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Where do we stand?

Week Module Lecture topic Mini-projects

1

Linear
elastodynamics

Strong and weak forms
2 Galerkin method Groups formation
3 FEM global Project 1 statement
4 FEM local
5 FEM local Project 1 submission

6
Classical structural
elements

Bars and trusses Project 2 statement
7 Beams
8 Frames and grids
9 Kirchhoff-Love plates Project 2 submission
10 Kirchhoff-Love plates Project 3 statement



Summary

Recap weeks 1-9

AMC thin plate bending elements

Example: modal analysis of a simply supported thin plate

CR thin plate bending elements

Example: modal analysis of a simply supported thin plate

Recommended readings

(L) Logan, A first course in the finite element method, 6th ed. (chap. 12)

(P) Petyt, Introduction to finite element vibration analysis (chap. 6)

(O) Ochsner, PDE for classical structural members (chap. 7)



Recap weeks 1-5: vibration of solids



Statement of the linear elastodynamics problem

Object:
A solid Ω ⊂ R3 with known material properties: C and ρ.

Main features:
• Acting loads on the body: f .

• Boundary Γ = Γu ∪ Γσ (the surface enclosing the solid).

• Boundary conditions: prescribed displacements û on Γu

and/or loads f̂ on Γσ.

• Initial displacement u0 and velocity v0 at t = 0.

Ω

Γu
û

Γσ

f̂ f̂

f̂
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Strong and semi-discrete weak forms of elastodynamics

Strong form Semi-discrete weak form

PDE:
∇TC∇u+ f = ρü

BC on Γu:
u = û

BC on Γσ:
NTC∇u = f̂

IC at t = 0:
u = u0, u̇ = v0

ODE:
δqT

[
Mq̈(t) +Kq(t)− r(t)

]
= 0

Displacement approximation:
uh(x, t) = H(x)q(t) =

∑p
i=1 hi(x)qi(t)

IC at t = 0:

q(0) = q0

q̇(0) = p0
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Displacements approximation in finte element method

xi, hi

qi

eΩ Γ

Stiffness matrix:

K =

∫
Ω
BTCB dΩ

where B = ∇H.

Mass matrix:

M =

∫
Ω
ρHTH dΩ.

Applied forces vector:

r(t) =

∫
Γσ

HT f̂ dΓ +

∫
Ω
HT f dΩ.
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Recap weeks 6-8: vibration of 1d structures



Trusses vs frames

Truss

Structure composed of oriented bar (rod) elements, connected by frictionless
pins, carrying axial forces.

Frame

Structure composed of oriented beam elements, connected by welding,
carrying transversal, axial forces and torsion.
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Three-dimensional beam structure

f ′
1y,m

′
1y f ′

2y,m
′
2y

f ′
1x,m

′
1x f ′

2x,m
′
2x

f ′
1z,m

′
1z f ′

2z,m
′
2z1 2

Three-dimensional beams are uniaxial (slender) element that can support:

axial loads f ′
ix,

torsional loads m′
ix,

bending in the x′ − y′ plane: f ′
iy and m′

iz,

bending in the x′ − z′ plane: f ′
iz and m′

iy.
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Differential equations governing the dynamics

u1,ϕ1

u2,ϕ2

u3,ϕ3

x′

1 2

Bars EA∂2
x′x′u1(x

′, t) = ρAü1(x
′, t)

Shafts GJ∂2
x′x′ϕ1(x

′, t) = ρJϕ̈1(x
′, t)

Planar beams ∂2
x′x′

(
EIz∂

2
x′x′u2(x

′, t)
)
+ ρAü2(x

′, t) = 0

Planar beams ∂2
x′x′

(
EIy∂

2
x′x′u3(x

′, t)
)
+ ρAü3(x

′, t) = 0

Iy and Iz are the cross-sectional moments of inertia with respect to the axes y and z.
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Displacements discretization

Total of six nodal displacements at each unconstrained joint:

three translation components q′ix, q
′
iy and q′iz along the x, y, z axes, and

three rotational components about these axes ϕ′
ix, ϕ

′
iy and ϕ′

iz.

uh(x′, t) = H(x′)qloc(t)

qloc(t) =



q′1x(t)

q′1y(t)

q′1z(t)

ϕ′
1x(t)

ϕ′
1y(t)

ϕ′
1z(t)

q′2x(t)

q′2y(t)

q′2z(t)

ϕ′
2x(t)

ϕ′
2y(t)

ϕ′
2z(t)



h1(x
′
) = 1 − x

′
/ℓ

h2(x
′
) = 2(x

′
/ℓ)

3 − 3(x
′
/ℓ)

2
+ 1

h3(x
′
) = 2(x

′
/ℓ)

3 − 3(x
′
/ℓ)

2
+ 1

h4(x
′
) = 1 − x

′
/ℓ

h5(x
′
) = x

′
(1 − x

′
/ℓ)

2

h6(x
′
) = x

′
(1 − x

′
/ℓ)

2

h7(x
′
) = x

′
/ℓ

h8(x
′
) = 3(x

′
/ℓ)

2 − 2(x
′
/ℓ)

3

h9(x
′
) = 3(x

′
/ℓ)

2 − 2(x
′
/ℓ)

3

h10(x
′
) = x

′
/ℓ

h11(x
′
) = x

′
(x

′
/ℓ)(x

′
/ℓ − 1)

h12(x
′
) = x

′
(x

′
/ℓ)(x

′
/ℓ − 1)
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Recap week 9: vibration of 2d structures



Plate structure

Plate structures are geometrically similar to structures of the 2D plane stress
problem, but it usually carries only transversal loads that lead to bending
deformation of the plate.

For example: floors of a building, aerospace and ships structures, etc...

(Credit: (O))
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Kirchhoff assumption

Rectilinearity and orthogonality of the cross-sectional normals:
Bernoulli’s hypothesis is valid, i.e. a cross-sectional plane stays plane and
perpendicular to the middle surface in the deformed state.

Shear strains ε13 and ε23 due to the distributed shear forces qx and qy are
neglected.

(Credit: (N))
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Strong form for Kirchhoff-Love plate bending

Let Ω = [−a, a]× [−b, b]. Find the transverse displacement u3 ∈ C4(Ω× [0, T ])
such that

h3

12
∇T

kC∇ku3 + ρhü3 = f3 on Ω×]0, T [ (1)

boundary conditions (simply supported):

u3 = 0 in ∂Ω×]0, T [

M = 0 in ∂Ω×]0, T [

initial conditions:

u3(·, 0) = u0 in Ω

u̇3(·, 0) = v0 in Ω

In case of isotropic material equation (1) reduces to

D

(
∂4u3
∂x41

+ 2
∂4u3

∂x21∂x
2
2

+
∂4u3
∂x42

)
+ ρhü3 = f3

where D = Eh3/(12(1− ν2)).
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Weak form for Kirchhoff-Love plate bending

The weak form consists of finding the transverse displacement u3 ∈ U such that
the following equation is satisfied for every δu3 ∈ V:

h3

12

∫
Ω
∇ku3C∇kδu3 dΩ+

∫
Ω
ρh ü3 δu3 dΩ =

∫
Ω
f3 δu3 dΩ

U =
{
u3(·, t) ∈ H2(Ω) | u3 = 0 in ∂Ω×]0, T [

}
V =

{
δu3 ∈ H2(Ω) | δu3 = 0 in ∂Ω

}
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Shell element

Shell elements:

have 5 DOFs per node, no rotation eθi3.

lead to huge computational time savings since allow modeling with fewer mesh
elements.

less prone to negative Jacobian errors which might occur when using
extremely thin 3d solid elements.
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Shape functions matrix

uh(ξ) =

ep∑
i=1

ahi(ξ1, ξ2)

[
edi +

1

2
ξ3

eti3
(
−eθi1

evi
2 +

eθi2
evi

1

)]

=

ep∑
i=1

aHi(ξ)
eqi(t)

=

ep∑
i=1


ahi 0 0 −1

2
ξ3

eti3
ahi

evi21
1

2
ξ3

eti3
ahi

evi11

0 ahi 0 −1

2
ξ3

eti3
ahi v

i
22

1

2
ξ3

eti3
ahi

evi12

0 0 ahi −1

2
ξ3

eti3
ahi

evi23
1

2
ξ3

eti3
ahi

evi13


︸ ︷︷ ︸

aHi


edi1
edi2
edi3
eθi1
eθi2


︸ ︷︷ ︸

eqi
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Example: 8 nodes quadrangular shell element
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Thin plate bending elements



Overview of thin plate bending elements

Numerous finite elements for plate bending have been developed: more than 88
distinct types can be identified.

Thin
plate

elements

Quadrangular vs triangular

Conforming vs not conforming (C0 vs C1)

Higher order approximation

Adini-Melosh-Clough element (AMC): 12 dofs quadrangular, not
conforming, thin plate.

Crouzeix–Raviart (CR): 16 dofs quadrangular, conforming, thin plate.
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Finite element approximation of Kirchhoff-Love plate

Weak form equation

h3

12

∫
Ω
∇ku3C∇kδu3 dΩ+

∫
Ω
ρh ü3 δu3 dΩ =

∫
Ω
f3 δu3 dΩ

Semi-discrete weak form

Mq̈(t) +Kq(t) = r(t)

Finite element approximation using polynomial shape functions:

euh3(x1, x2, t) =

n∑
i=1

ehi(x1, x2)
eqi(t) = eH(x)eq(t)
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Selection of the displacement function

To ensure convergence it is necessary to consider:

Completeness criterion:
highest order of derivatives in
the weak form is 2.

Continuity criterion:
euh3 , ∂x1

euh3 , ∂x2
euh3 are con-

tinuous between elements.

Complete polynomials of at least
degree 2:

euh3 = a1 + a2x+ a3y+

+ a4x
2 + a5xy + a6y

2+

+higher order terms

Each node i has 3 DOFs:
edi vertical displacement,
eθi1,

eθi2 rotations.
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AMC plate bending elements



Selection of the displacement function

1 Constant
x1 x2 Linear

x21 x1x2 x22 Quadratic
x31 x21x2 x1x

2
2 x32 Cubic

x41 x31x2 x21x
2
2 x1x

3
2 x42 Quartic

Displacement approximation for rectangular elements with four nodes and
thus 12 dofs: complete cubic polynomial, augmented with two (geometrically
invariant) quartic terms

euh3(x1, x2, t) = a1 + a2x1 + a3x2 + a4x
2
1 + a5x1x2 + a6x

2
2+

+ a7x
3
1 + a8x

2
1x2 + a9x1x

2
2 + a10x

3
2 + a11x

3
1x2 + a12x1x

3
2

! Displacement approximation solves the unloaded strong form equation.
! Continuity in displacement along the interfaces of the elements.
% Slopes continuity along the interfaces are not ensured (not conforming).
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Coordinate transform

The coordinate transformation:

eT : Ωa → eΩ

ξ = {ξ1, ξ2}T 7→ x(ξ) = {x1(ξ), x2(ξ)}T = {aξ1, bξ2}T

maps any point ξ in Ωa = [−1, 1]× [−1, 1] to its corresponding point of coordinate
x(ξ) in eΩ = [−a, a]× [−b, b]:

x1

x2

2b

2a

eΩξ1

ξ2

Ωa

1

4

2

3

2

2

eT
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Approximate displacement in local coordinates

euh3(ξ, t) =

4∑
i=1

ahi(ξ)
eqi(t) = aH(ξ)eq(t) =

[
ah1(ξ)

ah2(ξ)
ah3(ξ)

ah4(ξ)
]

eq1(t)
eq2(t)
eq3(t)
eq4(t)


where

eqi(t) =


edi(t)
eθi1(t)
eθi2(t)

 =


euh3(ξ

i, t)

∂ξ2
euh3(ξ

i, t)/b

−∂ξ1
euh3(ξ

i, t)/a


ξi are the local coordinates of node i.
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Dofs in local coordinates

Assumed form of the displacement function:


euh

3

∂ξ2
euh

3

∂ξ1
euh

3

 =

 1 ξ1 ξ2 ξ21 ξ1ξ2 ξ22 ξ31 ξ21ξ2 ξ1ξ
2
2 ξ32 ξ31ξ2 ξ1ξ

3
2

0 0 1 0 ξ1 2ξ2 0 ξ21 2ξ1ξ2 3ξ22 ξ31 3ξ1ξ
2
2

0 1 0 2ξ1 ξ2 0 3ξ21 2ξ1ξ2 ξ22 0 3ξ21ξ2 ξ32


︸ ︷︷ ︸

P(ξ)

 α1(t)
...

α12(t)


︸ ︷︷ ︸

α(t)

Then the DOFs in local coordinates are:

eqi(t) =

1 0 0
0 1/b 0
0 0 −1/a

P(ξi)

︸ ︷︷ ︸
P̄(ξi)

α(t)
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Shape functions matrix for the AMC element

Since

eq(t) =


eq1(t)
eq2(t)
eq3(t)
eq4(t)

 =


P̄(ξ1)

P̄(ξ2)

P̄(ξ3)

P̄(ξ4)


︸ ︷︷ ︸

A

α(t) ⇒ α(t) = A−1 eq(t)

Then the shape functions matrix is aH =
[
ah1

ah2
ah3

ah4

]
= P1M

−1

where

ahi(ξ) =

(1 + ξi1ξ1)(1 + ξi2ξ2)(2 + ξi1ξ1 + ξi2ξ2 − ξ21 − ξ22)/8
b(1 + ξi1ξ1)(ξ

i
2 + ξ2)(ξ

2
2 − 1)/8

−a(ξi1 + ξ1)(ξ
2
1 − 1)(1 + ξi2ξ2)/8

T

and ξi = {ξi1, ξi2}T are the local coordinates of node i.
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Deformation, stiffness, mass matrices and loads vector

aB = ∇k
aH is a (3× 12) matrix:

aB =


1
a2
∂2
ξ1

1
b2
∂2
ξ2

2
ab∂

2
ξ1ξ2

 [
ah1

ah2
ah3

ah4

]
=




1
a2
∂2
ξ1

1
b2
∂2
ξ2

2
ab∂

2
ξ1ξ2

 ah1 . . .


1
a2
∂2
ξ1

1
b2
∂2
ξ2

2
ab∂

2
ξ1ξ2

 ah4


eK and eM are (12× 12) matrices and er is a (12× 1) vector:

eK =
h3

12

∫
Ω

eBTCeB dΩ =
h3ab

12

∫ 1

−1

∫ 1

−1

aBTCaB dξ1dξ2,

eM =

∫
Ω
ρh eHT eH dΩ = ρhab

∫ 1

−1

∫ 1

−1

aHT aH dξ1dξ2,

r(t) =

∫
Ω
HT f3(t) dΩ = abf3(t)

∫ 1

−1

∫ 1

−1

aHT dξ1dξ2.
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Post processing

The approximated stresses at any point (x1, x2, x3) of the element e are given
in term of the nodal displacements:

eσh = Ceεh = −x3C∇k
euh3 = −x3C

eBeq(t)

The approximated bending moments Mh
11 and Mh

22 and twisting moment Mh
12

per unit length are given by:

M =

Mh
11

Mh
22

Mh
12

 =

∫ h
2

−h
2

x3

σh
11

σh
22

σh
12

 dx3 = −h3

12
CeBeq(t)
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Example: isotropic square plate in free
vibrations



Example: isotropic square plate in free vibrations

Use the ACM element to estimate the five lowest frequencies of a square plate
(ℓ× ℓ) which is simply supported on all four edges.

Compare the results with the analytical solution

ωm,n = π2m
2 + n2

ℓ2

√
D

ρh
rad/s,

where ℓ is the length of each side and (m,n) are the number of half-waves in the x-
and y-directions and D is flexural rigidity of the plate:

D =
Eh3

12(1− ν2)
.
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Boundary conditions

Figure 1: One-quarter of
the plate represented by
four rectangular elements.

Simple support:
• sides 1-3: u3 = θ2 = 0 at nodes 1, 2, and 3,
• sides 1-7: u3 = θ1 = 0 at nodes 1, 4, and 7.

Symmetric modes:
• with respect to side 3-9: θ2 = 0 at nodes 3, 6, and 9,
• with respect to side 7-9: θ1 = 0 at nodes 7, 8, and 9.

Antisymmetric modes:
• with respect to side 3-9: u3 = θ1 = 0 at nodes 3, 6,

and 9.
• with respect to side 7-9: u3 = θ2 = 0 at nodes 7, 8,

and 9.

(Credit: (P))
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Frequencies estimate for square plate with ACM element

Figure 2: Relative errors for simply
supported (S) square plate.

Figure 3: Relative errors for simply
supported (S)/free (F) square plate.

(Credit: (P))
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Modal patterns

Figure 4: Vibration mode shape for a simply supported (S) square plate.

(Credit: Pagani, Azzara, Carrera - Geometrically nonlinear analysis and vibration of

in-plane-loaded variable angle tow composite plates and shells)
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Modal patterns

Figure 5: Mode shapes of a simply
supported (S)/free (F) square plate.

Figure 6: Mode shapes of a corner
supported square plate.

(Credit: (P))
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Frequencies estimate for square plate with AMC element

First six natural frequencies of a square plate of side ℓ = 0.3048 m and thickness
h = 3.2766 mm which is point supported at its four corners.
E = 73.084 · 109 N/m2, ν = 0.3, ρ = 2821 kg/m3.

Figure 7: Comparison of predicted and analytical frequencies of a corner supported
square plate

(Credit: (P))
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CR thin plate bending elements



Selection of the displacement function

1 Constant
x1 x2 Linear

x21 x1x2 x22 Quadratic
x31 x21x2 x1x

2
2 x32 Cubic

x31x2 x21x
2
2 x1x

3
2 Quartic

x31x
2
2 x21x

3
2 Quintic

x31x
3
2 Sextic

Displacement approximation for rectangular elements with four nodes and 16
dofs (4 dofs per node): complete cubic polynomial, augmented with three quartic,
two quintic and one sextic terms:

euh3(x1, x2, t) = a1 + a2x1 + a3x2 + a4x
2
1 + a5x1x2 + a6x

2
2+

+ a7x
3
1 + a8x

2
1x2 + a9x1x

2
2 + a10x

3
2+

+ a11x
3
1x2 + a12x1x

3
2 + a13x

2y2 + a14x
3y2 + a15x

2y3 + a16x
3y3
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Recall: transversal bending for Euler-Bernoulli beam

Approximated transversal displacement uh2 as a function of the nodal DOFs:

euh2(ξ, t) = H(ξ)q(t) = [h1(ξ), h2(ξ), h3(ξ), h4(ξ)]


d1(t)
θ1(t)
d2(t)
θ2(t)



1 2

ξ

θ1

θ2

d1

d2

C1 Hermite shape functions on [−1, 1]:

h1(ξ) = (ξ3 − 3ξ + 2)/4

h3(ξ) = (−ξ3 + 3ξ + 2)/4

h2(ξ) = (ξ3 − ξ2 − ξ + 1)/4

h4(ξ) = (ξ3 + ξ2 − ξ − 1)/4
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Shape functions matrix: a first try

Let ξi be the coordinate of the node i. Then the Hermite shape functions
matrix is H(ξ) = [f1 g1 f2 g2] where

fi(ξ) = (−ξiξ3 + 3ξiξ + 2)/4 gi(ξ) = (ξ3 + ξiξ2 − ξ − ξi)/4.

The shape functions matrix for the plate bending element is a product of
Hermite functions:

aH =
[
ah1

ah2
ah3

ah4

]
where

ahi(ξ) =

 fi(ξ1)fi(ξ2)
bfi(ξ1)gi(ξ2)
−agi(ξ1)fi(ξ2)

T

.
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Zero-twist constraint

The approximate displacement in local coordinate is defined as:

euh3(ξ, t) =

4∑
i=1

ahi(ξ1, ξ2)
eqi(t) = aH(ξ)eq(t)

% The twist
∂2

∂ξ1∂ξ2
euh3(ξ, t)

is zero at the four nodal points. Thus the plate will tend to a zero twist
condition as an increasing number of elements are used.

Solution: introduce

θi12 =
∂2

∂ξ1∂ξ2
euh3(ξ

i, t)

as an extra degree of freedom.

CR thin plate bending elements Dynamic analysis of Kirchhoff-Love plates 37 / 43



Shape functions matrix for the CR element

The approximate displacement in local coordinate is defined as:

euh3(ξ, t) =

4∑
i=1

ahi(ξ)
eqi(t) = aH(ξ)eq(t)

4 dofs per node: eqi(t) =


edi(t)
eθi1(t)
eθi2(t)
eθi12(t)

 =


euh3(ξ

i, t)

∂ξ2
euh3(ξ

i, t)/b

−∂ξ1
euh3(ξ

i, t)/a

∂2
ξ1ξ2

euh3(ξ
i, t)/(ab)


The shape function matrix is aH =

[
ah1

ah2
ah3

ah4

]
where

ahi(ξ) =


fi(ξ1)fi(ξ2)
bfi(ξ1)gi(ξ2)
−agi(ξ1)fi(ξ2)
abgi(ξ1)gi(ξ2)


T
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Boundary conditions

Figure 8: One-quarter of
the plate represented by
four rectangular elements.

Simple support:
• sides 1-3: u3 = θ2 = 0 at nodes 1, 2, and 3,
• sides 1-7: u3 = θ1 = 0 at nodes 1, 4, and 7.

Symmetric modes:
• with respect to side 3-9: θ2 = θ12 = 0 at nodes 3, 6,

and 9,
• with respect to side 7-9: θ1 = θ12 = 0 at nodes 7, 8,

and 9.

Antisymmetric modes:
• with respect to side 3-9: u3 = θ1 = 0 at nodes 3, 6,

and 9.
• with respect to side 7-9: u3 = θ2 = 0 at nodes 7, 8,

and 9.

(Credit: (P))
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Example: isotropic square plate in free
vibrations



Frequencies estimate for square plate with CR element

The CR element is used to estimate the first lowest frequencies of a square plate
(ℓ× ℓ) which is simply supported on all four edges.

Figure 9: Relative errors for simply supported (S) square plate.
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Frequencies estimate for square plate with CR element

First six natural frequencies of a square plate of side ℓ = 0.3048 m and thickness
h = 3.2766 mm which is point supported at its four corners.
E = 73.084 · 109 N/m2, ν = 0.3, ρ = 2821 kg/m3.

Figure 10: Comparison of predicted and analytical frequencies of a corner supported
square plate

(Credit: (P))
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Comparison: AMC vs CR plate bending element

CR element (Conforming)

4 degrees of freedom per node: u3, θ1, θ2, and θ12.

Displacement u3 and rotations θ1, θ2 are continuous across element boundaries.

Fully conforming to the C1 continuity required by Kirchhoff plate theory.

Higher computational cost and complexity.

AMC element (Nonconforming)

3 degrees of freedom per node: u3, θ1, θ2.

Only displacement u3 is continuous across elements; rotations may have jumps.

Nonconforming element: does not fully satisfy C1 continuity.

Simpler and computationally cheaper; suitable for practical applications.
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Why would you use AMC element if it’s nonconforming?

Computationally cheaper than full C1 elements (fewer dofs).

It still converges (theoretical results for nonconforming FEMs show
convergence under certain conditions).

Suitable when small slope discontinuities are acceptable (e.g., dynamic
problems, large meshes).

Tends to underestimate the natural frequencies, making it a useful benchmark
for detecting overstiffness in numerical model.
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