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Problem set 7 - solutions

Problem 1

a) Kronecker delta property: Consider the shape functions associated with the AMC element,
evaluated at the nodal coordinate ξj. These are defined as

ahi(ξ
j) =

(1 + ξi1ξ
j
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j
2)
(
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j
1 + ξi2ξ

j
2 − (ξj1)

2 − (ξj2)
2
)
/8

b(1 + ξi1ξ
j
1)(ξ

i
2 + ξj2)((ξ

j
2)

2 − 1)/8

−a(ξi1 + ξj1)((ξ
j
1)

2 − 1)(1 + ξi2ξ
j
2)/8

T

.

We shall verify the following:

• if i = j, the first component equals to 1, and the second and third components evaluate to 0;

• if i ̸= j, the first component equals to 0, and the second and third components evaluate to 0.

The nodal coordinates are given by:

i ξi1 ξi2
1 −1 −1
2 +1 −1
3 +1 +1
4 −1 +1

To evaluate the first component of the shape function, we observe that (1 + ξi1ξ
j
1)(1 + ξi2ξ

j
2) = 4δij.

This can be verified through the following multiplication tables:

1 + ξi1ξ
j
1 1 2 3 4

1 2 0 0 2
2 0 2 2 2
3 0 2 2 2
4 2 0 0 2

1 + ξi2ξ
j
2 1 2 3 4

1 2 2 0 0
2 2 2 0 0
3 0 0 2 2
4 0 0 2 2

Moreover, when i = j the third factor of the first component simplifies to

2 + (ξi1)
2 + (ξi2)

2 − (ξj1)
2 − (ξj2)

2 = 2.

For the second and third components, note that they contain the factors (ξj2)
2 − 1 and (ξj1)

2 − 1,
respectively, both of which vanish for all nodal values, as each ξj1 = ξj2 = ±1. Therefore, these
components are identically zero for all combinations of i and j. Thus:

ahi(ξ
j) =

δij0
0

T
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Notice that one can further show that

∂ahi

∂ξ1
(ξj) =

 0
0
δij

T

and
∂ahi

∂ξ2
(ξj) =

 0
δij
0

T

.

The Kronecker delta properties ensure that:

euh
3(ξ

j, t) = dj, ∂ξ1
euh

3(ξ
j, t) = θj2, and ∂ξ2

euh
3(ξ

j, t) = θj1.

b)Nonconformity of the AMC element: when evaluating the shape functions of the AMC
element along the side ξ1 = +1, the following expressions are obtained:

ah1 =
ah4 =

00
0

T

ah2 =

 1
4
(1− ξ2)(2− ξ2 − ξ22)

(b/4)(−1 + ξ2)(ξ
2
2 − 1)

0

T

ah3 =

1
4
(1 + ξ2)(2 + ξ2 − ξ22)
(b/4)(1 + ξ2)(ξ

2
2 − 1)

0

T

. (1)

Consequently, the displacement field along this edge reads:

euh
3(1, ξ2, t) =

4∑
i=1

ahi(1, ξ2)

edi(t)
eθi1(t)
eθi2(t)

 .

It is clear from the form of the shape functions that the vertical displacement euh
3 along the edge

depends solely on the nodal values of the vertical displacements, ed2 and ed3, and rotations eθ21 and
eθ31, associated with nodes 2 and 3, respectively. Therefore, the AMC element ensures the continuity
of the vertical displacement along the side 2-3, satisfying the conditions of a C0 element. (Caveat :
a similar verification should be conducted along side 3-4 to fully establish C0 continuity.)
Furthermore, the rotations along the edge 2-3 (ξ1 = 1) are given by:

eθh1 (1, ξ2, t) =
1

b

∂euh
3

∂ξ2
(1, ξ2, t) =

1

b

4∑
i=1

∂ahi

∂ξ2
(1, ξ2)

edi(t)
eθi1(t)
eθi2(t)

 ,

eθh2 (1, ξ2, t) = −1

a

∂euh
3

∂ξ1
(1, ξ2, t) = −1

a

4∑
i=1

∂ahi

∂ξ1
(1, ξ2)

edi(t)
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 .

Considering the expressions of the shape functions ahi along the side 2–3 provided in (1), it follows
that eθh1 is uniquely determined by the nodal values ed2, ed3, eθ21, and

eθ31. Therefore, continuity
of the rotation eθh1 across the interface between adjacent elements is preserved (Caveat : a similar
verification should be conducted along side 3-4 to fully establish C0 continuity.).
On the other hand, since

∂ahi

∂ξ1
(1, ξ2) =


1
8
(1 + ξi2ξ2) (ξ

i
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i
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b
8
ξi1(ξ

i
2 + ξ2)(ξ

2
2 − 1)

−a
4
(ξi1 + 1)(1 + ξi2ξ2)


T

,
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we have:
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For eθh2 to be continuous across the element interface, it would need to be uniquely determined by
the degrees of freedom at nodes 2 and 3. However, the above expressions reveal that eθh2 depends
not only on ed2, ed3, eθ21,

eθ31,
eθ22, and

eθ32, but also on the values of edj and eθj2 at nodes j = 1 and
j = 4. Consequently, the AMC element is classified as a non-conforming element: continuity
of eθh2 along the interface 2-3 is not guaranteed, and therefore the AMC element does not satisfy
C1 continuity requirements. By analogy, one can show that the continuity of eθh1 fails along the
interface given by the side 3-4. In spite of this, the AMC element is used and will, therefore, be
considered further and the effect of this lack of continuity indicated.

Problem 2

Consider the following ansatz for the transverse displacement approximation in a rectangular AMC
element, characterized by four nodes and thus twelve degrees of freedom:

euh
3(x1, x2, t) = a1 + a2x1 + a3x2 + a4x

2
1 + a5x1x2 + a6x

2
2

+ a7x
3
1 + a8x

2
1x2 + a9x1x

2
2 + a10x

3
2 + a11x

4
1 + a12x

4
2

Let us focus on the behavior along an edge of the element, for instance the bottom horizontal edge,
defined by x2 = 0. Along this edge, the displacement field simplifies to:

euh
3(x1, 0, t) = a1 + a2x1 + a4x

2
1 + a7x

3
1 + a11x

4
1

When two adjacent elements share this edge, continuity of the displacement uh
3 across the common

boundary requires that the polynomial expressions from both elements match along the entire edge.
However, the presence of the quartic term x4

1 implies that, beyond matching displacement and slope,
the curvature ∂2

x1x1
uh
3 would also need to be matched continuously.

Given that the AMC element formulation only introduces degrees of freedom associated with the
displacement uh

3 and the rotations θh1 and θh2 at the nodes, it does not possess the necessary additional
degrees of freedom to independently control second derivatives such as ∂2

x1x1
uh
3 . Consequently,

continuity of curvature across the element boundaries cannot be enforced, leading to displacement
discontinuities along shared edges.
In contrast, if the choice of the displacement function includes cross terms such as x3

1x2 and x1x
3
2

instead of pure quartic terms, a different behavior is observed. Along the edge where x2 = 0:
euh

3(x1, 0, t) is a cubic polynomial in x1 ensuring that the displacement field uh
3 remains continuous

across the edge without requiring higher-order derivative matching.
The inclusion of pure quartic terms x4

1 and x4
2 in the displacement approximation of the AMC plate

bending element introduces uncontrolled curvature that cannot be matched at element interfaces,
thereby resulting in displacement discontinuities. Conversely, the use of mixed cubic terms such as
x3
1x2 and x1x

3
2 enriches the internal displacement field while preserving continuity along edges, as

their contributions naturally vanish along coordinate-aligned boundaries.
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Problem 3

Since euh
3 is expressed as a linear combination of the shape functions ahi, with time-dependent

coefficients edi(t), eθi1(t) and
eθi2(t) that are independent of the spatial variables, it follows that

∂2

∂ξ1∂ξ2
euh

3(ξ, t) =
4∑

i=1

∂2

∂ξ1∂ξ2
ahi(ξ)

edi(t)
eθi1(t)
eθi2(t)

 .

Accordingly, the problem reduces to computing the mixed second derivatives ∂2

∂ξ1∂ξ2
ahi. Differenti-

ating ahi(ξ) with respect to ξ1 yields

∂

∂ξ1
ahi(ξ) =

 f ′
i(ξ1)fi(ξ2)

bf ′
i(ξ1)gi(ξ2)

−ag′i(ξ1)fi(ξ2)

T

.

Subsequently, differentiating with respect to ξ2 leads to

∂2

∂ξ1∂ξ2
ahi(ξ) =

 f ′
i(ξ1)f

′
i(ξ2)

bf ′
i(ξ1)g

′
i(ξ2)

−ag′i(ξ1)f
′
i(ξ2)

T

.

At the nodal points, where ξ1, ξ2 ∈ {±1}, the derivatives of the Hermite functions are given by

f ′
i(ξ) =

−3ξi(ξ2 − 1)

4
,

g′i(ξ) =
3ξ2 + 2ξiξ − 1

4
.

Notably, f ′
i(±1) = 0 since the factor (ξ2− 1) vanishes at ξ = ±1. Thus, for every node j = 1, . . . , 4,

the shape functions vanish:

∂2

∂ξ1∂ξ2
ahi(ξ

j) =

00
0

T

.

Consequently,
∂2

∂ξ1∂ξ2
euh

3(ξ
j, t) = 0.
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