Thus the plate will tend to a zero twist
condition as an increasing number of elements are used.

Solution: introduce o
Hi _ euh i7 t
12 agl 852 3 (E )
as an extra degree of freedom.

CR thin plate bending elements Dynamic analysis of Kirchhoff-Love plates
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Shape functions matrix for the CR element

The approximate displacement in local coordinate is defined as:

4
uf(€,1) =Y “hi(§)°a’(t) = “H(£)q(t)
i=1
cd'(t) h(fi )
Cecicny _ | O1®) | _ | Oe uz(€h,)/b
m 4 dofs per node: ¢q'(t) = e@;(t) = —651 ( 9)/a
°0%,(t) 0z ¢, uls (€',1)/ (ab)
m The shape function matrix is “H = [ahl %hy %hgs “h4] where
fi(('él))fi((ﬁz)) !
ar. e _ | 0fi(&1)gi(&2
hi(8) = —ag;(&1) fi(&2)
abgi(£1)gi(&2)

CR thin plate bending elements Dynamic analysis of Kirchhoff-Love plates



Boundary conditions

y
7 $ 9
L
73 4 3 6
1 2 37
77

Figure 8: One-quarter of
the plate represented by
four rectangular elements.

(Credit: (P))

CR thin plate bending elements

m Simple support:

® sides 1-3: uz = 03 = 0 at nodes 1, 2, and 3,
® sides 1-7: ug = 01 = 0 at nodes 1, 4, and 7.
m Symmetric modes:
with respect to side 3-9: 05 = 015 = 0 at nodes 3, 6,

and 9,

with respect to side 7-9: #; = 615 = 0 at nodes 7, 8,

and 9.

m Antisymmetric modes:

with respect to side 3-9: uz = #; = 0 at nodes 3, 6,

and 9.

with respect to side 7-9: uz = 65 = 0 at nodes 7, 8,

and 9.

Dynamic analysis of Kirchhoff-Love plates
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Example: isotropic square plate in free
vibrations




Frequencies estimate for square plate with CR element

The CR element is used to estimate the first lowest frequencies of a square plate
(¢ x ¢) which is simply supported on all four edges.

FEM grids (; plate)

Mode 2x2 3x3 4x4 5x5
1,1 0.02 0.01 0.0 0.0
(1,2),(2,1) 0.26 0.05 0.02 0.01
2,2) 0.22 0.04 0.01 0.01
(1,3),(3,1) 1.51 0.32 0.11 0.04
2,3),(3,2) 0.99 0.21 0.07 0.03

Figure 9: Relative errors for simply supported (S) square plate.
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Frequencies estimate for square plate with CR element

First six natural frequencies of a square plate of side £ = 0.3048 m and thickness
h = 3.2766 mm which is point supported at its four corners.
E =73.084-10° N/m?, v = 0.3, p = 2821 kg/m®.

FEM [6.9] (CR) Analytical Experimental
Mode 2x2) (4 x4) [6.7] [6.8] [6.7]
1 62.03 61.79 61.4 62.11 62
2(a), (b) 138.9 134.9 136 134.6 134
3 169.7 169.6 170 166.3 169
4 338.9 335.1 333 331.9 330
5 391.5 387.5 385 383.1 383

Figure 10: Comparison of predicted and analytical frequencies of a corner supported

square plate

Example: isotropic square plate in free vibrations
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Comparison: AMC vs CR plate bending element

CR element (Conforming)
m 4 degrees of freedom per node: ug, 01, 02, and 612.
m Displacement u3 and rotations 61, #2 are continuous across element boundaries.
m Fully conforming to the C! continuity required by Kirchhoff plate theory.

m Higher computational cost and complexity.

AMC element (Nonconforming)

3 degrees of freedom per node: ug, 01, 5.

Only displacement ug is continuous across elements; rotations may have jumps.

Nonconforming element: does not fully satisfy C'' continuity.

Simpler and computationally cheaper; suitable for practical applications.

Example: isotropic square plate in free vibrations Dynamic analysis of Kirchhoff-Love plates 42 / 43



Why would you use AMC element if it’s nonconforming?

Computationally cheaper than full C' elements (fewer dofs).

]

m It still converges (theoretical results for nonconforming FEMs show
convergence under certain conditions).

m Suitable when small slope discontinuities are acceptable (e.g., dynamic

problems, large meshes).

m Tends to underestimate the natural frequencies, making it a useful benchmark
for detecting overstiffness in numerical model.

Example: isotropic square plate in free vibrations Dynamic analysis of Kirchhoff-Love plates 43 / 43



	Recap weeks 1-5: vibration of solids
	Recap weeks 6-8: vibration of 1d structures
	Recap week 9: vibration of 2d structures
	Thin plate bending elements
	AMC plate bending elements
	Example: isotropic square plate in free vibrations
	CR thin plate bending elements
	Example: isotropic square plate in free vibrations

