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Problem set 7 - solutions

Problem 1

a) Kronecker delta property: Consider the shape functions associated with the AMC element,
evaluated at the nodal coordinate &’. These are defined as

[+ +68) (2 + & + &8 — (€ - (8)°) /8
“hi(¢) = b1+ E16)(& + E)((€)? — 1)/8
—a(&; + &)((6)* = (1 + £583)/8
We shall verify the following:
e if 1 = j, the first component equals to 1, and the second and third components evaluate to 0;

e if i # j, the first component equals to 0, and the second and third components evaluate to 0.

The nodal coordinates are given by:

i|& g
1] -1 -1
21 +1 -1
3| +1 —+1
4| -1 +1

To evaluate the first component of the shape function, we observe that (14 £&])(1 + £56)) = 46;;.
This can be verified through the following multiplication tables:

1+&¢ 1 2 3 4 1+&8 111 2 3 4
1 20 0 2 1 2 2 0 0
2 02 2 2 2 2 2 0 0
3 02 2 2 3 00 2 2
4 2.0 0 2 4 00 2 2

Moreover, when ¢ = j the third factor of the first component simplifies to
2+ (&) + (&) — ()’ - (&) =2

For the second and third components, note that they contain the factors (€)> — 1 and (€))% — 1,
respectively, both of which vanish for all nodal values, as each & = & = +1. Therefore, these
components are identically zero for all combinations of ¢ and j. Thus:

“hy(¢’) = | 0
0



Notice that one can further show that

01" 01"
Ohi ey~ | o and  IPiey |5,
agl O 852 6j
ij

The Kronecker delta properties ensure that:
u§<€jv t) = dj> agleugz(sj’ t) = 9%7 and 8526u§(€j7 t) = 0{

b)Nonconformity of the AMC element: when evaluating the shape functions of the AMC
element along the side & = +1, the following expressions are obtained:
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Consequently, the displacement field along this edge reads:
4
5(1,6,1) Z (1,82) |“01(1)

It is clear from the form of the shape functions that the vertical displacement “ul along the edge
depends solely on the nodal values of the vertical displacements, ¢d* and ©d®, and rotations ¢6? and
93 associated with nodes 2 and 3, respectively. Therefore, the AMC element ensures the continuity
of the vertical displacement along the side 2-3, satisfying the conditions of a C° element. (Caveat:
a similar verification should be conducted along side 3-4 to fully establish C° continuity.)
Furthermore, the rotations along the edge 2-3 (§; = 1) are given by:
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Considering the expressions of the shape functions “h; along the side 2-3 provided in (1), it follows
that €0 is uniquely determined by the nodal values ¢d?, ¢d3, €62, and °03. Therefore, continuity
of the rotation °0} across the interface between adjacent elements is preserved (Caveat: a similar
verification should be conducted along side 3-4 to fully establish C° continuity.).

On the other hand, since

L4 66) (E(1 46 + &6 — ) + (L+ €& -2
(1,6) = bei(Eh+&)(E2—1) ,
=&+ 1)(1 + €46)
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we have:
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For 0% to be continuous across the element interface, it would need to be uniquely determined by
the degrees of freedom at nodes 2 and 3. However, the above expressions reveal that 0% depends
not only on ¢d?, ¢d®, 6%, <63, ¢62, and ©63, but also on the values of °d’ and °#} at nodes j = 1 and
j = 4. Consequently, the AMC element is classified as a non-conforming element: continuity
of €@ along the interface 2-3 is not guaranteed, and therefore the AMC element does not satisfy
C! continuity requirements. By analogy, one can show that the continuity of ¢0% fails along the
interface given by the side 3-4. In spite of this, the AMC element is used and will, therefore, be
considered further and the effect of this lack of continuity indicated.

Problem 2

Consider the following ansatz for the transverse displacement approximation in a rectangular AMC
element, characterized by four nodes and thus twelve degrees of freedom:

h 2 2
“uy (1, 9, t) = ay + asxy + azrs + a4xi + asr1To + agx;

3 2 2 3 4 4
+ arx] + agT|T2 + 9115 + A10%5 + A117] + Q12T

Let us focus on the behavior along an edge of the element, for instance the bottom horizontal edge,
defined by x5 = 0. Along this edge, the displacement field simplifies to:

ub(xy,0,t) = ay + gy + agr? + agad + ayal

When two adjacent elements share this edge, continuity of the displacement u# across the common
boundary requires that the polynomial expressions from both elements match along the entire edge.
However, the presence of the quartic term z} implies that, beyond matching displacement and slope,

the curvature 92, u% would also need to be matched continuously.

r1x

Given that the AMC element formulation only introduces degrees of freedom associated with the
displacement u# and the rotations 87 and 6% at the nodes, it does not possess the necessary additional
degrees of freedom to independently control second derivatives such as 8§1I1u§. Consequently,
continuity of curvature across the element boundaries cannot be enforced, leading to displacement
discontinuities along shared edges.

In contrast, if the choice of the displacement function includes cross terms such as xizy and z;z3
instead of pure quartic terms, a different behavior is observed. Along the edge where zo = 0:
‘ul(z1,0,t) is a cubic polynomial in z; ensuring that the displacement field u# remains continuous
across the edge without requiring higher-order derivative matching.

The inclusion of pure quartic terms z] and x5 in the displacement approximation of the AMC plate
bending element introduces uncontrolled curvature that cannot be matched at element interfaces,
thereby resulting in displacement discontinuities. Conversely, the use of mixed cubic terms such as
2379 and x 25 enriches the internal displacement field while preserving continuity along edges, as

their contributions naturally vanish along coordinate-aligned boundaries.



Problem 3

Since “u? is expressed as a linear combination of the shape functions “h;, with time-dependent

coefficients ¢d'(t), ¢0%(t) and 05(t) that are independent of the spatial variables, it follows that

. 4 82 ed? (t)
‘uz(§,t) = “h;(§) |01(1)
06,06 2 06,06 (e
Accordingly, the problem reduces to computing the mixed second derivatives ag?;§2ahi' Differenti-
ating “h; (&) with respect to & yields
, T
0 [i(&) fi(&)
gahi(f) = | bfj(&1)gi(&2)
! —ag;(&1) fi(&2)
Subsequently, differentiating with respect to &; leads to
T
. F(E) F(E)
06, 0€ “hi(§) = | bfi(&1)gi(&2)
e —agi(§1) £ (&)
At the nodal points, where &1,&; € {£1}, the derivatives of the Hermite functions are given by
—36(€% —-1
32+ 2606 — 1
gle = 2L

Notably, f/(£1) = 0 since the factor (£2 — 1) vanishes at £ = +1. Thus, for every node j = 1,...,4,
the shape functions vanish:
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861852 ‘ 0
Consequently,
¢ t) =0.
851652 Us (5 ) ) 0



